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Abstract
A spatially-extended reaction-diffusion model is con-

sidered. The work is focused on self-organization mech-
anisms of diffusion instability and Turing pattern forma-
tion. Pattern generation and multistability of the system
is demonstrated for varying diffusion intensity. In the
stochastic variant of the model, the sensitivity of coex-
isting patterns to noise is studied. The stochastic sen-
sitivity function technique is used for the analysis of
noise-induced transitions between patterns. Application
of stochastic sensitivity functions is discussed on exam-
ples.
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1 Introduction
One of the most vital fields of research in modern sci-

ence is the study of self-organization dynamics in com-
plex non-linear systems [Nicolis and Prigogine, 1977],
[Cross and Greenside, 2009]. Such systems and phe-
nomena of spontaneous ordering are often encountered
in theoretical and applied natural sciences [Deichmann,
2023], [Martinez et al., 2022], [Odagaki, 2021]. The ap-
paratus of mathematical modeling and computer simu-
lations is a valuable approach used in analysis of non-
linear dynamics in these systems [Kazarnikov et al.,
2023]. In some systems computer modeling methods
are usually preferred over the real experiment, especially
when experimentation is too complex or expensive.

In reaction-diffusion systems the phenomenon of Tur-
ing instability and pattern formation can be consid-
ered an example of self-organization mechanism [Tur-
ing, 1952]. Systems with strong diffusion form a sta-

ble spatially homogeneous equilibrium state. Turing’s
work describes conditions when this equilibrium be-
comes unstable and a non-homogeneous wave-like state
(a Turing pattern) is preferred by the system [Kavallaris
et al., 2023]. Usually several patterns with varying spa-
tial frequency coexist in the same parametric domain.
Such multistability is evident when the initial state of
the system is varied for fixed set of system parameters
[Kolinichenko and Ryashko, 2020], [Liu et al., 2022].

Noise-induced effects play a crucial role in sys-
tems with self-organization [Hausenblas et al., 2020],
[Aguirre and Kowalczyk, 2022], [Alexandrov et al.,
2021]. Random perturbations greatly affect system dy-
namics and produce stochastic phenomena, that could
not be observed when the effect of noise is excluded.
An important field of work in this study is to research
and provide efficient methods that allow measurement
of noise effects and prediction of system behavior. One
such example involves stochastic sensitivity functions
(SSF) [Bashkirtseva et al., 2013], [Bashkirtseva et al.,
2020], [Bashkirtseva and Ryashko, 2021]. This tech-
nique is useful for investigation of probabilistic distribu-
tions around attractors and limit cycles. It is helpful for
building confidence intervals of random states in contin-
uous and discrete nonlinear systems.

Recent work on stochastic phenomena in spatially ex-
tended reaction-diffusion systems involves investigation
of noise-induced pattern transitions [Horsthemke and
Lefever, 1984], [Bashkirtseva et al., 2021], [Muntari
and Şengül, 2022]. This includes parametric analysis of
stochastic sensitivity and transition probability between
coexisting patterns–attractors. It is shown, that varia-
tion of parameters that regulate system dynamics, espe-
cially diffusion intensity ratio, affect pattern preference
dynamics.
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In this work, the spatially-extended stochastic
reaction-diffusion model is studied. It is shown, that in
the parametric domain of Turing instability the system
forms non-homogeneous patterns. Multistability of
the system and the effect of diffusion variation on the
diversity of coexisting patterns is studied.

The main focus of the paper is the phenomenon of
noise-induced transitions between coexisting patterns.
Relation between such transitions and stochastic sen-
sitivity of patterns–attractors is discussed. Probabilis-
tic distributions of noisy states near patterns are de-
scribed by statistical data from direct computer model-
ing. The analytical stochastic sensitivity functions tech-
nique (SSF) [Kolinichenko et al., 2023] is applied for
description of these distributions. With the SSF tech-
nique the influence of varying diffusion intensity on pat-
tern preference mechanisms is discussed on examples.

2 Model introduction
Consider the following stochastic variant of the

spatially-extended Brusselator model [Prigogine and
Lefever, 1968]:

∂u

∂t
= a− (b+ 1)u+ u2v +Du

∂2u

∂x2
+ εξ(t, x)

∂v

∂t
= bu− u2v +Dv

∂2v

∂x2
+ εη(t, x).

