
PHYSCON 2013, San Luis Potosı́, México, 26–29th August, 2013

FEEDBACK CONTROL OF FERMI-PASTA-ULAM LATTICE

Egor Usik
Saint-Petersburg State University

Saint-Petersburg, Russia
egor.usik@gmail.com

Alexander Fradkov
Institute of Problems in Mechanical Engineering,

Saint-Petersburg State University
Saint-Petersburg, Russia

fradkov@mail.ru

Abstract
A controlled version of the celebrated Fermi-Pasta-

Ulam problem is introduced. The control algorithm
based on Speed-gradient approach is proposed and an-
alyzed by computer simulation. Approximation of the
system Hamiltonian prespecified value is proposed as
the control goal. It is demonstrated that the control goal
is achieved in the controlled system. It is shown that
the controlled system tends to approximate equiparti-
tion state much faster than it happens in the open loop
(classical) system. Such a phenomenon is observed un-
der control with sufficiently small intensity: less than
0.5% of the total system energy.
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1 Introduction
The celebrated Fermi-Pasta-Ulam problem bears the

name of the three scientists who were looking for a
theoretical physics problem suitable for an investiga-
tion using one of the very first computers, the Maniac.
They decided to study the thermalization process of a
solid. The Fermi-Pasta-Ulam (FPU) problem was first
introduced in a Los Alamos report in May 1955 [Fermi,
Pasta and Ulam, 1955]. It marked the beginning of both
a new field, nonlinear physics (this problem is of cen-
tral importance in the theories of solitons and chaos),
and the age of computer simulations of scientific prob-
lems.
The original idea proposed by Enrico Fermi was to

simulate the one-dimensional analogue of atoms in a
crystal: a long chain of particles linked by springs that
obey Hooke’s law (a linear interaction), but with a weak
nonlinear correction (quadratic for the FPU-αmodel or
cubic for the FPU-β model), see Figure 1.
The authors were interested in a studying a possibil-

ity of approaching the statistical equilibrium by simu-
lation. However they got some unexpected and counter

Figure 1. Schematic picture of the FPU model: masses that can
move only in one dimension are coupled by nonlinear springs. un is
the relative displacement with respect to the equilibrium position of
the nth mass. The two ends of the chain were assumed to be fixed,
i.e., u0 = uN = 0

intuitive observations that triggered development of the
whole new area of physics surveyed in many papers,
see e.g. [Chaos, 2005; Gallavotti, 2008]. After more
than 50 years there still no unified understanding of
the phenomenon. More or less common opinion is
that there exist two time scales corresponding to differ-
ent behavior of the system [Benettin and Ponno, 2011;
Dauxois, 2008].
In a relatively short time, the system reaches a state

different from the initial one several modes, in addition
to the initially excited ones, enter the game but still very
far from energy equipartition. This is the problematic
state observed at low energy in the original FPU paper.
Such a state, however, is only apparently stationary, in

fact it is not: similarly to a metastable state of statistical
mechanics, on a much longer time scale it does evolve
towards statistical equilibrium.
In the spirit of general cybernetical physics approach

[Fradkov, 2007] in our research the following two prob-
lems were posed.
1. How significantly the system behavior can be al-

tered by a small controlling action influencing the right
hand sides of the system model?
2. Can a control action speed up or slow down the

transient process of the approaching to the statistical
equilibrium?
The present paper contains preliminary examination

results providing some evidences that both questions
have positive answer. The key point for evaluation of
an appropriate control action ( design of the control al-



gorithm) providing the desired change in the system
behavior is use of the so called speed-gradient (SG)
method [Fradkov, 2007] allowing one to find a concise
formula for the control of the nonlinear system energy.
The SG-method will be exposed briefly in the next Sec-
tion.
Section 3 is devoted to description of the FPU system

(FPU-α model) in both uncontrolled and controlled
versions. Simulation results for controlled system are
presented in Section 4. The last section contains some
conclusions.

