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Abstract
Reconstructions of the late-Holocene climate rely

heavily upon proxies that are assumed to be accurately
dated by layer counting, such as measurements of tree
rings, ice cores, and varved lake sediments. Consid-
erable advances could be achieved if time-uncertain
proxies were able to be included within these multi-
proxy reconstructions, and if time uncertainties were
recognised and correctly modelled for proxies com-
monly treated as free of age model errors.
Current approaches for accounting for time uncer-

tainty are generally limited to repeating the reconstruc-
tion using each one of an ensemble of age models,
thereby inflating the final estimated uncertainty – in ef-
fect, each possible age model is given equal weight-
ing. Here, we demonstrate how to exploit the inferred
space-time covariance structure of the climate to re-
weight the possible age-depth models. Although they
are a priori all deemed to be equally correct, the proba-
bilities associated with the age models are formally up-
dated within the Bayesian framework, thereby reducing
uncertainties. Numerical experiments show that updat-
ing the age model probabilities decreases uncertainty in
the resulting reconstructions, as compared with the cur-
rent de facto standard of sampling over all age models,
provided there is sufficient information from other data
sources. This approach can readily be generalised to
non-layer-counted proxies, such as those derived from
marine sediments.

1 Introduction
Current large-scale climate reconstructions over the

Common Era rely on accurately and precisely dated
climatic proxies with annual resolution. These mostly
comprise of layer counted data, such as tree rings,
varved sediments, and annually layered ice cores [e.g.,
Jones et al., 2009]. As there are a number of records
that do not fulfil these strict criteria [see e.g. PAGES2k
Consortium, 2013], considerable progress could be

made by including time-uncertain proxy records, us-
ing methodologies that allowed for accurate propaga-
tion of uncertainties. This would allow for radiometri-
cally dated proxies, such as many marine or lacustrine
sediment archives and speleothems, to be included in
high-resolution reconstructions. As these records are
believed to better preserve the low-frequency climate
variability than annually resolved proxies [e.g., Jones
et al., 2009], they could aid in characterising multi-
centennial to millennial scale climate variability over
the late Holocene. Including these records also poten-
tially widens the spatial and temporal scope of feasible
climate field reconstructions.
Often, age–depth relations in sediment cores are nar-

rowed down by maximising some similarity metric,
such as a correlation, between time-uncertain records
[e.g., Lisiecki and Raymo, 2007] or between a time-
uncertain record and a known, often orbital, signal
[e.g., Shackleton et al., 1990]. Most of such studies av-
erage numerous time-uncertain proxy series to explore
temporal variability [Huybers and Wunsch, 2004], or
spatial variability at distinct time slices [e.g., Curry and
Oppo, 2005]. Our aim is, however, to use a combina-
tion of time-certain and time-uncertain proxies to re-
construct spatio-temporal climate variability over the
late Holocene.
In a recent publication we have shown how to

formalise the use of time-uncertain proxies within
a Bayesian hierarchical model for climate field recon-
struction [Werner and Tingley, 2015]. Our approach is
a data-derived compromise between selecting a single,
optimal age model by some metric, or treating all age
models as equally likely and iterating over them [Tier-
ney et al., 2013; Comboul et al., 2014]. The resulting
statistical model is hierarchical, and model fitting ex-
ploits conditional dependencies by sequentially updat-
ing estimates of the climate conditional on the currently
selected age model, and then updating the probabilities
associated with members of an ensemble of age–depth
models based on the current estimate of the climate.



The presented method focuses on banded climate
archives, such as tree rings, annual layers in ice cores,
varves in lake sediments or corals, that feature dating
errors caused by skipping or over-counting layers. Cur-
rently, van der Bilt et al. [2015] apply it on high reso-
lution sediment archives to validate the existence of a
regionally representative signal in periglacial lake sed-
iments from South Georgia Island.
Although we will work with the established method

BARCAST [Bayesian Algorithm for Reconstructing
Climate Anomalies in Space and Time Tingley and
Huybers, 2010] as used by Tingley and Huybers [2013]
and Werner et al. [2013], our results are readily trans-
ferable to any other Bayesian hierarchical model for in-
ferring past climate.
We first provide background information on BAR-

CAST in Section 2, before we describes the technical
modifications required to update the probabilities of the
ADMs. Results of numerical experiments character-
ising and illustrating the advantages of our approach
are presented in Sect. 3. Our core idea of updating the
probabilities associated with time-uncertain proxy data
by including an ADM level within a Bayesian hierar-
chical model is general, and discussions provided in
Sect. 4 touch upon on how the core ideas can be ex-
tended, including e. g. radiometrically derived ADMs.

