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Abstract
In this paper the mathematical modelling of a mechan-

ical system designed to control changes in the pressure
of the working medium in aircraft engines and consist-
ing of a pipeline and a pressure sensor is carried out. The
pipeline is necessary to take the sensor to some distance
from the engine in order to mitigate the impact of high
temperatures and vibration accelerations on the sensitive
element of the sensor, which is an elastic plate. The sys-
tem takes into account the aerohydrodynamic and ther-
mal effects of the working medium on the plate. Asymp-
totic equations of aerohydrodynamics in the models of
compressible and incompressible medium are used to
describe the working medium motion in the pipeline.
Both linear and nonlinear models of a deformable solid
body are proposed to describe the plate dynamics. When
using the compressible medium model, the solution of
the problem is reduced to the study of an equation with
a deviating argument. To solve the problem using the
incompressible medium model, Fourier and Galerkin
methods are applied. As a result, for both models the
solution of the problem is reduced to the study of or-
dinary differential equations relating the magnitude of
pressure in the motor with the magnitude of deformation
of the sensing element, which can be used to control the
mode of operation of the motor. The solution of these
equations is found with the developed software program
using standard functions of Mathematica 12.0. The pa-

per was presented at PhysCon2024.
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1 Introduction
In many branches of science and technology the prob-

lem of increasing the reliability and durability of struc-
tures interacting with the flow of liquid or gas occupies
an important place. Such a problem, in particular, arises
in the design of pressure sensors for gas-liquid media.
In this connection there arises a problem of research of
dynamics and stability of oscillations of structural ele-
ments, as the impact of the flow can lead to values of am-
plitude, velocity, accelerations of oscillations, which do
not allow to carry out their reliable operation and provide
the necessary functional accuracy. The development of
rocket-space, aviation and other techniques requires both
the development of new types of primary transducers and
continuous improvement of existing ones.

In many works the description of sensors of measur-
ing systems, principles of their operation, technical char-
acteristics are presented, for example [Agejkin et al.,
1965; Andreeva, 1981; Ash et al., 1992; Etkin, 2004;
Kazaryan and Groshev, 2008; Korsunov, 1980]. Each
pressure sensor is to a greater or lesser degree critical
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to the influence of temperatures and vibration accelera-
tions. When pressure sensors are placed directly on the
engine, they are exposed to wide temperature ranges and
increased vibration accelerations, which leads to addi-
tional measurement error and, in some cases, to the de-
struction of the sensitive element of the sensor. The pa-
per [Pankratov et al., 2003] considers issues related to
the construction and optimization of mathematical mod-
els of pressure sensors operating in unsteady inhomoge-
neous fields of the measured and ambient media. The
work [Belozubov and Belozubova, 2011] is devoted to
the issues of increasing the vibration resistance of thin-
film nano- and microsystems and pressure sensors based
on them. In the case of an ideal incompressible working
medium, mathematical models of the system ”pipeline
- pressure sensor” were considered in [Ankilov et al.,
2024; Velmisov and Pokladova, 2019; Velmisov et al.,
2019]. For a compressible working medium, studies of
the mechanical system ”pipeline - pressure sensor” in a
linear model were carried out, for example, in [Velmisov
and Tamarova, 2024; Velmisov and Tamarova, 2023].
In works [Chehreghani et al., 2024; Chen et al., 2021;
Guo et al., 2022; Kondratov et al., 2023; Mogilevich and
Popova, 2023; Reddy et al., 2020; Stetsiuk et al., 2024]
the dynamics of elastic pipelines at flowing of a liquid
stream is investigated.

In this paper, asymptotic equations of aerohydro-
dynamics in both compressible and incompressible
medium models are used to describe the motion of the
working medium in a pipeline. Both linear and non-
linear models of a deformable solid body are proposed
to describe the plate dynamics. When using the model
of compressible medium, the solution of the problem
is based on the introduction of integral characteristics
of the mechanical system, as a result of which it was
possible to reduce the dimensionality of the problem
by one unit and reduce it to the study of an equation
with a deviating argument. To solve the problem us-
ing the incompressible medium model, the Fourier and
Galerkin [Fletcher, 1988] methods are applied. As a
result, for both models the solution of the problem is
reduced to the study of ordinary differential equations.
These equations relate the law of pressure change in the
motor with the magnitude of deformation of the sensing
element. The solution of these equations is found using
standard Mathematica 12.0 functions for specific param-
eters of the mechanical system and can be used to create
a control system of the engine operation mode. A pro-
gram has been developed, which allows to obtain graphs
of deformation of the sensitive element of the sensor at
different setting of the law of change of pressure of the
working medium. The numerical experiment is carried
out and examples of calculation of the dynamics of the
sensitive element of the sensor are presented.

