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Universitat Politècnica de Catalunya
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Abstract
In this work we make a detailed look at the algebraic

structure of convolutional codes using techniques of
linear systems theory. In particular we study the input-
state-output representation of a convolutional code.
We examine the output-controllability property and we
give conditions for this property.
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1 Introduction
The convolutional codes are binary codes that are an

alternative to the block codes by their simplicity of gen-
eration with a little shift registers. The convolutional
codes was introduced by Elias [P. Elias, (1955)] where
it was suggested to use a polynomial matrix G(z) in
the encoding procedure and they allow to generate the
code online without using a previous buffering. Con-
volutional codes are used extensively in numerous ap-
plications as satellite communication, mobile commu-
nication, digital video, radio among others.

There is a considerable amount of literature on the
theory of convolutional codes over finite fields, (see
[P. Elias, (1955), Ch. Fragouli, R.D. Wesel, (1999),
M. Kuijper, R. Pinto, J,L Massey, M.K. Sain, (1967),
J. Rosenthal, J.M. Schumacher, E.V. York, (1996)] for
example).

A description of convolutional codes can be pro-
vided by a time-invariant discrete linear system called
discrete-time state-space system in control theory.

The aim of this article is to make a survey of the con-
volutional codes with the help of the tools of systems
theory, input-output representation of a convolutional
code is examined, and output-controllable systems are
characterized.

2 Preliminaries
In this section, we present some basic notions about

codes theory.
Let A = {a1, · · · , aq} be a finite set of symbols,

called alphabet of the message. We denote by M the
set containing all sequences of symbols in A of length
k. Also we denote by R the set consisting of all se-
quences of symbols in A of length n. We consider k
and n be positive integers with k ≤ n.
We are interested in the case when A = Fq = GF (q)

the Galois field of q elements Zq .
Consider f : A −→ A∗ where A∗ =

⋃
n≥0An and

An = A× n
^. . .×A

A code is defined as the image f(An) = C ⊆ A∗.
We remark the following concepts:

- The left translation operator σ and the right
translation operator σ−1 over the sequences
spaces A∗ are defined as: σ(a0, a1, a2, . . .)
= (a1, a2, a3, . . .), σ−1(a0, a1, a2, . . .) =
(0, a0, a1, a2, . . .),

- C ⊆ A∗ is said to be invariant by right (left) trans-
lation when σ−1C ⊆ C (σC ⊆ C).

- If for each element of C there is a finite number of
non-zero elements, we say that C is compact.

Definition 2.1. An error correcting code C ⊆ A∗ is
said that is a convolutional code, when C is linear (con-
sidered as a vector space over Fq with the usual sum of
vectors) invariant by right translation operator and has
compact support.

Following Rosenthal and York [J. Rosenthal, E. V.
York, (1999)], a convolutional code is defined as a sub-
module of Fn[s].

Definition 2.2. Let C ⊆ A∗ be a code. Then C is a
convolutional code if and only if C is a F[s]-submodule
of Fn[s].

Corollary 2.1. There exists an injective morphism of
modules



ψ : Fk[s] −→ Fn[s]
u(s) −→ v(s).

Equivalently, there exists a polynomial matrix G(s)
(called encoder) of order k × n and having maximal
rank such that

C = {v(s) | ∃u(s) ∈ Fk[s] : vt(s) = u(s)tG(s)}.

The rate k/n is known as the ratio of convolutional
code. We denote by νi the maximum of all degrees
of each of the polynomials of each line, we define the
complexity of the encoder as δ =

∑n
i=1 νi, and finally

we define the complexity convolution code δ(C) as the
maximum of all degrees of the largest minors of G(s).
The representation of a code by means a polynomial

matrix is not unique, but we have the following propo-
sition.

Proposition 2.1. Two n × k rational encoders G1(s),
G2(s) define the same convolutional code, if and only
if there is a k × k unimodular matrix U(s) such that
G1(s)U(s) = G2(s).

3 Systems and Codes
A dynamic system is a process which has a magnitude

which varies with the time according a deterministic or
stochastic law. More specifically:

Definition 3.1. A dynamic system is a triple Σ =
(T,A,B) where T ⊆ R is the time, A is the alpha-
bet of signals, and B ⊆ AT ⊂ A∗ is the behavior. The
elments of B are called trajectories.

3.1 Realization
From now on T = Z+ A = Fn where F = Fq =

GF (q) is finite field (the q elements Galois field).