(1)

Here, the system variable functions u(t, x) and v(t, x)
are the dimensionless concentrations of reagents. Posi-
tive parameters a and b define the reaction process dy-
namics, Du and Dv are the intensity of diffusion of the
respective reagents. The additive random noise is repre-
sented by two stochastic components ξ(t, x) and η(t, x)
- two uncorrelated white Gaussian noises, the coefficient
ε is the additive noise intensity.

The spatial variable x varies within a bounded spatial
domain, which is the unit segment [0, 1]. Boundary con-
ditions are the zero-flux conditions:

∂u

∂x
(0, 0) =

∂u

∂x
(0, 1) = 0

∂v

∂x
(0, 0) =

∂v

∂x
(0, 1) = 0.

(2)

Without diffusion components (Du = Dv = 0) and
random noise (ε = 0) the system has an equilibrium
(ū, v̄) = (a, b

a ), which is stable if b < (a+ 1)2.
For a deterministic (ε = 0) system (1), (2) with diffu-

sion, one may consider the spatially homogeneous equi-
librium state u(t, x) = ū, v(t, x) = v̄. A special case of
instability of such state is the diffusion instability or Tur-
ing instability. It occurs if the equilibrium of the model
without diffusion is stable and the following Turing in-
stability condition is met:

Du

Dv
<

(√
b− 1

a

)2

. (3)

Such instability causes formation Turing patterns - sta-
ble spatially non-homogeneous wave-like structures. In
this article consider the parameter values a = 3, b = 9
fixed as in [Kolinichenko and Ryashko, 2020]. The equi-
librium values are ū = 3, v̄ = 3. The condition (3) is
met if diffusion coefficient ratio is Du

Dv
< 4

9 , therefore
the spatially homogeneous equilibrium becomes unsta-
ble and pattern formation is expected. Figure 1 demon-
strates pattern formation process from a randomly gen-
erated state for Du = 0.016, Dv = 0.1. For simplicity
only the u(t, x) component of system state is shown, the
v(t, x) has similar structure.
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Figure 1. Turing pattern formation for system (1), (2) with parame-
ters a = 3, b = 9, Du = 0.016, Dv = 0.1: u(x) of random
initial state (left) and of pattern (right)

The spatiotemporal evolution of the system can be
demonstrated as a color diagram in Figure 2. Here, the
spatial variable varies along the vertical axis, time varies
along the horizontal axis and color represents the value
of u(t, x). It is evident, that the random state quickly
evolves into a definite stable pattern.

Figure 2. Turing pattern formation for system (1), (2) with parame-
ters a = 3, b = 9, Du = 0.016, Dv = 0.1: spatiotemporal
evolution of u(t, x)

Each pattern can be assigned a symbol, based on the
spatial frequency or the number of wavelengths within
the spatial domain and the tendency of the u compo-
nent near the domain’s left edge (x = 0). Note, that
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Table 1. Multistability in the spatially-extended Brusselator

k Du = 0.002 Du = 0.016 Du = 0.032

0.5 4.5 ↓, 4.5 ↑ 2 ↑, 2 ↑ 1 ↑, 1 ↑

1 4 ↑, 4 ↑ 2 ↑, 2 ↑ 1 ↑, 1 ↓

1.5 3 ↑, 3 ↑ 1.5 ↑, 1.5 ↓ 1.5 ↑, 1.5 ↓

2 4 ↑, 4 ↑ 2 ↑, 2 ↓ 1 ↑, 1 ↓

2.5 5 ↑, 5 ↑ 1.5 ↑, 1.5 ↓ 1.5 ↑, 1.5 ↓

3 5 ↑, 4 ↑ 2 ↑, 2 ↓ 1 ↑, 1 ↓

3.5 3.5 ↑, 3.5 ↓ 1.5 ↑, 1.5 ↓ 1.5 ↑, 1.5 ↓

4 4 ↑, 4 ↓ 2 ↑, 2 ↓ 1 ↑, 1 ↓

4.5 4.5 ↑, 4.5 ↓ 1.5 ↑, 1.5 ↓ 1.5 ↑, 1.5 ↓

5 5 ↑, 5 ↓ 2 ↑, 2 ↓ 1 ↑, 1 ↓

Total 9 4 4

due to the boundary conditions (2) being the Neumann
conditions, the number of wavelengths is either integer
or half-integer. The pattern demonstrated in Figures 1
and 2 can be assigned the symbol 1.5 ↓: a full wave and
half a wave fit in the spatial domain and the concentra-
tion curve u declines near x = 0.