2 Bayesian hierarchical models for climate field
reconstructions

Bayesian hierarchical modelling is a natural frame-
work for inferring past climate from proxy observa-
tions [Tingley et al., 2012]. It involves disentangling
assumptions made about the climate system from as-
sumptions made about the distribution of observations
consistent with a given climate state. Hierarchal mod-
elling allows sophisticated models to be developed via
the specification of a series of simpler, interlinked con-
ditional probability statements [Wikle et al., 2001].
In the paleoclimate context, such models consist of

a process level, a simple, parametric model describing
the stochastic variability of the target climate process,
and a data level, a description of the observations con-
ditional on the climate. Thus, forward models for proxy
data [Evans et al., 2013] are the natural way to formu-
late the latter step of the hierarchy. Finally, more or less
informative prior distributions, encoding pre-analysis
beliefs, must be specified for all unknown parameters.
BARCAST [Tingley and Huybers, 2010] models the

target climate process ~Ct as a first-order autoregres-
sive [AR(1)] process in time, with mean µ and persis-
tence α, with multivariate normal innovations featuring
exponentially decaying spatial covariance. Although
based on a relatively simple process-level model, nu-
merous studies have shown that BARCAST works well
in practice for reconstructing temperature variations
[e.g., Werner et al., 2013, 2014; Tingley and Huybers,
2013]. The processes level, the evolution of (the la-
tent, i. e. never observed without error) spatial climate

anomalies ~Ct in time, takes the form

~Ct+1 − µ = α
(
~Ct − µ

)
+ ~εt

~εt ∼ N (~0,Σ) (independent)

Σi,j = σ2 exp (−φ|xi − xj |) .

(1a)

The innovations capture spatial persistence in the form
of an exponential decreasing correlation as a func-
tion of separation between locations xi and xj , with
e-folding distance 1/φ. The resulting shared informa-
tion in space and time is critical in constraining age
models for time-uncertain proxies.
At the data level, BARCAST specifies a separate lin-

ear forward model for each type of observation:

~Ot = Ht(β0 + β1 · ~Ct + ~et)

~et ∼ N (~0, τ2 · I) (independent).
(1b)

The parameters (β0, β1, τ2) are assumed to be different
for each type of observation (e.g., tree ring widths, ice
cores), but are sometimes taken to be common for all
observations of a given type. Furthermore, the instru-
mental observations are assumed to be unbiased and
on the correct scale (β0 = 0 and β1 = 1). The se-
lection matrix Ht is composed of zeros and ones, and
selects out at time step t the locations for which there
are proxy observations of a given type. Inference on
the parameters and the latent climate process proceeds
via Markov chain Monte Carlo [MCMC; e.g., Gelman
et al., 2003]. While we refer the reader to Tingley and
Huybers [2010] for the technical details, we note that
a core principle of MCMC is to estimate the joint prob-
ability distribution of all unknowns by iteratively sam-
pling from each unknown conditional on the current
values of all other unknowns. For example, we draw
from the distribution of the climate process, conditional
on the parameters, and then update the parameters con-
ditional on the climate. One of the main shortcomings
of BARCAST, shared by most other climate field re-
construction methods [Schneider, 2001; Smerdon et al.,
2011; Luterbacher et al., 2004; Guillot et al., 2014], is
the inability to incorporate data with dating uncertainty
in a statistically rigorous manner. Since hierarchical
models such as this are specified through a series of
simple models (Eq. 1a and b), they are naturally mod-
ular and amenable to modification. In particular, (1b)
can be viewed as conditional on the correct age model,
and can be generalised to include updating of the prob-
abilities associated with an ensemble of age models,
conditional on the climate.