Theorem 3.1. Let C ⊆ Fn[s] be un k/n-convolutional
of complexity δ. Then, there exist matrices K, L of size
(δ + n− k)× δ an a matrix M of size (δ + n− k)× n
having their coefficients in F such that the code C is
defined as:

C = {v(s) ∈ F[s] | ∃x(s) ∈ Fδ[s] :
sKx(s) + Lx(s) + Mv(s) = 0}

Moreover, K is a column full rank matrix,
(
K M

)
is a

row full rank matrix and rang
(
s0K + L M

)
= δ +

n− k, ∀s0 ∈ F.

The triple (K, L, M) satisfying the above it is called
minimal representation of C.

Proposition 3.1. If (K1, L1,M1) is another represen-
tation of the convolutional code C. Then, there exist
invertible matrices T and S of adequate size, such that

(K1, L1, M1) = (TKS−1, TLS−1, TM). (1)

It is obvious that the relation (1), is an equivalence
relation induced by the Lie group G = {(T, S) ∈
Gl(δ + n− k,F)×Gl(δ;F)}.

Corollary 3.1. The triple (K,L, M) can be written
as:

K =
(−Iδ

0

)
, L = ( A

C ) , M =
(

0 B
−In−k D

)
. (2)

Corollary 3.2.

C = {v(s) ∈ F[s] | ∃x(s) ∈ Fδ[s] :(
sI−A 0 −B
−C I −D

) (
x(s)
v(s)

)
= 0}.

Proof. From theorem 3.1, we have

s ( I
0 )x(s)− ( A

C )x(s)− (
0 B
−I D

)
v(s) = 0,

and the result is obtained.

If we divide the vector v(s) into two parts
v(s) =

(
y(s)
u(s)

)
depending on the size of the ma-

trix, the equality
(

sI−A 0 −B
−C I −D

) (
x(s)
v(s)

)
= 0 can

be expressed as
sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s)

}
. Ap-

plying the Z antitransform we obtain the system
xt+1 = Axt + But

yt = Cxt + Dut

}
, vt =

(
yt

ut

)
, x0 = 0.

3.2 Convolutional code as input-state-output
Let F = Fq be the q-elements Galois field and con-

sider the matrices A ∈ Fδ×δ , B ∈ Fδ×k, C ∈
F(n−k)×δ and D ∈ F(n−k)×k. A convolutional code
C of rate k/n and complexity δ can be described by the
following linear system of equations:

xt+1 = Axt + But

yt = Cxt + Dut

}
,

vt =
(

yt

ut

)
,

x0 = 0.
(3)

In terms of systems theory the variable xt is called a
state variable of the system at time t, ut the input vector
and yt the vector output obtained from the combination
of input and state variable.
Based on the system (3), one can find a minimal rep-

resentation of a code, it suffices simply to define the
triple (K, L, M) as (2).



In terms of the theory of codes, we have the input
of the encoder after time t which is called the infor-
mation o vector message ut; the vector yt created by
the encoder is called parity vector, the code vector
vt is transmitted via the communication channel. We
will write the code convolution created in this way, for
C(A,B,C, D).
We want to define an equivalence relation over the set

of quadruples (A,B, C,D) in such way that the code
representations (K, L,M), associated to the equivalent
quadruples, are equivalent by the equivalence defined
in (1). Then we consider the following equivalence re-
lation:

Definition 3.2. The quadruple (A1, B1, C1, D1) is
equivalent to (A,B,C, D) if and only if, there exist an
invertible matrix S in such a way that:

(A1, B1, C1, D1) = (SAS−1, SB, CS−1, D). (4)

Obviously

((−Iδ
0

)
,
(

A1
C1

)
,
(

0 B1
−In−k D1

))
=(

( S 0
0 I )

(−Iδ
0

)
S−1, ( S 0

0 I )( A
C )S−1, ( S 0

0 I )
(

0 B
−In−k D

))
.

3.3 Output-Controllability
Now we introduce the following important property in

the dynamical study of control systems.

Definition 3.3. Dynamical system (3) is said to be out-
put controllable if for every y(0) and every vector y1 ∈
Rp, there exist a finite time t1 and control u1(t) ∈ Rm,
that transfers the output from y(0) to y1 = y(t1).