Frequently, such systems display multistabilty: de-
pending on the initial condition, the system can generate
several patterns–attractors that coexist within the same
parametric domain. Figure 3 shows an example of coex-
isting 1.5 ↑ and 2 ↓ patterns.
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Figure 3. System (1), (2) with a = 3, b = 9, Du = 0.016,
Dv = 0.1: coexisting 1.5 ↑ pattern (left) and 2 ↓ pattern (right)

A degree of multistability can be measured by the
amount of different coexisting patterns. While in some
cases only few patterns are seen, in others the number
of patterns can be large. One of the main points of in-
terest in the study of multistability is to investigate the
effect of system parameter variation on the number of
coexisting states. Knowing that the pattern structure is
wave-like and considering the boundary conditions (2),
the following form of initial state variation is used:

u(0, x) = ū+ jγcos
(
2kπx

)
,

v(0, x) = v̄ − jγcos
(
2kπx

)
.

(4)

Here (ū, v̄) is the equilibrium of system (1) with Du =
Dv = 0. The parameter k is the wave number of the
cosine wave, which can be integer of half-integer due to
the boundary conditions (2). The parameter j is either
1 or −1 and is responsible for the tendency of the spa-
tial wave on the left edge of the spatial domain. In our
simulations the amplitude of the wave is γ = 0.1. Us-
ing different initial states generated by form (4) various
distinct patterns were obtained.

This experiment with multistability is performed for
three pairs of diffusion coefficients: (i) Du = 0.002,
Du = 0.0125, (ii) Du = 0.016, Dv = 0.1, (iii) Du =
0.032, Du = 0.2. In all cases the diffusion coefficient
ratio is Du

Dv
= 0.16. The results are shown in Table 1,

where each cell contains two pattern symbols: left for
j = −1 and right for j = 1.

The results in this series of simulations imply that for
greater diffusion coefficients there are fewer coexisting
patterns. This is demonstrated by the nine different
patterns encountered for Du = 0.002 and four differ-
ent patterns for Du = 0.016 and Du = 0.032. The
spatial frequency of coexisting patterns decreases: for
Du = 0.002 the spatial domain contains up to five wave-
lengths, while the maximum number of wavelengths is
two for Du = 0.016 and one and a half for Du = 0.032.

When diffusion coefficients were increased to certain
larger values, patterns were no longer observed. For ex-
ample, for Du = 0.68, Dv = 4.25 pattern formation
does not occur even though condition (3) is satisfied. At
this point the patterns with the smallest possible spatial
frequency, the 0.5 ↑ and 0.5 ↓ are not generated and the
homogeneous equilibrium is observed.

3 Stochastic sensitivity analysis
Consider the system (1), (2) with ε > 0 when spa-

tiotemporal dynamics are affected by random noise. It
is implied that different patterns respond differently to
such effects. While some patterns remain mostly unaf-
fected, others can deteriorate. A special case of stochas-
tic process is the stochastic transition between coexisting
patterns–attractors. It is assumed, that a sensitive pat-
tern disperses under the effect of noise and instead the
system will generate a less sensitive pattern. To demon-
strate such process, let a = 3, b = 9, Du = 0.016,
Dv = 0.1 and the initial state is the 2 ↓ pattern (see
Figure 3). Modeling process is initiated with noise in-
tensity ε = 0.5. During the simulations the pattern is
transformed into a noisy 1.5 ↓ pattern. The initial and
the final states of this simulation are shown in Figure 4.