2 Preliminaries
2.1 Speed-gradient method
Consider the continuous nonstationary system ẋ =
F (x, u, t). A number of feedback design methods
are based on reduction of the current value of some
goal (objective) function Q

(
x(t), t

)
. The current value

Q
(
x(t), t

)
may reflect the distance between the current

state x(t) and the current point of the goal trajectory
x∗(t), such as Q(x, t) =

∣∣x − x∗(t)∣∣2, or the distance
between the current state and the goal surface h(x) =
0, such as Q(x) =

∣∣h(x)|2, or the value of some char-
acteristic of the system dynamics that is desirable to
diminish. For continuous-time systems the value Q(x)
does not depend directly on control u and decreasing
the value of the speed Q̇(x) = ∂Q/∂xF (x, u) can be
posed as immediate control goal instead of decreasing
Q(x). This is the basic idea of the speed-gradient (SG)
method, proposed by [Fradkov, 1979], where a change
in the control u occurs along the gradient in u of the
speed Q̇(x). The general SG algorithm has the form

u = −Ψ
(
∇uQ̇(x, u)

)
(1)

where Ψ(z) is vector-function forming acute angle
with its argument z. For affine controlled systems
ẋ = f(x) + g(x)u algorithm (1) is simplified to:

u = −Ψ
(
g(x)T∇Q(x)

)
(2)

Special cases of (1) are the proportional SG-algorithm

u = −Γ∇uQ̇(x, u), (3)

where Γ is a positive-definite matrix, and the relay
SG-algorithm

u = −Γ sign
(
∇uQ̇(x, u)

)
. (4)

2.2 Speed-gradient control of energy
One of the most important quantities in physics is en-

ergy, which is not only the main invariant of a system
and the key to a description of a system on the basis

of the Hamiltonian formalism but also a measure of in-
teraction between different systems. The equations of
dynamics in the Hamiltonian form are used to describe
quite different physical systems and phenomena, from
celestial bodies to molecular ensembles. Hence, it is
only natural to begin the study of the fundamental laws
of transformation of the properties of systems via con-
trol with the energy transformation laws. In this sec-
tion, it is assumed that the investigated system is con-
servative, i.e., we ignore losses and dissipation. Then,
in free motion (i.e., in the absence of external forces),
the system energy is an invariant. Hence, the statement
of the problem of transfer- ring the system from one en-
ergy level to another by weak (ideally, arbitrarily weak)
control makes sense. For brevity, we limit ourselves to
examination of the control problems in which the math-
ematical model of the system is given in the Hamilto-
nian form,

q̇i =
∂H(q, p, u)

∂pi
, ṗi = −∂H(q, p, u)

∂qi
,

i = 1, . . . , n,

(5)

where n – is the number of the degrees of freedom;
q = col(q1, . . . , qn), p = col(p1, . . . , pn) – are vec-
tors of generalized coordinates and generalized mo-
menta, which form the state vector of the system, x =
col(q, p); H = H(q, p, u) – is the Hamiltonian of the
controlled system; and u(t) ∈ Rm – is the dimension-
less input (the vector of external generalized forces). In
the vector form, model (5) an be written as

q̇ = ∇pH(q, p, u), ṗ = −∇qH(q, p, u). (6)

We examine the problem of approaching a given en-
ergy levelH∗ of a free (uncontrolled) system, i.e., spec-
ify the control goal as

lim
t→∞

H0(q(t), p(t)) = H∗, (7)

where H0(q, p) = H(q, p, 0) is the Hamiltonian of
the free system described by Eqn. (5) with u = 0.
we assume that the Hamiltonian is linear in control,
H(q, p, u) = H0(q, p) + H1(q, p)Tu, where H0(q, p)
is the Hamiltonian of the free system and H1(q, p) is
m-dimensional vector whose components are the so-
called interaction Hamiltonians.
To solve the problem, the SG-method (see Section 2.1,

[Fradkov, 2007]) is used. We introduce the goal func-
tion

Q(x) =
1

2
(H0(q, p)−H∗)2 , (8)

with x = col(q, p). The control goal in (7) then be-
comes

lim
t→∞

Q(x(t)) = 0. (9)



To apply the SG method, we calculate the speed (rate)
of variation of the goal function caused by the control
of the system,

Q̇ = (H0 −H∗)
(
∂H0

∂q
q̇ +

∂H0

∂p
ṗ

)
=

= (H0 −H∗){H0, H1}u,
(10)

and then calculate the speed gradient in u: ∇uQ̇ =
(H −H∗){H0, H1}T , where {H0, H1} is the Poisson
bracket 1 of the Hamiltonians H0, H1. We can write
the SG-algorithm in the finite form, e.g., in the linear
and relay variants:

u = −γ(H0 −H∗){H0, H1}T , (11)

u = −γ sign
(
(H0 −H∗){H0, H1}T

)
, (12)

where γ > 0 is the control gain.

