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We show that the nonlinear response of a driven circuit quantum electrodynamics setup displays
antiresonant multiphoton transitions, as recently observed in a transmon qubit device. By including
photon leaking, we explain the lineshape by a perturbative and a semiclassical analysis. We derive
a bistable semiclassical quasienergy surface whose groundstate is squeezed, allowing for a squeezing-
dependent local effective temperature. We study the escape dynamics out of the metastable state
and find signatures of dynamical tunneling, similar as for the quantum Duffing oscillator.

PACS numbers: 78.47.-p, 74.50.+r, 42.50.Pq, 42.50.Hz

One of the nontrivial fundamental models of quantum
physics is the Jaynes-Cummings (JC) model [1]. It was
introduced to describe the interaction of a two-level atom
and a single quantized electromagnetic field mode. Be-
ing sufficiently simple, its dynamics is very rich though,
including Rabi oscillations, collapse and revival phenom-
ena, squeezing, entanglement, Schrödinger cat and Fock
states, and photon antibunching [2]. Beyond quantum
optical set-ups, it is applicable to many situations of
nanocircuit quantum electrodynamics (QED), such as
Cooper pair boxes [3], superconducting flux qubits [4],
Josephson junctions [5], and semiconductor quantum
dots [6]. In particular, the latter setups allow to explore
the regime of strong coupling and nonlinear response.

Recently, unique nonlinear features have been detected
in the transmitted heterodyne signal of a superconduct-
ing transmon qubit device [7]. For weak driving, the
two well-known vacuum Rabi resonances reflect transi-
tions between the groundstate and the first/the second
excited state of the undriven JC spectrum. Their differ-
ence in energy is 2~g, where g is the interaction strength
of the qubit and the harmonic mode. For increasing
driving, each vacuum Rabi peak supersplits into addi-
tional (anti-)resonances with the characteristic

√
n spac-

ing. The measurements have been corroborated with ac-
curate numerical simulations [7].

In this Letter, we provide a complete physical picture
for the nonlinear response of the driven JC model in
terms of quantum multiphoton (anti-)resonances. The
underlying physical mechanism is revealed by perturba-
tive arguments in the rotating frame in presence of pho-
ton leaking. The lineshape is determined by the ratio of
the Rabi frequency and the dissipation strength, allow-
ing for a direct experimental control. Beyond the per-
turbative regime, we derive a semiclassical quasienergy
surface which is bistable. Its groundstate is an ampli-
tude squeezed state and displays large out-of-phase os-
cillations. It is significantly populated at a multipho-
ton (anti)resonance, and is metastable away from res-
onance. The dissipative dynamics at zero temperature
involves quantum activation [8, 9], but also shows dy-
namic resonant tunneling [10]. Furthermore, we reveal

topological analogies with the quantum Duffing oscilla-
tor [10, 11, 12, 13].

We start from a harmonic oscillator with frequency ω
which is coupled with strength g to a qubit and which
is driven with frequency ωex and field strength f . In the
frame rotating with ωex and for δω ≡ ω − ωex, g, f ≪ ω,
we perform a rotating-wave approximation and obtain
the Hamiltonian of the driven JC model (~ = kB = 1)

HJC = δωa†a+
δω

2
σz +

g

2
(a†σ−+aσ+)+

f

2
(a† +a) , (1)

with σ± = σx ± iσy. Here, σj are the Pauli ma-
trices. The undriven JC model has the quasienergies
ε0 = −δω/2 , εn,± = (n − 1/2)δω ± g

√
n/2 and the

quasienergy states |φ0〉 = |0, g〉, |φn±〉 = (|n − 1, e〉 ±
|n, g〉)/

√
2. We will refer to latter as n-photon dressed

states with two spin directions ±. For f 6= 0, avoided
crossings of the quasienergy levels arise, which corre-
spond to N -photon transitions at δω = ±g/(2

√
N). To

have well separated resonances, we consider the regime
g ≪ f . Around the resonance, the eigenstates (at lead-

ing order) are |φf
0 〉 ≃ cos θ

2 |φ0〉 − sin θ
2 |φN ±〉 , |φf

N±〉 ≃
sin θ

2 |φ0〉 + cos θ
2 |φN ±〉, with tan θ = −ΩN/(ωex − ωN±)

with the Rabi frequency ΩN ∝ fN/gN−1.
To incorporate dissipative effects on the level of the