Temporal details of modeling process are displayed on
Figure 5. Here, the process of the 2 ↓ pattern destruc-
tion is evident. The 1.5 ↓ pattern remains relatively un-
changed for the remainder of the simulation. The tran-
sition itself appears to be sharp and irreversible, which



126 CYBERNETICS AND PHYSICS, VOL. 13, NO. 2, 2024

Figure 6. Mean-square deviation Su of uε(t, x) from 2 ↓ pattern
in system (1), (2) for a = 3, b = 9, Du = 0.016, Dv = 0.1,
ε = 10−6
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Figure 4. Noise-induced transition from 2 ↓ to 1.5 ↓ for system
(1), (2) with a = 3, b = 9, Du = 0.016, Dv = 0.1, ε = 0.5:
initial (left) and final (right) states

implies that the 2 ↓ pattern is more sensitive to noise. If
the same experiment is performed with the 1.5 ↓ pattern
as the initial condition of the system (1), (2), the transi-
tion to a different pattern does not occur. It is assumed,

Figure 5. Stochastic spatiotemporal evolution of u(t, x) in system
(1), (2) for a = 3, b = 9, Du = 0.016, Dv = 0.1, ε = 0.5:
transition from 2 ↓ to 1.5 ↓ transition (left), no transition from 1.5 ↓
(right)

that the system state can deviate too far from a pattern-
attractor under the effect of random noise. In this case
the system state tends toward an attractor, which is more
resistant to noise.

In order to compare the noise sensitivity of coexisting
patterns quantitatively, the following statistical approach
is suggested. The noise intensity ε is set to a low value
in order to avoid a pattern destruction. The initial state
of the stochastic system (1), (2) is a specific pattern. A a

series of numerical simulations is performed and mean-
square deviation (5) is evaluated:

Su(x, ε) = E(uε(t, x)− u∗(x))2,

Sv(x, ε) = E(vε(t, x)− v∗(x))2.
(5)

Here, u∗(x) and v∗(x) are components of the considered
deterministic pattern. The uε(t, x) and vε(t, x) are the
stochastic states obtained from simulations with noise
intensity ε > 0.

Figure 6 shows the example results of this approach for
u component of the 2 ↓ pattern. Mean-square deviation
of random states near the pattern is a non-homogeneous
function. Maximums of this function localize parts of
the pattern most sensitive to noise.

It is possible to compare mean-square deviation of dif-
ferent patterns. Figure 7 shows results of such compar-
ison. It is shown, that generally the mean-square devi-
ation of 2 ↓ pattern is greater than that of 1.5 ↓. This
result aligns with the transition dynamics and preference
shown in Figure 5.
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Figure 7. Mean-square deviation of 2 ↓ (red) and 1.5 ↓ (blue)
patterns in system (1), (2) for a = 3, b = 9, Du = 0.016,
Dv = 0.1, ε = 10−6

While this approach provides useful information on
stochastic sensitivity, it requires large amounts of nu-
merical simulations and computational time for accu-
rate statistical data. An analytical approach based on the
stochastic sensitivity function technique used in ordinary
differential equation systems analysis can be applied for
approximation of mean-square deviation (5).

Consider a discretized spatial domain [0, 1]:
x0, x1, . . . , xn+1 where xi = ih, h = 1/(n + 1).
The pattern components u∗(x), v∗(x) are represented
by their approximation on the spatial grid: u∗

i = u∗(xi)
and v∗i = v∗(xi). Discretized derivatives of functions
f(u, v) = a − (b + 1)u + u2v and g(u, v) = bu − u2v
are defined as follows:

ai =
∂f
∂u (u

∗
i , v

∗
i ), bi =

∂f
∂v (u

∗
i , v

∗
i )

qi =
∂g
∂u (u

∗
i , v

∗
i ), mi =

∂g
∂v (u

∗
i , v

∗
i ).

Denote α = Du

h2 and β = Dv

h2 . Then consider the matri-
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Figure 8. Mean-square deviation found by direct simulations (red)
and SSF estimation (dashed) in system (1), (2) for a = 3, b = 9,
Du = 0.016, Dv = 0.1, ε = 10−6 for 1.5 ↓ pattern (up) and
2 ↓ pattern (down)

ces

A =


a1 − α α 0 . . . 0

α a2 − 2α α . . . 0
0 α a3 − 2α . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . an − α

 ,

M =


m1 − β β 0 . . . 0

β m2 − 2β β . . . 0
0 β m3 − 2β . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . mn − β

 .