3 Fermi-Pasta-Ulam system
3.1 FPU equations of motion
Consider the Hamiltonian of FPU-α model:

H =

N∑
i=0

1

2
p2i +

N∑
i=0

1

2
(ui+1−ui)2+

N∑
i=0

α

3
(ui+1−ui)3,

(13)
where ui is the displacement of atom i, along the chain,
with respect to its equilibrium position, and pi is its mo-
mentum. The coefficient α � 1 measures the strength
of the nonlinear contribution to the interaction poten-
tial. The two ends of the chain were assumed to be
fixed, i.e., u0 = uN+1 = 0.
The FPU equations of motion [Dauxois, Peyrard and

Ruffo, 2005], derived from Hamiltonian (13) are as fol-
lows

u̇i = pi,
ṗi = (ui+1 + ui−1 − 2ui)+

+ α[(ui+1 − ui)2 − (ui − ui−1)2].
(14)

1We recall that the Poisson bracket of smooth functions f(q, p)
and g(q, p) is the sum

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi
−

∂f

∂pi

∂g

∂qi

)
.

If f, g — are vector functions whose respective dimensions are l,
and m, the Poisson bracket can be defined component-wise and is
the l ×m matrix:

{f, g} =
n∑

i=1

(
∂f

∂qi

(
∂g

∂pi

)T

−
∂f

∂pi

(
∂g

∂qi

)T
)

.

In particular, if f is a scalar and g is an m-dimensional column vec-
tor, {f, g} is an m-dimensional row vector (covector). Similarly, if
f and g are vectors with the respective dimensions l and m, then
{f, g} is an l ×m matrix.

The common approach in physics is to think in terms
of the normal modes, related to the displacements
through Ak =

√
2/(N + 1)

∑N
i=1 ui sin(ikπ/N + 1)

with the frequencies ω2
k = 4 sin2(kπ/2(N + 1)). En-

ergy equipartition means that the time average of Ek

up to time T , namely

Ēk(T ) =
1

T

∫ T

0

Ek(P (t), Q(t))dt, (15)

for large T converges (up to minor nonlinear contribu-
tions) to the energy per degree of freedom ε = E/N ,
E denoting the total energy.
Let’s rewrite Hamiltonian (13) as

H =
1

2

N∑
k=1

(Ȧ2
k + ω2

kA
2
k)+

+
α

3

N∑
k,l,m=1

cklmAkAmAlωkωmωl,

(16)

where the coefficients cklm are given, for example, in
[Scholl, 1990]. The last term, generated by the non-
linear contribution to the potential, leads to a coupling
between the modes, and scales as N3/2.
Fermi, Pasta and Ulam thought that, due to this term,

the energy introduced into a single mode, mode k = 1
in their simulation, should slowly drift to the other
modes, until the equipartition of energy predicted by
statistical physics is reached. The beginning of the cal-
culation indeed suggested that this would be the case.
Modes 2, 3, ..., were successively excited. However,
one day they let the program run long after the steady
state had been reached. When they realized their over-
sight and came back to the room, they noticed that the
system, after remaining in a steady state for a while,
had then departed from it. To their great surprise, after
157 periods of the mode k = 1, almost all the energy
(all but 3%) was back to the lowest frequency mode, as
shown in figure 2 where the identical picture obtained
in our numerical experiments is shown.
Note that in order to obtain reliable numerical results

a specific numerical integration method is used, the so
called symplectic or geometrical integration. Particu-
larly the MATLAB package GniCodes was used.