2.1 Including time-uncertain data in BARCAST
We now augment the basic framework to permit in-

clusion of annual-resolution, layer-counted proxies that
feature ADM errors. Layers may be miscounted when
the annual bands are weak, [e.g., corals Comboul et al.,



2014], or when hiatuses in the record are misdated
[e.g., speleothem data; Osete et al., 2012]. An ensem-
ble of possible ADM errors is shown in Fig. 1: after
a perfectly dated top section counting errors accumu-
late and lead to a substantial spread in possible dates
for the lowest layers. For the purposes of exposition,
and to simplify notation, we consider the case of a sin-
gle time-uncertain, layer-counted proxy; the formalism
can then be repeated for each time-uncertain proxy.
Associated with each time-uncertain proxy record is

an ensemble of possible ADMs, {Tk, k = 1, . . . ,M},
all of which are equally likely. This ensemble is gener-
ated based on understanding of the proxy archive and
should reflect an honest assessment of possible uncer-
tainties. We here take this ensemble as given, and seek
to update the conditional posterior probabilities associ-
ated with the ADMs conditional on the current draw of
the climate and parameters in the MCMC algorithm
We rewrite the data-level model of BARCAST for the

time-uncertain proxy: Whereas Eq. (1b) relates all ob-
servations throughout space at time t to the concurrent
climate field, it is more convenient in this case to relate
~Os, the time series of the time-uncertain proxy obser-
vations at location s, to ~Cs, the co-located time series
of the estimated climate process. The dependence of
the proxy observations conditional on the climate time
series and a particular ADM T then takes the form

~Os|T , ~Cs = β0 + β1 ·ΛTs · ~Cs + ~es

~es ∼ N (~0, τ2 · I) (independent),
(2)

with the local observation error time series ~es. Anal-
ogous to Ht in Eq. (1b), the ADM-dependent selec-
tion matrix ΛTs picks out the elements of the vector ~Cs
which correspond to elements of ~Os.
The only dependence in either process or data level

model on the ADM enters in eq. (2) through the matrix
ΛTs . The resulting conditional likelihood of the time
series of proxy observations at location s conditional
on climate and selected ADM is multivariate normal,
with a diagonal covariance matrix

L
(
~Os|T , ~Cs

)
∼ N

(
β0 + β1 ·ΛTs , τ2 · I

)
(3)

and, assuming equal prior probabilities for the ADMs,
π (T = Tk) = 1/M , the conditional posterior proba-
bilities for the candidate ADMs {Tk} are

p
(
T = Tk|~Cs, ~Os

)
∝ L

(
~Os|Tk, ~Cs

)
· π (Tk) . (4)

This is again a normal distribution, and the problem
is in theory solved. We can now sample the climate
process and scalar parameters as described by Tingley
and Huybers [2010], and at each step of the MCMC
additionally select an ADM according to the condi-
tional posterior probabilities in Eq. (4). In practice the

sampler is slow to explore the full probability space of
the ADMs. Intuitively, the strong interdependence be-
tween the currently selected ADM and the current draw
of the climate field favours retaining the current ADM,
and the algorithm wanders around the local optimum.
This problem can be overcome using parallel temper-

ing and Metropolis-Coupled MCMC [(MC)3, Altekar
et al., 2004]: Several chains of the MCMC sampler
are run in parallel, each at a different “temperature”
and subsequently coupled, their states being swapped
in a Metropolis step. The additional “heating” allows
MCMC to more easily escape local optima. We only
need to modify the posterior probabilities of the ADMs
as described by Altekar et al. [2004]:

pθ

(
T = Tk|~Cs, ~Os

)
∝ L

(
~Os|Tk, ~Cs

)θ
·π (Tk) , (5)

where the parameter θ ∈ [0, 1] also called “inverse tem-
perature”. For θ = 1 (no heating) the normal posterior
is recovered, while θ = 0 results in a unity likelihood
and the posterior equals the (here: flat) prior.
After a predetermined number of iterations, the states

of two chains of different temperatures can be swapped
in a Metropolis step. The probability of swapping the
states of two chains j and k, with heatings θj and θk
conditional on the state of the chain, that is, selected
ADM and estimated climate, [Altekar et al., 2004]

p(j ↔ k|Tj,k, ~Cj,k, ~O) =

min

1,
∏
s

pθk

(
Tj |~Cj , ~O

)
· pθj

(
Tk|~Ck, ~O

)
pθj

(
Tj |~Cj , ~O

)
· pθk

(
Tk|~Ck, ~O

)
 .

(6)

The product is over all locations with time-uncertain
proxies, and note that Tj,k, ~Cj,k, ~O all depend on the
spatial location s. This procedure allows more diverse
ADMs to be selected by the heated chains, while the
unheated chain retains the correct stationary distribu-
tion, and is thus evaluated in the end. We select the the
heating parameters θi of the chains as a geometric se-
ries between θmin and θ = 1, with a smallest heating
parameter such that in an uncoupled experiment rapid
exploration of the ADM space can be seen.