2 Mathematical model of the pressure measure-
ment system

The system of control over the change of working
medium pressure in the engine combustion chamber pre-

sented in Figure 1 is considered. In the system, the sen-
sor is located at some distance from the engine and con-
nected to it by means of a pipeline, which makes it pos-
sible to mitigate the effects of temperatures and vibra-
tion accelerations. The system contains a pipeline 2 of
length l and width H connecting the pressure sensor 3
to the combustion chamber 1. At one end of the pipeline
(x = −l), fixed at the outlet of the engine combustion
chamber, the pressure of the working medium 4 changes
over time. At the other end of the pipeline is a sensing
element 5 (x ∈ [0, h]) of a sensor designed to measure
this pressure. The sensitive element of the sensor for
measuring the pressure of the working medium in the
combustion chamber of an aircraft engine is an elastic
plate of length H and thickness h.

Figure 1. Pipe with sensor

The motion of the working medium in the pipeline is
described by differential equations for the velocity po-
tential Φ (x, y, t):
– in the incompressible medium model:

Φxx +Φyy = 0, x ∈ (−l, 0) , y ∈ (0, H) ; (1)

– in the compressible medium model:

Φtt + 2ΦxΦxt + 2ΦyΦyt +Φ2
xΦxx +Φ2

yΦyy + 2Φx×

×ΦyΦxy =

[
a20 − (γ0 − 1)

(
Φt +

1

2
Φ2

x +
1

2
Φ2

y)

)]
×

× (Φxx +Φyy) , x ∈ (−l, 0) , y ∈ (0, H) , (2)

where γ0 – addiabatic exponent, a0 – velocity of sound
in a stationary medium.

Conditions of non-leakage of the pipeline walls y = 0,
y = H and surface of the elastic element g (x, y, t) = 0,
which is a part of the pressure sensor, respectively, have
the form:

Φy (x, 0, t) = Φy (x,H, t) = 0, x ∈ (−l, 0) , (3)

Φxgx+Φygy = −gt, g (x, y, t) = 0, y ∈ (0, H) . (4)

At the outlet of the engine combustion chamber there is
a pressure change F (y, t) of the working medium:

P (−l, y, t) = F (y, t), y ∈ (0, H) . (5)

The dynamics of the elastic element is described by the
equation for the deformation of the elastic element of the
sensor w (y, t):

L (w (y, t)) = P (w (y, t) , y, t)− P̄ , y ∈ (0, H) . (6)
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The constant P̄ is the external pressure on the plate. The
pressure P (x, y, t) is defined by the formulas:
– for an incompressible medium

P =P0− ρ1

(
Φt+

1

2
Φ2

x+
1

2
Φ2

y

)
, (7)

– for a compressible medium

P = P0

[
1− γ0− 1

a20

(
Φt +

1

2
Φ2

x +
1

2
Φ2

y

)] γ0
γ0−1

, (8)

where P0 – pressure in a stationary liquid, ρ1 – density
of the medium.

To determine the thermal field in the system we have
the following boundary value problem:

ρ1c1T1t = k1T1xx − β (T1 − T0) , (9)

T1 (−l, t) = T∗ (t) , (10)

T1x (0, t) = 0, (11)

ρ2c2T2t = k2T2xx, (12)

T2x (h, t) = 0, (13)

−k2T2x (0, t) = α(T1 (0, t)− T2 (0, t)). (14)

Here T1 (x, t) is the temperature distribution of the
working medium along the length of the pipeline
(x ∈ (−l, 0)) ; T2 (x, t) is the temperature distribution
along the cross-section of the elastic element of the sen-
sor (x ∈ (0, h)) ; T∗ (t) is the law of temperature change
at the inlet to the pipeline (x = −l); T0 is the ambient
temperature; k1, k2, c1, c2, ρ1, ρ2 – heat conductiv-
ity coefficients, heat capacity and density coefficients of
the working medium and the material of the sensing ele-
ment; β – heat transfer coefficient on the lateral surface
of the pipeline; α – heat transfer coefficient between the
material of the element and the working medium (sur-
face x = 0).