Therefore, output controllability generally means, that
we can steer output of dynamical system independently
of its state vector.
For a linear continuous-time system, like (3), de-

scribed by matrices A, B, C, and D, we define the
output controllability matrix

oC =
(
CB CAB . . . CAn−1B D

)
(5)

and we have the following result.

Theorem 3.2. Dynamical system (3) is output control-
lable if and only if rank oC = p.

Remark 3.1. Another important property and largely
studied is the state controllability characterized by the
rank of the controllability matrix

C =
(
B AB . . . An−1B

)

in the sense that the dynamical system (3) is control-
lable if and only if It should be pointed out, that the

state controllability is defined only the matrix C has
full row rank. for the linear differential state equa-
tion, whereas the output controllability is defined for
the input-output description i.e., it depends also on the
linear algebraic output equation. Therefore, these two
concepts are not necessarily related.

Proposition 3.2. The output controllability character
is invariant under feedback.

Proof.

(C + DF )(A + BF )kB =
CAkB +

∑
0≤`≤k−1 CAk−`−1BF (A + BF )`B+

DFAkB +
∑

0≤`≤k−1 DFAk−`−1BF (A + BF )`B

In the case where D = 0 a proof can be found in [J.L.
Dominguez-Garcı́a, M. I. Garcı́a-Planas, (2011)]

The above proposition induces to consider the follow-
ing equivalence relation

Definition 3.4. The systems (Ai, Bi, Ci, Di), i = 1, 2
are equivalents if and only if, there exist matrices
S ∈ Gl(δ;F), R ∈ Gl(m;F), T ∈ Gl(q;F), F ∈
Mm×n(F) such that A2 = SA1S

−1 + SB1F , B2 =
SB1R, C2 = TC1S + TD1F

B , D2 = TD1R.

It is immediate that if we take the subset formed by
R = I , T = I , F = 0 we obtain the relation (4).

Proposition 3.3. The output controllability is invari-
ant under new equivalence relation

Proposition 3.4. Let (Ai, Bi, Ci, Di), i = 1, 2 two
equivalent quadruples. Then

rank
(
C1 D1

)
= rank

(
C2 D2

)
.

Proof.

rank
(
C1 D1

)
=

rank T
(
C1 D1

)(
S−1

F R

)
= rank

(
C2 D2

)
.

In order to obtain conditions for output-controllability
we consider an equivalent quadruple (Ac, Bc, Cc, Dc)

with Dc =
(

0 0
0 Id

)
, d = rank D, Bc =

(
B1 0,

)
,

(Ac, B1) =
((

N
J

)
,

(
B11

0

))
is a pair of matrices

in its Kronecker reduced form and Cc =
(

C11 C12

0 0

)
,

(all blocks in matrices are in adequate size).
Taking into account proposition 3.4 and the reduced

form we can consider triples of matrices (A,B, C).

Theorem 3.3. Let (A, B,C) be a triple of matrices in
its reduced form. Then



If p > n the system is not output-controllable,
If p ≤ n the system is output-controllable if and
only if rank C11 = p. In the particular case where
(A,B) is completely controllable the condition is
rank C = p.

Proof. Let k1 ≤ . . . ≤ kr the Kronecker indices of
(A,B).
Observe that C11 ∈ Mp×k1+...+kr (F).

rank
(
CB CAB . . . CAn−1B

)
=

C11

(
B11 NB11 . . . NkrB11

)
.

Matrix
(
B11 NB11 . . . NkrB11

)
has full rank equal to∑kr

i=1 ki.

Example 3.1. Let (A,B,C) a triple with

A =




0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0




,

B =




0 0 0 . . . 0
0 0 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
0 1 0 . . . 0




and

C =




c11 c12 c13 c14 c15

...
...

...
...

...
cp1 cp2 cp3 cp4 cp5


 .

Following theorem the system is output controllable if
and only if rank C = p and it is not possible if p > 5.
In this case is easy to compute the output controllabil-

ity matrix and obtain the rank:

rank




c13 c15 0 . . . 0 c12 c14 0 . . . 0 c11 0 0 . . . 0
...

...
... . . .

...
...

...
... . . .

...
...

...
... . . .

...
cp3 cp5 0 . . . 0 cp2 cp4 0 . . . 0 cp1 0 0 . . . 0


 =

rank




c13 c15 c12 c14 c11

...
...

...
...

...
cp3 cp5 cp2 cp4 cp1


 =

rank C.
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