3 Simulation experiments
We use a set of numerical experiments to show how

the algorithm uses the information shared between
proxies across space and time. The data are con-
structed using the BARCAST process and data-level
models (Eqs. 1a and 1b; parameter values Table 1). We
consider a small spatial domain consisting only of 30
grid points with a distance of about 500 km. Experi-
ments are run over 1300 time steps (years), with high-
precision “instrumental” data available over the most
recent 150 years. The two proxy time series consists of



Table 1. Model parameters for the experiments. Proxy 1 is time-
certain and Proxy 2 features an uncertain age–depth model. The
signal-to-noise ratio is set to about 0.25 [cf. Werner et al., 2013].
The measurement noise for the instrumental data is given by τI .

Process Level Data Level

α 0.6 τI 0.05

µ 0.0 τ2P,1 0.4

σ2 0.9 β0 0

φ−1 1000 km β1 0.5

annually resolved data, one correctly dated, the other
with a 2 % probability [Comboul et al., 2014] of mis-
counted layers. An ensemble of 1000 such ADMs is
shown by the grey lines in Fig. 1.
The experiments are run with differently located time-

certain and time-uncertain proxies. The study is de-
signed to test the effect of spatial distance between
the two records on the quality of the reconstruction.
As already pointed out in an earlier study [Werner
and Tingley, 2015], our new BARCAST+AMS method
falls back to random sampling should the information
shared between the two localities be too low.
To evaluate the results over the earliest 500 time steps

to stress the effect of the time uncertainty (shading in
Fig. 1) we use the average cross correlation and root
mean square error (RMSE) between the target and the
reconstruction ensemble. In addition, we calculate the
continuous ranked probability score [CRPS; Gneiting
and Raftery, 2007], as it are more suitable evaluations
of ensemble estimates. CRPS is a combined measure
of the sharpness (uncertainty) of the ensemble recon-
structions – the potential average CRPS ( CRPSpot) –
and an estimate how well the nominal coverage rates of
the ensemble correspond to the empirical ones – termed
the average reliability score Reli. They are in the units
of the evaluated variables. In contrast to the often em-
ployed coefficient of efficiency and the reduction of er-
ror [Cook et al., 1994] they offer no simple threshold
indicating a “skillful” reconstruction. However, the co-
efficient of efficiency and the reduction of error are no
proper scoring rules [Gneiting and Raftery, 2007], and
thus not suitable for evaluating ensemble predictions –
even if they are convenient and widely used.
Results of the experiments are summarised in Fig-

ure 2, using both BARCAST+AMS (implemented us-
ing MC3) and randomly selecting from the ADMs
within BARCAST. All measures for both analyses indi-
cate a better reconstruction at the location of the time-
certain proxy, where results are comparable between
the two analysis choices (not shown). The added value
of our method can however be seen when comparing
the results at the location of time-uncertain proxies. Of
course, no difference can be seen when the two prox-
ies are exactly co-located. However, as the distance be-
tween the proxies increases, the cross-correlation of the
BARCAST+AMS experiments remains larger than that
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Figure 1. Trace plots of ADMs used. Shown is the mismatch of
layer number (experimental date) vs. true date, for each of the en-
semble of ADMs. A perfect ADM would be a straight horizontal line
at zero. All ADMs (black), ADMs selected (blue) with a distance of
2/3 decorrelation length between the proxies. Shading denotes range
over which skill is evaluated.
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Figure 2. Experimental results for BARCAST+AMS (solid lines,
closed symbols) and random ADM selection (dashed, open symbols),
evaluated at the location of the time-uncertain proxy. Spatial decor-
relation length scale is 1000 km. The reconstructions are evaluated
over the earliest 500 time steps. The standard deviation of the local
target climate signal is about 1.3.

