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Abstract
We use the dynamics of complex networks to iden-

tify communities. A well appropriated mathematical
approach is used to study the behavior of the model’s
solutions. A quality function called clustering density
is introduced to measure the effectiveness of the com-
munities identification. Illustrations with real networks
with community structure are presented.
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1 Introduction
The last two decades has witnessed a growing inter-

est on the study of complex networks and its proper-
ties [Chung and Lu, 2006]. The complex networks are
around us, and us as individuals, are units of several
social networks as family, work-groups, brotherhoods
and many others [Boccaletti, 2006]. Such networks are
mathematically modeled as graphs, which is composed
of a finite set of vertices and a finite set of links.
Although commonly complex, real-world networks

usually have a certain level of organization. For in-
stance, its quite common having the links distribution
on the graph frequently heterogeneous with high con-
centration of links inside specifics groups of vertices
whereas there is a low concentration of vertices be-
tween those groups. This feature of complex networks
is known as community structure [Fortunato, 2010].
Actually, there is no a precise definition of this prop-
erty, nevertheless, we will use the following one:

Definition 1 (Community). A community in a graph
(or network) is a subset of this graph that has density
of inside links larger than 0.5.

The Figure 1 brings an example of a network with
communities structure.
There are several classical methods used to detect

communities and the typical algorithms include those

Figure 1. An example of a network with community structure.
Credit: [Newman, 2012].

designed to maximize the value of the function known
as “modularity”, and those based on the topology struc-
tures directly, e.g., betweeness, degree, clustering coef-
ficient and others. Many researchers have showed that
the topological scales of complex networks can be rev-
eled by their dynamics [Arenas et al, 2006; Moreno et
al, 2004; Oh et al, 2005; Zhou et al, 2007]. A detailed
survey on the problem of community detection can be
found in [Fortunato, 2010].
Based on the works of [Wu et al, 2012] and

[Nishikawa et al, 2004], we introduce here a new
methodology for community detection. It is based on
a Generalized Kuramoto Model (GKM) with a Fourier
Term (GKMF) as the dynamics for the oscillators. We
do not use the typical computer-made GN and LFR net-
works to test the model (and algorithm) to find com-
munities because neither of theses models, GKM and
GKMF, works well in large complex networks, mainly
because its solutions are limited to the unit circle S1 ⊂
R2 and its quite common for different communities
merge their temporal series. Our aim is to show that
the networks dynamics can, indeed, be a new tool for
community detection algorithms.

2 The Model and a Little bit More
Let G be a simple, non-directed and connected graph

with n vertices. The adjacency matrix A = [Aij ],



i, j = 1 · · · , n is a matrix that encodes the topologi-
cal information of G, i.e., Aij = 1, if and only if there
is a link between the vertices i and j, and Aij = 0 oth-
erwise. The degree gi of a vertex i is the number of
connections its receive. It can be written in terms of
the adjacency matrix as gi =

∑n
j=1Aij .

For each fixed vertex i in G, the generalized Kuramoto
model (GKM) reads:

θ̇i = ωi +
KP

n

n∑
j=1

Aij sin (θj − θi)

+
KN

n

n∑
j=1

(1−Aij) sin (θj − θi) , (1)

i = 1, · · · , n, where the ωi is the natural frequency of
vertex i, KP > 0 and KN < 0 are the coupling pa-
rameters. Note that the role of KP is to attract those
vertices that are connected (Aij = 1) whereas the role
of KN is to push those vertices that are not connected
(Aij = 0). Note also that each trajectory θi(t) oscil-
lates over the unit circle S1 ⊂ R2 and therefore we use
the equivalence class mod 2π in all numerical inte-
gration.
The Theorem 1 give us an idea on how to choose the

parameters KP and KN .

Theorem 1. Let 〈g〉 =
∑n
i=1 gi be the mean degree

of a graph. If the natural frequencies ωi of Eq. (1)
are taken over a normalized distribution with 0 (zero)
mean and finite variance and the solutions of Eq. (1)
converge to fixed points then

|KN | ≤
KP 〈g〉

(n− 〈g〉)
. (2)

For now on, we will present and use our General-
ized Kuramoto Model with Fourier term (GKMF). Let
ωi = ω for all i = 1, · · · , n and consider the variable
transformation θi(t)→ θi(t) + ωt. The GKMF reads:

θ̇i =
KP

n

n∑
j=1

Aij sin (θj − θi)

+
KN

n

n∑
j=1

(1−Aij) sin (θj − θi)

+
KF

n

n∑
i=1

sin[ρ(θj − θi)] (3)

where KF > 0 is the strength of the Fourier term and
ρ ∈ N \ {0, 1} is the order of this term. As we will see,
the role of the Fourier term is to force the trajectories
to split into ρ groups.
Because we consider the natural frequencies of each

oscillator are the same and by the following result, the

global existence of all trajectories of Eq. (3) is ensured
and moreover they will converge to fixed points.