RWA, and for low temperatures T ≪ ωex, we use a
Lindblad master equation for the density operator ρ̇ =
−i[H, ρ] + Lρ with L = γ

(

[aρ, a†] + [a, ρa†]
)

/2. Then,
only photon leaking from the system into the bath is pos-
sible. Hence, in absence of multiphoton transitions, |φ0〉
is dominantly populated in the stationary state. In con-
trast, at a multiphoton resonance, the stationary state
is generated by coherent driving to the N -photon state
and a subsequent relaxation via all the intermediate n-
photon states to the 0-photon state due to photon leak-
ing. Eventually, this nontrivial interplay generates a sta-
tionary mixture of all n-photon states (n ≤ N).

We are interested in the nonlinear response charac-
terized by 〈a〉 = tr(̺a) = Aeiϕ =

∑

αβ ̺αβaβα. We
discuss the case δω > 0, the opposite follows from
|φn±〉 → |φn∓〉, f → −f and ϕ→ −ϕ+ π. The modulus
is related to the experimentally accessible transmission
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FIG. 1: Amplitude A as a function of the driving frequency
ωex for f = 0.0006 (a), f = 0.0015 (b) and f = 0.0025 (c).
Insets: zooms to the corresponding (anti-)resonances marked
by the dashed lines. Moreover, g = 0.052ω, γ = 5 × 10−5ω.

amplitude ∼ A and intensity ∼ A2 [7]. In the rotating
frame, 〈a〉 < 0 (ϕ = π) corresponds to an oscillation out
of phase with respect to the drive.

The nonlinear response, in the first instance obtained
from a numerical solution, is shown in Fig. 1 for the
parameters corresponding to the experiment of Ref. [7].
The drive induces a splitting of the vacuum Rabi res-
onance and produces two families of peaks which are
symmetric with respect to ωex = ω and which are as-
sociated to the ± quasienergy states. In each family,
(anti)resonances occur which correspond to multiphoton
transitions and which are associated to the avoided cross-
ings of quasienergy levels, see Fig. 2c. We note that no
antiresonances occur in the photon number 〈a†a〉 [14].

For weak driving (Fig. 1a), only the 1-photon antires-
onance is well pronounced. It can be described [7, 13]
by a model involving the 0- and the 1-photon state. At
resonance, they are equally populated and oscillate with
opposite phase yielding zero response. Slightly away from
resonance, one of the two states is more populated and a
finite response arises. Far away from the resonance, the
response again approaches zero. Overall, the lineshape
of an antiresonance arises. The antiresonance around
ωex ≈ 0.98ω corresponds to a 2-photon process (Fig. 1a).
This feature also follows from a two state description.
The shape is different from the 1-photon antiresonance,
due to the background contribution of nonresonant 1-
photon mixing processes[11].

For increasing driving, unexpected features arise. The
multiphoton antiresonances turn into resonances, see Fig.
1b and c. Associated to the behavior of A are jumps in
the phase ϕ, see Fig. 2b. This already suggests that
two quasienergy states - one oscillating in and one out
of phase - are alternatingly populated. Interestingly,
the population (Fig. 2d) of the state |ψ∗〉 with lowest

 ϕ

0

0.1

0.2

0.3

0.4

A

0.97 0.98 0.99
ωex/ω

0

0.5

1

P
*

0.97 0.98 0.99
ωex/ω

-0.03

-0.02

-0.01

0

ε n

(a)

 π/2

(c)

 π

0

E
*

A
*

10 2 3

A0

(b)

(d)

ϕ0

FIG. 2: Nonlinear response of the driven JC model: (a) am-
plitude, (b) phase, (c) quasienergies, and (d) population of the
lowest quasienergy state |ψ∗〉 for g = 0.052ω, f = 0.004ω, γ =
10−4ω. Dashed-dotted red line in (a,b): lowest-order result
for non-resonant approximation. Dashed orange line in (a):
A∗ = |〈ψ∗|a|ψ∗〉|; and in (c): semiclassical result Eq. (4) for
the lowest quasienergy E∗.

quasienergy shows peaks at the resonance frequencies.
In fact, as we will show below, |ψ∗〉 is localized in the
bottom of a well of a bistable quasienergy surface. |ψ∗〉
is metastable since the bath induces transitions to higher
quasienergies states and an escape is always possible,
even at zero temperature. This feature has also been
reported for the quantum Duffing oscillator [10, 12, 13].