To describe the dynamics of an elastic element (de-
formable plate), linear and nonlinear mathematical mod-
els of a solid deformable body are used, for example

L (w (y, t)) ≡Mwtt +Dwyyyy +N (t)wyy+

+γw + β1wt + β2wyyyyt; (15)

L (w (y, t)) ≡Mwtt +Dwyyyy +N (t)wyy+

+γw + β1wt + β2wyyyyt−

−wyy

µ H∫
0

w2
ydy + η

 H∫
0

w2
ydy


t

 ; (16)

L (w (y, t)) ≡Mwtt +

[
Dwyy

(
1− 3

2
w2

y

)]
yy

+

+N (t)wyy + γw + β1wt + β2wyyyyt; (17)

L (w (y, t)) ≡Mwtt +

[
Dwyy

(
1− 3

2
w2

y

)]
yy

+

+N (t)wyy + γw + β1wt+

+β2

[
wyy

(
1− 3

2
w2

y

)]
yyt

. (18)

Assume that the ends of the plate are rigidly fixed and
the temperature of the plate T2 (x, t) is variable, then

w (0, t) = wy (0, t) = w (H, t) = wy (H, t) = 0, (19)

N (t) = N0 +
EαT

1− ν

h∫
0

T2 (x, t) dx. (20)

Here the coefficients M , D, E, ν, N (t), N0, γ, β1, β2,
η, µ, αT are the parameters of the mechanical system.
The operator (16) takes into account the nonlinearity of
the longitudinal force resulting from the elongation of
the plate due to its deformation; the operator (17) takes
into account the nonlinearity of the bending moment; the
operator (18) refines the operator (17) in the case of tak-
ing into account the nonlinearity of the plate damping.

3 Solving of the thermal problem
The solution to the thermal problem (9) - (14) is di-

vided into two parts: first, the temperature distribution
along the length of the pipeline is found ((9) - (11)), then
the temperature distribution along the thickness of the
plate (problem (12) - (14)).

The solution to problem (9) - (11), obtained by the
method of separation of variables, has the form

T1(x, t) = T∗(t)−
∞∑

n=0

χn · e−γnt sin νn(x+ l)×

×

[
β0T0
γn

− T 0
1 + eγnt

(
T∗(t)−

β0T0
γn

)
− (21)

−a21ν2n

t∫
0

eγnτT∗(τ)dτ

 ,
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where

γn = a21ν
2
n + β0, νn =

π(2n+ 1)

2l
, χn =

4

π(2n+ 1)
,

T 0
1 = T1(x, 0) = const, a21 =

k1
ρ1c1

, β0 =
β

ρ1c1
.

The solution to problem (12) - (14), which makes it
possible to find the temperature distribution over the
thickness of the plate at an arbitrary point in time, has
the form

T2(x, t) = T̃ (t) +

∞∑
n=0

Ane
−δnt cosµn (x− h)×

×

T 0
2 − T 0

1 −
t∫

0

eδntT̃ ′(t)dt

 = T̃ (t)+ (22)

+

∞∑
n=0

Ane
−δnt cosµn (x− h)

[
T 0
2 − T 0

1−

−
∞∑
k=0

χk · γk sin νkl
δn − γk

(
β0T0
γk

− T 0
1 +

a21ν
2
kT∗
γk

)
×

×
(
e(δn−γk)t − 1

)]
,

where

T 0
2 = T2(x, 0) = const, a22 =

k2
ρ2c2

, δn = a22µ
2
n,

An =
(−1)n2α

√
α2 + k22µ

2
n

µn [h(α2 + k22µ
2
n) + k2α]

,

the function T̃ (t) = T1 (0, t) is determined by formula
(21), the values µn (n = 0 ÷ ∞) are the positive roots
of equation tgµnh = α/(k2µn). Substituting (22), we
find the coefficient (20).

4 Compressible medium
Let’s explore the system (2), (3), (4), (5), (6), (8), (15).

Let us represent the solution of this problem as an expan-
sion in terms of a small parameter ε. Such a parameter
can be the ratio of the thickness of the elastic element h
to its length H

(
ε = h

H

)
, or the ratio of the width of the

pipeline H to its length l
(
ε = H

l

)
.