of the random sampling experiments. The RMSE and
the CRPSpot remain lower, indicating both a lower stan-
dard error and a sharper reconstruction. As distance
further increases, however, the results from both lines
of experiments approach each other.
We also evaluate how the algorithm can in fact nar-

row down the ADMs from the prior ensemble. In the
trace plot Fig. 1, the ADMs that are selected at a inter-
proxy distance of about 3/4 decorrelation length (blue
lines). Both the spread between the selected ADMs
and the average age mismatch between the ADM and
the correct ADM (horizontal line at 0 in Fig. 1) are
greatly reduced. In Figure 3 we show the distribution
of drawn ADMs (by their L1 distance from the true
ADM) for three different experiments: a distance be-
tween the proxies of 0, 2/3 and 2 decorrelation length.
As the distance between the time certain and the time
uncertain proxy increases, the amount of shared infor-
mation is reduced and the BARCAST+AMS algorithm
can no longer narrow down the ADM selection.
These results clearly demonstrate the improvements

afforded by formally updating the probabilities associ-
ated with the ADMs. We note that the ability to learn
about the posterior distribution of the ADMs is a strong
function of the amount of nearby (as measured by the
spatial decorrelation length scale) information that is
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Figure 3. Draws of ADMs (by mismatch) for one perfectly dated and one time-uncertain proxy. Colours from beige (unheated) chain to red
(warmest) chain. (a–c) The separation between the two proxies is 0, 750, 2084 km.

available to constrain the climate at the location of the
time-uncertain proxy. Indeed, when the time-certain
proxy is more than twice the spatial correlation length
from the time-uncertain proxy there is little gain over
random ADM selections. This illustrates the need for
a shared signal between the proxies that can be used to
correct for the misdating in either. The exact source of
the shared signal is not important, be it through spatial
closeness as constructed here, or through a long-range
teleconnection.

4 Discussions and extensions
We have described and implemented an extension of

a Bayesian hierarchical model for climate field recon-
structions that accounts for uncertainties due to mis-
specified age–depth models in annually resolved proxy
records. Although we have focused on a particular
type of time-uncertainty (miscounting of annual layers)
and the BARCAST reconstruction algorithm of Tingley
and Huybers [2010], the methodology we outline is
broadly applicable. To achieve adequate mixing in the
MCMC, we make use of Metropolis-Coupled MCMC
with parallel tempering [Altekar et al., 2004]. These
techniques increase computational demands by a factor
given roughly by the number of coupled chains, but are
necessary to ensure adequate exploration of the proba-
bility space.
As demonstrated with simulation experiments,

our method places higher posterior probability on
ADMs with low L1 distance to the correct ADM
(Figs. 1 and 3). Moreover, reconstructions that update
the probabilities associated with the ADMs based on
the current draw of the climate feature better score and
skill metrics than reconstructions that feature random
ADM selection (Fig. 2).
A number of useful extensions to the general frame-

work we have proposed are possible. Many proxy
archives, such as sediment cores, do not form annual
layers. Proxies derived from these archives are gener-
ally measured as an average over a depth increment of
sediment. The time boundaries of each increment are,
in turn, determined by an ADM that is generally con-
strained using radiometric dating. If each proxy obser-
vation now represents an average over some number of

time points, then each row of ΛTs features a segment
composed of the corresponding averaging weights, de-
termined by the ADM, instead of ones and zeroes.
We have assumed the a priori existence of an ensem-

ble of possible ADMs for each time-uncertain proxy. In
many cases, such an ensemble of ADMs is not available
with the proxy record – though recent efforts to define
standards for proxy metadata suggest that the original
dating information, such as radiometric ages and un-
certainties, be included along with the proxy observa-
tions [see PAGES2k Consortium, 2014]. Recent work
in radiocarbon dating has focused on stochastic mod-
elling of the sedimentation process, and development
of Bayesian models to constrain possible depositional
histories, and therefore ADMs, conditional on a set
of imperfect age control points [e.g., Ramsey, 2008;
Blaauw and Christen, 2011]. Given dating informa-
tion, any of the existing ADM construction algorithms
can be used to produce an ADM ensemble. Such an al-
gorithm could also be embedded within the climate re-
construction method, where instead of simply drawing
from possible ADMs, a new ADM could be generated,
which could then be accepted or rejected in a Metropo-
lis [Gelman et al., 2003] step. This would increase the
number of candidate ADMs, and might speed up ex-
ploration of the ADM space.
There are many potential benefits to including time-

uncertain proxy records within annually resolved, late-
Holocene climate field reconstructions. Inclusion of
time-uncertain observations would increase the number
of proxy records and the diversity of proxy types avail-
able to such analyses, and increase the spatial coverage
of the proxy network. Furthermore, lower-resolution,
time-uncertain records may permit improved inference
on low-frequency climate variability [e.g., Jones et al.,
2009], and have the potential to extend the time span of
reconstructions.
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