These observations are further substantiated by per-
turbative arguments. Out of resonance, ρ00 ≃ 1 yielding

〈a〉 = 〈φf
0 |a|φf

0 〉 ≃ f
4

1
−δω−g/2 + f

4
1

−δω+g/2 . As follows

from Figs. 2 a) and b) (dashed-dotted red lines), the low-
est order response A0 coincides with the exact one away
from resonance. Moreover, ϕ0 = π for δω ≤ g/2 and
ϕ0 = 0 for δω > g/2.

At the N -photon-resonance, the system tunnels from
|φ0〉 to |φN−〉 with probability ΩN and the bath induces

decays from |φf
n−〉 ≃ |φn−〉 to |φf

n−1−〉 ≃ |φn−1−〉 along
the ladder N → N − 1 → ... → 1 → 0. The de-
cay rates (in secular approximation) are Ln−,(n−1)− =

(
√
n +

√
n− 1)2γ/4 for n 6= 1 and L1−,0 = γ/2. Hence,

the rate from the 1-photon to the 0-photon state is small-
est. Note that the probability of a decay to a state with
opposite spin is small, i.e., L(n−1)−,n+/L(n−1)+,n+ ≃
1/[16n (n− 1/2)]. Hence, the population of the 1-photon
state is always larger than those of the n-photon states.
In addition, depending on the ratio γ/ΩN , qualitatively
different stationary populations arise from a competition
between tunneling from |φ0〉 to the top of the ladder,
|φN−〉, and relaxation down the ladder. For γ ≫ ΩN , the
population of |φ0〉 is ≃ 1, because damping is more effi-
cient than tunneling. Dissipation then completely washes
out the resonance, and the response is the same as that
off resonance and thus is in phase with the drive. For
γ ≃ ΩN , a small population ρ11 emerges, contributing
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FIG. 3: (a): Quasienergy surface Q(X ,P) for g = 0.052ω,
f = 0.004ω, γ = 10−4ω and δω = 0.01ω (Teff = 0.65). (b)
Solid line: Smallest eigenvalue of the Lindblad master equa-
tion. Dashed red line: the same without dissipative spin
flips. Dashed-dotted orange line: decay rate for |ψ∗〉 → |φf

0
〉.

Dottes lines correspond to γ/2 and γ/4.

ρ11a11 with a11 = f
2(ε1−−ε2−)

3+2
√

2
4 + f

4(ε1−−ε0) < 0 since,

in the perturbative regime and for N < 6, ε1− < ε2−, ε0.
This leads to a reduced response, forming an antireso-
nance, see, e.g., the 2-photon antiresonance shown in Fig.
1a. For γ ≪ ΩN , tunneling is faster than relaxation and
the population of |φ1−〉 becomes the largest. Then, the
contribution ρ11a11 < 0 dominates, leading to an overall
out-of-phase oscillation. For the 2-photon resonance of
Fig. 1, γ/Ω2 =

√
2γf2/g = 2.6 (a), 0.42 (b) and 0.15 (c).

For increasing driving, the response is qualitatively
similar, although the perturbative approach becomes in-
adequate. In fact, as shown in Fig. 2d, at resonance,
there is a large population P ∗ of the lowest quasienergy
state |ψ∗〉. As follows from Fig. 2c, |ψ∗〉 6= |φ1−〉. In
order to account for the importance of |ψ∗〉, we perform
next a semiclassical analysis. We transform the JC eigen-
states into product states |nσ〉 (with σ = g, e) to de-
couple oscillator and spin by the unitary transformation
R = exp( −π

4
√

a†a+σz+1/2
[a†σ− − aσ+]), yielding

H̃ = |δω|
(

a†a+ σz

)

+ gσz

√

a†a+ σz + 1/2 (2)

for the undriven JC Hamiltonian, while ã = R†aR =
a− a 1

4(a†a+1/2)
(1 + σx) +O(n−3/2). Hence, as expected,

the driving as well as the bath-induced relaxation induce
spin flip transitions between dressed states. Next, we in-
troduce the canonical variables X =

√

λ/2(a† + a) and

P = i
√

λ/2(a† − a), where λ = |δω|/g is a dimensionless
parameter playing the role of ~. Eventually, neglecting
the spin flips and higher order terms, we obtain the trans-
formed Hamiltonian H̃ ≃ gQ(X ,P) with