Theorem 2. The GKMF is a gradient system.

As we have already mentioned, one of the properties
of the GKMF is that the oscillators are naturally split
into ρ groups (the order of the Fourier term).

Theorem 3. Let Tn = S1 × · · · × S1 (n times) be the
n-dimensional torus. Suppose that KF > KN in Eq.
(3). Then the solutions of (3) converge to ρ stables sub-
spaces of Tn.

Although the Fourier term forces the trajectories to
split into ρ groups, it does not mean that this splitting
is the best one, i.e., it does not mean that we will find
the real communities only because of this splitting. In-
deed, what the Theorem 3 says is that if KF is too
strong then the Fourier term will dominate the whole
dynamics of the model and the topological contribution
to the model will be lost. Therefore, the Fourier term
can sharpen the detection of the communities for small
values of KF but can also worsen it for large values of
KF . Because of that, we must set small values for KF

in our numerical integration, otherwise the clustering
will make no sense for community detection.

3 The Algorithm
Consider G a simple, non-directed and connected

graph with n vertices and Ck a sub-graph of G. The
inner degree g→Ck

i of a vertex i ∈ Ck is the number
g→Ck
i =

∑
j∈Ck

Aij , i.e, the number of links from i
that are in Ck. We define the local clustering density as

δCk
=

∑
i∈Ck

g→Ck
i /gi

|Ck|
(4)

where gi is the degree of the vertex i and |Ck| is the
number of vertices inside Ck.
If, in a process on community detection, ρ communi-

ties were identified then we define the total clustering
density as

δ(ρ) =

ρ∑
k=1

δCk
. (5)

Accordingly to our given definition of community
(Definition 1), a satisfactory community identification
process must result in δCk

> 0.5 for all k = 1, · · · , ρ
and as a consequence δ(ρ) > 0.5.
As we said before, δ(2) is, probably, the larger to-

tal clustering density that we can find for almost every
complex network regardless the number of communi-
ties. Therefore, it must be necessary to run the follow-
ing algorithm for different values of ρ and an ultimate
of a specialist must be necessary.
Algorithm to detect communities in complex net-

works via dynamics:



1 Evolve the phases of Eq. (3) choosing parameters
accordingly to Theorem 1 and KF preferentially
KF < |KN | and start setting ρ = 2.

2 In S1, split the phases into ρ groups.
3 Compute the local clustering density δCk

for each
k = 1, · · · , ρ and the total clustering density δ(ρ).

4 If each δCk
> 0.5 and, by consequence, δ(ρ) >

0.5, the identified communities can be satisfactory.
Repeat the above procedure changing the value of
ρ to ρ = 3, · · · until having δ(ρ) ≤ 0.5. The cor-
rect community detection may have be decided by
an expert.

4 Illustrations
The Zachary’s karate club network is a social network

with 34 members studied by Zachary [Zachary, 1977].
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Figure 2. Zachary’s karate club network.

First of all, we perform a comparison between the two
presented dynamic models, namely, GKM and GKMF
in order to provide numerical support for the use of
GKMF. The Figure 3 depict it.
Lets then apply the algorithm presented in order to de-

tect the communities in the Zachary’s karate club net-
work. The Table 1 present the results.

ρ δ(ρ)

2 0.902081

3 0.795850

4 0.448269

Table 1. Total clustering density for the Zachary’s karate club net-
work.

As we can see, both δ(2) and δ(3) are larger than 0.5
which lead us to conclude that this network can be well
grouped into 2 or 3 communities. Indeed, some authors
divided the karate club network into three communi-
ties [Shen et al, 2010]. Therefore, the algorithm has
decided that this network can have at most 3 commu-
nities, but the final decision can be made by an expert

0 5 10 15 20 25 30
0

1

2

3

4

5

6

t

θ
i

GKM

0 2 4 6 8 10
0

1

2

3

4

5

6

t

θ
i

GKMF

Figure 3. Comparative between the time evolution for GKM (top)
and GKMF (bottom), with Fourier term of order 3, for the Zachary’s
karate club network. The parameters values used were KP = 34,
KN = −5 andKF = 1.

and it is known that in the social context this network
has only 2 communities [Zachary, 1977]. The third
identified community if formed by the set of vertices
{5, 6, 7, 11, 17} that arises from a larger community.
The Figure 4 brings the Zachary’s karate club network
with the identified communities colored.
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Figure 4. Zachary’s karate club network with at most three com-
munities identified.

5 Conclusions
Based on the GKM one have built a new model,

namely, GKMF that have showed to be a little better



on community detection context rather than the GKM.
Some results on this new model were presented and
confirmed by numerical results. The Fourier term on
GKMF can be a double-edged sword in the sense that
its set up a natural clustering of the trajectories accord-
ingly the order of this term, but if it is too strong the net-
work structure contribution for the model can be lost.
Numerical simulations have shown that for the most of
network tested we should use KF < |KN |, but this
value may be exceeded depending on the network size.
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