Φ(x, y, t) = εψ1(x, y, t) + ..., F (y, t) = P0+

+εP∗(y, t) + ..., w(y, t) = εw1(y, t) + ....
(23)

According to the Lagrange-Cauchy integral (8), we
have an asymptotic formula for the pressure

P = P0 − ερ1ψ1t + ... (24)

From equation (2) in the first approximation, leaving
the senior terms (of order ε), we obtain the equation for
potential ψ1 :

ψ1tt = a20 (ψ1xx + ψ1yy) . (25)

Here a20 =
γ0P0
ρ1 is the square of the speed of sound in a

medium at rest.
The boundary conditions (3), (5) take the form

ψ1y(x, 0, t) = ψ1y(x,H, t) = 0, x ∈ (−l, 0) , (26)

−ρ0ψ1t(−l, y, t) = P∗(y, t), y ∈ (0, H) . (27)

The boundary condition (4) at ε → 0 in first approxi-
mation takes the form

ψ1x(0, y, t) = w1t(y, t). (28)

Setting the value of the external load P̄ = P0 and sub-
stituting (23) into (15), we obtain

Mw1tt +Dw1yyyy +N(t)w1yy + γw1+

+β1w1t + β2w1yyyyt = −ρ1ψ1t(0, y, t).
(29)

Let us consider one of the ways to solve the problem
(25)-(29). Let us introduce the averaged characteristics
of the main quantities of the dynamic system

φ(x, t)=

H∫
0

ψ1(x, y, t)dy, ξ(t)=

H∫
0

w1(y, t)dy,

G(t) =

H∫
0

P∗(y, t)dy.

(30)

Let us assume w(y, t) = g(y)θ(t), where the function
g(y) satisfies the boundary conditions corresponding to
the type of fastening of the elastic element. According
to the rigid fixation of the ends of the element (19), we
take the function g(y) as g(y) = ξ1(y), where

ξn(y) = ch (µny)− cos (µny)− (31)

−ch (µnH)− cos (µnH)

sh (µnH)− sin (µnH)
(sh (µny)− sin (µny)) ,

and µn are found from the equation

ch (µnH) cos (µnH) = 1.
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Performing integration in (25), (27)-(29) over y within
the limits from 0 to H , taking into account the boundary
conditions (26), we obtain

φtt − a20φxx = 0, (32)

φx(0, t) = w0θt(t), (33)

−ρ1φt(−l, t) = G(t), (34)

−ρ1φt(0, t) =

=M0θtt(t) + α0θt(t) + γ0(t)θ(t),
(35)

where

w0 =

H∫
0

g(y)dy, M0 =M

H∫
0

g(y)dy,

α0 = β1

H∫
0

g(y)dy + β2

H∫
0

gyyyy(y)dy, γ0(t) =

= D

H∫
0

gyyyy(y)dy +N(t)

H∫
0

gyy(y)dy + γ

H∫
0

g(y)dy.

Thus, the solution of problem (25)-(29) is reduced to
the study of the one-dimensional system (32)-(35) for
functions φ(x, t), θ(t), for the study of which several
methods have been proposed and implemented.

A) The analytical solution of the problem leads to the
study of an equation with a deviating argument. In this
case, the general solution of equation (32) is written as:

φ(x, t) = A

(
t− x

a0

)
+B

(
t+

x

a0

)
, (36)

where A, B are arbitrary functions of their arguments.
Substituting (36) into (33)-(35) and performing a num-
ber of simple mathematical operations, we obtain a dif-
ferential equation with a deviating argument, connecting
the function θ(t), characterizing the deformation of the
sensitive element of the sensor, with the function G(t),
characterizing the law of change in the pressure of the
working medium in the engine

M0

[
θtt

(
t− l

a0

)
+ θtt

(
t+

l

a0

)]
+

+α0

[
θt

(
t− l

a0

)
+ θt

(
t+

l

a0

)]
+

+γ0(t)

[
θ

(
t− l

a0

)
+ θ

(
t+

l

a0

)]
− (37)

−ρ1a0w0

[
θt

(
t− l

a0

)
− θt

(
t+

l

a0

)]
= 2G(t).

If l/a0 = ε is a small parameter (for example, for wa-
ter a0 ≈ 1403 m/sec at a temperature of 00C, and the
length l does not exceed several meters), then, by carry-
ing out an expansion by degrees of ε in (37) and setting
aside the highest order terms, we can obtain an approx-
imate equation (without deviating the argument t), con-
necting θ(t) and G(t)

(M0 + ρ1w0l)θtt(t) + α0θt(t) + γ0(t)θ(t)+

+
1

2
ε2

[(
M0 +

1

3
ρ1w0l

)
θtttt(t) + α0θttt(t)+ (38)

+γ0(t)θtt(t)

]
+O

(
ε4
)
= G(t).