Q(X ,P) =
X 2

2
+

P2

2
+
σz√
λ

√

X 2

2
+

P2

2
+

f

g
√

2λ
X .(3)

It can be interpreted as a quasienergy surface in phase
space, see Fig. 3a for the qubit groundstate (σz = −1).
The corresponding quasiclassical orbits encircle the inner
maximum on an external and an internal domain. In ad-
dition, there is a range of quasienergies where two orbits

are degenerate and a dynamical bistability occurs. The
surface for σz = +1 is a less interesting monotoneous
function (not shown). The drive induces a tilt generat-
ing one stable orbit close to the quasienergy minimum.
The orbits near the inner maximum correspond to small
photon numbers and are not accurately described by the
semiclassical approach.

Let us next consider the dynamics around the mini-
mum at Pmin = 0 and Xmin = − (f/g + 1/2) /

√
2λ. A

harmonic expansion yields the lowest quasienergy E∗ =
gQ(Xmin, 0) + g

2λω
∗ in the semiclassical limit as

E∗ = − g

4λ

(

f

g
+

1

2

)2

+
g

2
λ

√

2f

g + 2f
, (4)

with the effective mass m∗ being related to the effective
frequency as ω∗ =

√

1/m∗ =
√

2f/(g + 2f). This result
is correct up to O(λ2) and is shown in Fig. 2c as orange
dashed line. It almost coincides with the exact result,
even for small photon numbers N = 1.

The groundstate |ψ∗〉 = R−1D(Xmin)S(r)|0 g〉 is ob-
tained in terms of the Fock states in leading order in λ
by applying to the vacuum |0 g〉: i) the squeezing op-
erator S(r) = exp

[

r(a2 − a†2)/2
]

with squeeze factor
r = (lnm∗)/4 = ln[1 + g/(2f)]/4, ii) the translation
D(Xmin) = exp [iPXmin/λ] to the minimum, and iii) R−1

to switch back to the bare atom picture [15], i.e.,

|ψ∗〉 ≃ e−|α|2(1−ν/µ)/2

√
µ

(

|0 g〉 +
∞
∑

n=1

1√
2n!

(

ν

2µ

)n/2

× Hn

(

α√
2νµ

)

(

|n− 1 e〉 − |n g〉
)

)

, (5)

where Hn(x) are the Hermite polynomials, ν = sinh r,

µ = cosh r and α = Xmine
r/
√

2λ. Since r > 0,
D(Xmin)S(r)|0 g〉 is an amplitude squeezed state.

With this at hand, we can readily compute expecta-
tion values in leading order, e.g., A∗ = |〈ψ∗|a|ψ∗〉| =

|Xmin|/
√

2λ ≃ (f/g + 1/2)/2λ, which is shown in Fig. 2,
dashed orange line. Moreover, the mean photon number
n̄ = 〈ψ∗|n|ψ∗〉 ≃ (f/g+1/2)2/4λ2 and variance (∆n)2 =
〈ψ∗|(n− n̄)2|ψ∗〉 ≃ e−2r(f/g+ 1/2)2/4λ2. Hence, in the
semiclassical limit λ→ 0, the 2-photon correlation func-
tion g(2)(0) ≡ 1 + ((∆n)2 − n̄)/(n̄2) < 1, implying that
|ψ∗〉 has sub-Poissonian statistics and shows photon anti-
bunching. When ∆n≫ 1, the overlap of the Fock states
and |ψ∗〉 changes slowly for varying n. Hence, one can re-
place |n−1 e〉 by |n e〉 in Eq. (5) and, for λ→ 0, implying

∆n≫ 1, obtain |ψ∗〉 ≃ (|e〉− |g〉)/
√

2⊗D(Xmin)S(r)|0〉.
Next, we consider the dissipative semiclassical dynam-

ics. As will be shown below, a separation of time scales
exists which defines a fast intrawell and a slow inter-
well relaxation. Deep in the semiclassical limit, the
quasienergy states, localized close to the minimum of one
well, can be obtained as |ψ∗