3.2 Control of FPU system
To apply the control let us consider the Hamiltonian

of the system with control:

Hcontrol =

N∑
i=0

1

2
p2i +

N∑
i=0

1

2
(ui+1 − ui)2

+

N∑
i=0

α

3
(ui+1 − ui)3 + uNω,

(17)



Figure 2. FPU recurrence: the plot shows the time evolution of the
sum of kinetic and potential energies Ek = 1

2 (Ȧ2
k + ω2

kA
2
k)

of each of the four lowest modes. Initially, only mode 1(blue) was
excited. This figure is an expanded part of Fig. 3.

where ω is the control.
The FPU equations of motion, derived from Hamilto-

nian (17) is



u̇i = pi,
ṗi = (ui+1 + ui−1 − 2ui)

+ α[(ui+1 − ui)2 − (ui − ui−1)2],
u̇N = pN ,
ṗN = (uN−1 − 2uN )+

α[(uN )2 − (uN − uN−1)2] + ω,
(18)

where i = 1..N − 1.
To apply the SG-method one needs to choose an

appropriate goal function. For control of Hamilto-
nian system a natural goal function corresponding to
the goal equivalent to energy control is as follows:
Q(p, u) = 1

2 (H −H∗)2, where H is Hamiltonian (13)
and H∗ is the goal (desired) value of the energy.
Using the SG-method (see Section 2.2) to control the

system energy we obtain the following control algo-
rithm:

ω = −γ(H −H∗)pN , (19)

where γ > 0.

4 Simulation results
Simulation of the controlled FPU lattice is carried out

with the following parameters: tfin = 8000, H∗ = 3,
and the following control gains: γ = 0, γ = 0.05, γ =
0.01 (see figures 3, 4, 5). The control strength maxu(t)
is seen in figure 7 for various γ. For example for
γ = 0.01 maxu(t) = 0.0060. Under sufficiently small
control a tendency to the energy equipartition (thermal-
ization) of FPU Lattice is observed. With γ = 0.01 the
transient time has increased from 2500 to 10000 (see
figure 5). On figure 6 the transition time for range of
γ = 0.01 – 1 is presented.
The figure 8 refers to an uncontrolled α model, with
N = 32, α = 0.25, at rather small value of ε = 10−3,
and shows the averaged energy spectrum, i.e. Ēk(T )
vs. k (see equation 15), at different times T . The

Figure 3. FPU recurrence: the plot shows the time evolution of the
sum of kinetic and potential energies Ek = 1

2 (Ȧ2
k + ω2

kA
2
k) of

each of the four lowest modes with tfin = 8000, H∗ = 3, γ =
0.

Figure 4. controlled FPU system evolution: the plot shows the
time evolution of the sum of kinetic and potential energies Ek =
1
2 (Ȧ2

k + ω2
kA

2
k) of each of the four lowest modes with tfin =

8000, H∗ = 3, γ = 0.05.

Figure 5. controlled FPU system evolution: the plot shows
the time evolution of the kinetic and potential energy Ek =
1
2 (Ȧ2

k + ω2
kA

2
k) of each of the four lowest modes with tfin =

16000, H∗ = 3, γ = 0.01.

Figure 6. The transient time for controlled FPU system γ = 0.01
... 1.

energy was initially equidistributed among the lower
10% of modes (the rectangular profile in the figure).
Quite soon, already at T ' 104, a well defined profile
is formed, in which only some low frequency modes
effectively take part to energy sharing, the energies of
the remaining ones decaying exponentially with k. The
figure 9 refers to controlled model, with control gain
γ = 0.5.



Figure 7. Control strength umax for γ = 0.01 ... 1.

Figure 8. The averaged energy spectrum at different times T , for
the α-model;N = 32, ε = 10−3.

Figure 9. The averaged energy spectrum at different times T , for
the the controlled α-model;N = 32, ε = 10−3, γ = 0.5.

5 Conclusion
In the paper a controlled version of the celebrated

Fermi-Pasta-Ulam problem is introduced. The algo-
rithm for control of the system energy based on Speed-
gradient approach is proposed and analyzed by com-
puter simulation. It is demonstrated that the control
goal is achieved in the controlled system with a reason-
able accuracy depending on the control gain γ. It is
shown that the controlled system tends to approximate
equipartition state much faster than it happens in the
open loop (classical) system. Such a phenomenon is
observed under control with sufficiently small strength:
less than 0.5% of the total system energy. The transient
time (time till approximate equipartition is achieved) is
of order 104 while for classical FPU-system it has order
about 108–109, see [Benettin and Ponno, 2011].
Our future research will be devoted to comprehensive

study of the discovered ”controlled equipartition” phe-
nomenon under varying initial conditions, point of the
control action application, sensitivity to noises, etc.
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