Solutions of the linear differential equation (38) with
constant coefficients are constructed both numerically
and analytically; in particular, a study was conducted of
resonance phenomena in the case of pulsating pressure
in the combustion chamber.

B) Numerical and analytical study of problem (32)-
(35) was also carried out using the Galerkin method. In
this case, is represented in the form of segments of se-
ries in complete on the interval (−l, 0) of systems of the
functions {zm(x)}, which satisfy homogeneous bound-
ary conditions corresponding to conditions (33), (34) or
(34), (35). As a result, the study is reduced to solving
the Cauchy problem for a linear system of ordinary dif-
ferential equations, on the basis of which a numerical
experiment was carried out.

A software package for mathematical modeling of the
mechanical system ”pipeline - pressure sensor” has been
developed. It is designed to study the joint dynam-
ics of the sensitive element of the pressure sensor and
the working environment in the pipeline connecting the
combustion chamber of the engine with the sensor, and
allows obtaining graphs of the function θ(t), character-
izing the deformation of the elastic element of the sen-
sor, with various assignments of the mechanical param-
eters of the system, including when assigning the law of
change in the pressure of the working environment in the
engine (i.e., the function G(t)).

Let the working medium be water (ρ1 = 1000, c1 =
4182, k1 = 0.683), the plate be made of steel (E =
2 · 1011, ρ2 = 7.8 · 103, αT = 7.3 · 10−6, c2 = 460,
k2 = 45.4). The system parameters are: P0 − P̄ = 0,
P∗(t) = 105(50+cos 5t), a0 = 1481, T∗ = 1800, T0 =
T 0
1 = T 0

2 = 293.15, α = 21, β = 0.15, l = 0.5, H =
0.01, h = 0.0005, N0 = −3.11 · 105, M = ρ2h = 3.9,

D = Eh3

12(1− ν2)
= 2.29, ν = 0, 3, γ = 0.2, β1 = 0.3,

β2 = 0.1 (all values are given in the SI system).
Using the Mathematica mathematical system, solu-

tions of equation (38) are numerically obtained in the
case of rigidly fastening. The initial conditions are spec-
ified as: θ(0) = θt(0) = θtt(0) = θttt(0) = 0, and the
function g(y) = ξ1(y) is also specified. Figures 2 and 3
show the deformations of the plate at the midpoint of the
plate y0 = 0.005 at t ∈ [0, 1] and t ∈ [0, 20] respectively.
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Figure 2. Graph of the deformation function of the elastic element of
the sensor at t ∈ [0, 1]

Figure 3. Graph of the deformation function of the elastic element of
the sensor at t ∈ [0, 20]

5 Incompressible medium
Let’s explore the system (1)–(7), (9)–(14), (19). Sub-

stituting (23) into system (1)–(7) at ψ1(x, y, t) =
φ(x, y, t) and limiting ourselves to terms of order ε, we
obtain an asymptotic model of the problem in the first
approximation:

φxx + φyy = 0, (39)

φy(x, 0, t) = φy(x,H, t) = 0, x ∈ (−l, 0) , (40)

φx (0, y, t) = w1t(y, t), (41)

Mw1tt +Dw1yyyy +N(t)w1yy + γw1+

+β1w1t + β2w1yyyyt = −ρ1φt (0, y, t) .
(42)

−ρ1φt (−l, y, t) = P∗ (y, t) . (43)

Let us assume that the excess pressure does not depend
on the coordinate y, i.e. P∗ (y, t) = P∗ (t). Then we will
look for the potential φ(x, y, t) in the form

φ (x, y, t)= − 1

ρ1

t∫
0

P∗ (z) dz + (x+ l)α (t)+

+

∞∑
n=1

φn (t) cosλny · shλn (x+ l) , λn =
nπ

H
.

(44)

Function (44) satisfies the Laplace equation (39) and
conditions (40), (43).

We will look for the function w1(y, t) in the form
of a series expansion in a complete on the segment
[0, H] system of functions {ξn (y)}∞n=1 that satisfy the
boundary conditions corresponding to the conditions for
rigidly fixing the ends of the plate (19).