n〉 = R−1b†nR|ψ∗〉/
√
n! with

b = µa + νa† − α. In this limit, dissipative transitions
occur only between nearest neighbors, with the rates
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Ln−1,n = γn cosh2 r, Ln,n−1 = γn sinh2 r. Here, the de-
tailed balance condition is fullfilled. When the system is
initially in a state with a large photon number, it has a
large probability to fall in the basin of attraction of the
quasipotential minimum (intrawell relaxation). When
also γ ≪ gλω∗, detailed balance determines an effec-
tive Boltzmann distribution P ∗

n = P ∗e−nβeff , with effec-
tive inverse temperature βeff = 2 ln coth r. We empha-
size that this link between the effective temperature and
squeezing can be generalized to any driven quantum sys-
tem with a smooth quasienergy surface and coupled lin-
early to a bath (e.g., the Duffing oscillator [10, 11, 12, 13]
or the parametrically driven oscillator [9]). It can be eas-
ily generalized to finite temperatures T > 0 as well. It
turns out that the zero temperature limit applies when
sinh2 r is much larger than the bosonic occupation num-
ber n̄(ωex/T ) of the bath at ωex. In the opposite limit,
βeff = ωex/T . Since we include here only photon leaking,
i.e., ωex ≫ T , the effective temperature is still small.

On the large time scale, the system decays to the 0-
photon state with a rate k− (interwell relaxation). From
there, it can return to the basin of attraction of the min-
imum by a driving induced transition with a rate k+.
The stationary population of the intrawell states (oscil-
lating out of phase) and the 0−photon state (in phase)
are determined by the ratio k−/k+. Away from reso-
nance, photon leaking favors the 0−photon state and
k− ≫ k+. Approaching a resonance, k+ can increase
up to ΩN/π and can become comparable to k−. Then,
the response is qualitatively modified, as shown above.
Here, the resonant-antiresonant transition is governed by
the ratio k−/ΩN .

In the semiclassical regime, the smallest finite eigen-
value Γ of the Lindblad master equation consists of the
sum of k+ and k− and is shown in Fig. 3b. The peaks are
due to resonant tunneling from the 0- to N -photon state,
whereas off resonance, Γ ≈ k−. There are three mecha-
nisms of decay from the metastable well: (i) The system
can decay directly to the 0-photon state with the rate
shown in Fig. 3b, dashed-dotted orange line. (ii) The sys-
tem can climb up the quasienergy well by quantum acti-
vation [8]. Both associated rates are expected to decrease

exponentially, following ∝ e−ci/δω2

, with some constants
ci (the prefactor varies smoothly with δω), which defines

the separation of time scales. (iii) For very small de-
tuning, the escape occurs via bath-induced spin-flips. In
fact, this mechanism is suppressed only as a power-law
Γ ∝ δω2. To separate (ii) from (iii), we show Γ without
the bath-induced spin flips in Fig. 3b (dashed red line),
illustrating that spin flips are dominant when the sep-
aration of time scales is well defined. Since only a few
states close to the bottom are populated, our solution is
stable against a small dephasing of the oscillator [9] or
an intrinsic spin relaxation that violates detailed balance.
The induced spin-flip rate would be small and remain fi-
nite for λ → 0, imposing an upper limit to the lifetime
of |ψ∗〉. We note that the real parts of the two eigen-
values corresponding to the dissipative and decoherence
transition of |φ1+〉 → |φ0〉 are not included. They are
approximately given by γ/2 and γ/4.

Our analysis can be easily extended to any driven non-
linear oscillator coupled bilinearly to a thermal bath.
For example, the quantum Duffing oscillator is character-
ized by two classical stable solutions. For weak driving,
the small-oscillation solution can be identified with the
0−photon state. Since it is favored by photon leaking,
it has a low effective temperature and can be regarded
stable in absence of tunneling. However, the stable solu-
tion is associated to a relative quasienergy maximum, in
contrast to static bistable potentials. At resonance, the
solution becomes metastable, leading to a competition
between tunneling out of the small oscillation state and
the diffusion along the quasienergy surface [10, 12, 13].

In conclusion, inspired by recent experiments, we have
explained the nonlinear response of the driven dissipa-
tive Jaynes-Cummings model. We have predicted the
existence of a metastable squeezed state in the semi-
classical limit and drawn a link between effective local
temperature and the squeezing parameter. We have ana-
lyzed the escape mechanisms from the metastable states
and found resonant dynamical tunneling. Our analysis
reveals generic features on the dissipative dynamics of
nonlinear driven quantum systems.
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