B = diag[b1, ..., bn], Q = diag[q1, ..., qn],

F =

[
A B
Q M

]
,

For considered discretization, the stochastic sensitivity
matrix W of the pattern (ū(x), v̄(x)) is a solution of the
matrix equation (6):

FW +WF⊤ + S = 0. (6)

Here, S for system (1), (2) is a unit 2n× 2n-matrix. The
stochastic sensitivity functions for the pattern-attractor
are defined by the matrix W as follows:

Wu(xi) = Wi,i, i = 1, 2, . . . , n

Wv(xi) = Wi,i, i = n+ 1, n+ 2, . . . , 2n.
(7)

This function and the mean-square deviation (5) are
related as shown in (8):

Su(x, ε) ≈ Su(x, ε) = ε2Wu(x),

Sv(x, ε) ≈ Sv(x, ε) = ε2Wv(x).
(8)

The approximation of random state distribution for dif-
ferent patterns, including the results shown in Figure 7,
is demonstrated in Figure 8. It aligns well with statistical
data and can be obtained relatively fast as it requires to
solve only the system (6). Modern software packages for
linear algebra are able to check the equation for solution
existence and quickly find it.

The influence of system parameter variation on pattern
preference can be studied through analysis of stochastic
sensitivity. For parametric analysis of stochastic sensi-
tivity it is useful to have a numeric characteristic. For
example, consider the maximum sensitivity values (9):

Wu = max
x∈[0,1]

Wu(x),

Wv = max
x∈[0,1]

Wv(x).
(9)

With these numeric characteristics in mind, parametric
analysis of system (1), (2) is performed with varying dif-
fusion intensity. The diffusion coefficient ratio remains
constant Du

Dv
= 0.16. For simplicity, the horizontal axis

displays only the Du parameter variation, however Dv

is also varied so that the ratio will remain the same. The
results are shown in Figure 9.

0.008 0.012 0.016

0.5

1

1.5

2

0.008 0.012 0.016

0.05

0.1

0.15

Figure 9. Stochastic sensitivity of coexisting patterns in system (1),
(2) for a = 3, b = 9 and Du

Dv
= 0.16: Maximum sensitivity

values Wu (left) and Wv (right) for varying diffusion

The first evident result is that the 2 ↓ pattern becomes
less sensitive for lower diffusion coefficients. It is ex-
pected that the pattern will remain mostly unaffected by
random noise in contrast to the results shown in Figure 5
and transition to another pattern will not occur. Another
interesting result is that the 1.5 ↓ pattern becomes more
sensitive for lower diffusion coefficients. The 2 ↓ pat-
tern appeared more sensitive than 1.5 ↓ for Du = 0.016,
Dv = 0.1 and had higher chance of transition, while for
Du = 0.0088, Dv = 0.055 the situation is opposite.
Figure 9 shows that for Du = 0.0088, Dv = 0.055 the
1.5 ↓ pattern is more sensitive than 2 ↓ pattern. It is now
expected that destruction of the 1.5 ↓ pattern is more
probable. Figure 10 shows an example of spatiotempo-
ral dynamics for these diffusion coefficients.
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Figure 10. Stochastic spatiotemporal evolution of u(t, x) in system
(1), (2) for a = 3, b = 9, Du = 0.0088, Dv = 0.055,
ε = 0.7: transition from 1.5 ↓ to 2 ↑ (left), no transition from 2 ↓
(right)

It should be emphasized, that the ratio of diffusion co-
efficients is the key variable which defines the Turing
instability condition directly and controls deterministic
pattern formation. Here, it is shown that even if the ra-
tio is constant, the variation of Du and Dv affects spa-
tiotemporal and stochastic dynamics significantly.

4 Conclusion
In this paper, the stochastic spatially-extended Brusse-

lator model (1), (2) was studied. Multistability of system
without noise was demonstrated and studied for vary-
ing values of diffusion coefficients. Increasing diffusion
intensity leads to less number of coexisting Turing pat-
terns in the same set of parameters. It is emphasized,
that when diffusion intensity of the activator and the in-
hibitor of the system is varied proportionally, the number
of patterns changes, even if the ratio is constant and sat-
isfies the Turing instability condition (3). It is implied
that significant proportional increase of diffusion inten-
sity can suppress pattern formation. The phenomenon
of stochastically forced transitions between coexisting
patterns was demonstrated on examples. Random noise
causes destruction of a sensitive pattern with subsequent
generation of noise resistant pattern. Two approaches to
stochastic sensitivity measurement are discussed. Mean-
square deviation of random states around pattern can be
estimated with the application of stochastic sensitivity
functions technique. With this approach the effect of
diffusion intensity variation on stochastic sensitivity and
pattern preference was investigated.
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