According to (19), we will look for the function
w1(y, t) in the form

w1(y, t) =

∞∑
n=1

wn (t) ξn (y) , (45)

where ξn (y) identified in (31).
Let’s substitute (44), (45) into condition (41)

α (t) +

∞∑
n=1

φn (t) cosλny · λnchλnl =

=

∞∑
n=1

wnt (t) ξn (y) . (46)

According to the Galerkin method, we project (46)
onto the complete system of functions {cosλky}∞k=0.
Projecting onto the first verification function cosλ0y =
1, we obtain

α (t) =
1

H

∞∑
n=1

Anwnt (t) , (47)

where

An =

H∫
0

ξn (y) dy.

Projecting (46) onto the remaining functions
{cosλky}∞k=1, according to Galerkin’s method we
obtain:

∞∑
n=1

(Cnkwnt (t)−Bnkφn (t)) = 0, k = 1, 2, ... (48)

where

Bnk = λnchλnl

H∫
0

cosλny · cosλkydy,

Cnk =

H∫
0

ξn(y) cosλkydy.
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Figure 4. Graph of the deformation function of the elastic element of
the sensor at t ∈ [0, 1]

Figure 5. Graph of the deformation function of the elastic element of
the sensor at t ∈ [0, 20]

Let’s substitute (44), (45) into equation (42)

M

∞∑
n=1

wntt (t) ξn (y) +D

∞∑
n=1

wn (t) ξnyyyy (y)+

+N(t)

∞∑
n=1

wn (t) ξnyy (y) + γ

∞∑
n=1

wn (t) ξn (y)+

+β1

∞∑
n=1

wnt (t) ξn (y) + β2

∞∑
n=1

wnt (t) ξnyyyy (y) =

= P∗ (t)− ρ1lαt (t)−

−ρ1
∞∑

n=1

φnt (t) cosλny · shλnl. (49)

Projecting (49) onto the system of orthogonal func-
tions {ξk (y)}∞k=1, according to Galerkin’s method we
obtain:

∞∑
n=1

[(
MHδnk +

ρ1lAkAn

H

)
wntt (t)+

+ (β1Hδnk + β2Fnk)wnt (t)+

+ (DFnk +N(t)Gnk + γHδnk)wn (t)+
(50)

+Enkφnt (t)

]
= AkP∗ (t) , k = 1, 2, ...

where δnk – Kronecker delta,

Fnk =

H∫
0

ξnyyyy (y) ξk (y) dy,

Gnk =

H∫
0

ξnyy (y) ξk (y) dy,

Enk = ρ1 · shλnl
H∫
0

cosλny · ξk (y) dy.

As a result, we obtain a system of ordinary differential
equations (48), (50) for determining unknown functions
φn (t) , wn (t). Let us carry out a numerical experiment,
limiting the number of terms in expansions (44), (45) by
the numberm = 4, at the previously introduced parame-
ters of the mechanical system. Let’s take the initial con-
ditions wk(0) = 0, wkt(0) = 0, k = 1, ...,m. Figures
4 and 5 show the deformations of the plate at the mid-
point of the plate y0 = 0.005 at t ∈ [0, 1] and t ∈ [0, 20]
respectively.

From the graphs presented in Figures 2-5, we can see
that for different models (compressible and incompress-
ible medium) the same qualitative behaviour of the pres-
sure sensor sensing element takes place, while the quan-
titative difference should be explained both by the dif-
ference of physical properties of the working medium
(compressibility and incompressibility) and some pecu-
liarities of approximate methods of solving problems for
different mathematical models.

Similar studies have been carried out for nonlinear
models of deformable solids (16)-(18). The plate defor-
mation graphs presented in Figures 2-5 qualitatively and
quantitatively coincide with sufficient accuracy.

6 Conclusion
Mathematical models of the mechanical system

”pipeline-pressure sensor”, which serves to control pres-
sure changes in combustion chambers of aircraft en-
gines, are proposed. The models of both compressible
and incompressible working medium in the engine are
considered. The solution of the corresponding initial
boundary value problems is reduced to the study of ordi-
nary differential equations relating the value of pressure
in the engine to the value of deformation of the sensing
element, which can be used to create a control system for
the engine operation mode. On the basis of the devel-
oped computer program in Matematica 12.0 the calcu-
lations for specific parameters of the mechanical system
are made.
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