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Abstract

Diabetic ocular disorders are among the most impor-
tant public health concerns, affecting millions of people
with severe degrees of visual loss worldwide. Mild, non-
blinding conditions and severe complications, such as di-
abetic retinopathy, diabetic macular edema, glaucoma,
and cataracts, often appear due to uncontrolled diabetes.
Presently, more than 145 million people worldwide are
diagnosed with the raging global diabetes epidemic, and
this number is estimated to increase further. Thus, early
detection and prompt intervention play an important role
in preventing vision damage. Earlier diagnostic systems
faced a major drawback, as the framework was unable
to handle different types of data. This restriction lim-
ited their capability in systematic multiple eye disease
[MED] detection, particularly in clinical settings where
diagnosis is a procedural task and where data is multi-
sourced, such as clinical records, fundus-captured pho-
tos, and OCT exam information. This review discusses
the development of a single Al framework that can han-
dle structural and unstructured datasets to identify differ-
ent stages of MED. It is termed as MED as it deals with
multiple diseases such as diabetic retinopathy, diabetic
macular edema, glaucoma, and cataracts. This survey
also describes the developmental stages of segmentation
techniques and also highlights the advanced techniques
such as U-Net and SegFormer, which can be effectively
used for anatomical segmentation, which is used in dis-
ease identification for both optical coherence tomogra-
phy (OCT) and fundus datasets. Furthermore, it helps in
understanding the workflow for developing an effective
MED framework.
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1 Introduction

Artificial intelligence (AI) and machine learning have
been an explosive impact in the field of ophthalmology
and have resulted in significant advancements in the di-
agnosis and treatment of several ocular diseases such as
diabetic retinopathy, age-related macular degeneration,
glaucomatous optic neuropathy, and cataracts. Tradi-
tional diagnostic models are based on single diseases,
are highly specific, and are often unworkable when in-
formation is scant or where large amounts of data are
needed to exclude other potential conditions [He et al.,
2021]. AI tools have shown great promise in aiding in
these diagnostic roles using structured clinical data (eg.,
blood glucose, cholesterol, age) and unstructured image
data (e.g. fundus photographs, OCT scans).

This review presents a conceptual single Al framework
capable of diagnosing multiple eye diseases (MED)
across their entire clinical spectrum without the neces-
sity for direct integration of image and clinical data.
Rather, the framework leverages modular branches en-
abling independent processing of structured and unstruc-
tured data under a common diagnostic workflow. This
review aids in developing a unified framework capable
of handling multiple modalities for effective forecasting
of MED, from early detection to advanced stages. The
article explores strategies for building a unified frame-
work that leverages recent advances in artificial intel-
ligence to address the challenges of diagnosing MED.
The integration of many imaging modalities and clini-
cal data presents a considerable obstacle in the develop-
ment of MED models. The imaging modalities include
Optical Coherence Tomography (OCT), fundus photog-
raphy, and clinical datasets—each capable of serving as
the ideal diagnostic tool for specific ocular conditions.
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Effectively using multiple modalities within a singular
Al framework can help build an efficient diagnostic tool
capable of managing any stage of MED [Mateen et al.,
2020]. This research examines the current state of MED
platforms and their incorporation of various data sources
to analyze contemporary MED models inside a central-
ized forecasting center, while evaluating the benefits and
challenges of developing a fully integrated, data-driven
framework.

Segmentation methods are used in various stages of the
MED prediction process for anatomical analysis to find
different parts in medical images. From simple meth-
ods like thresholding and region-growing, it has come a
long way to more advanced deep-learning techniques in-
cluding Convolutional Neural Networks (CNNs), Fully
Convolutional Networks (FCNs), U-Net, to transformer-
based approaches like SegFormer. Feature detection is
now much more accurate, and tools can now process
images to detect features that previously caused bottle-
necks in diagnostic workflows. Segmentation techniques
in medical image analysis have progressed significantly,
transforming how MED can be predicted. Standard tech-
niques, such as thresholding and region growing, pro-
vide the necessary tools for anatomical examination, but
they often struggle with complex structures and variabil-
ity in image quality [Piorkowski et al., 2017] Deep learn-
ing has provided an entirely new life to segmentation
tasks by reducing error rates. CNNs introduced the au-
tomatic learning of hierarchical features, and FCNs en-
abled end-to-end training for pixel-wise predictions. The
contracting and expanding paths of U-Net architecture
have made it a staple in medical image segmentation,
excelling in capturing both local and global contexts.
The major hurdles in this field and proposes a system-
atic method has been listed below.

e Multi-modality such of OCT, fundus images, and
clinical data within can be used to improves the prog-
nosis and diagnosis of MED.

e Efficient model to build MED also involves several
techniques in each phase of its workflow therefore a clear
understanding of these technique for image and clinical
data is required.

e The accuracy of MED classification can be enhanced
through the evolution of segmentation techniques from
traditional methods to modern deep-learning models.

o Real-world clinical validation and generalisability of
Al models for MED while balancing ethical compliance
and effectiveness across heterogeneous datasets

The review helps in building a data-driven framework
for MED detection which focuses on four key areas:
Comparative and Comprehensive Study, detailed tech-
nical workflow for effective MED detection, History and
Evolution of Segmentation Techniques, and understand-
ing Performance Evaluation, and gives a unified idea in
understanding the ethical considerations and approach
for real-world testing. It details how clinical data and

image data can be used in building a data-driven frame-
work for MED that can help ophthalmologists to use it
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as an aid to diagnose any stage of the disease.

2 Literature Survey

Muthukannan et al. [Muthukannan2022] pro-
posed CNN-MDD, which denotes Convolutional Neu-
ral Networks for Multi-Disease Diagnosis, as a high-
performance, deep learning model specifically tailored
for the ODIR data set. Their model was one among the
high performances performed continuously outperform-
ing various optimized models with significant margins
along various criteria. The model realized very high
precision at 98.30%, accuracy at 95.27%, specificity at
95.21%, and recall at 93.3%, therefore validating the
CNN-MDD technique in the detection of various ocular
illnesses. It represented a significant step toward auto-
mated diagnosis of ocular diseases and was expected to
be clinically precise.

Shamsan et al. [Shamsan et al., 2023] proposed
a model in which they classify a large number of
eye diseases using feature extraction as well as fusion
techniques. This technique utilises ANN along with
PCA to reduce features produced from the classifica-
tion model based on MobileNet and DenseNet121 mod-
els created for this dataset of eye disorders. The sec-
ond approach combines feature from both MobileNet
and DenseNetl21 models. These are used either be-
fore or after dimensionality reduction to classify images
of eye disorders. In the third approach, handcrafted
features from the MobileNet and DenseNet121 mod-
els were combined with an ANN for the classification
of the eye disease dataset. The images in the dataset
were sourced from Ocular Recognition, the Indian Dia-
betic Retinopathy Image Collection (IDRiD), and High-
Resolution Fundus.

Bowmik et al. [Bhowmik et al., 2019] designed a
model for detecting age-related eye diseases based on
pretrained VGG16 and Inception V3 models. The model
was trained on 84,495 images from an OCT device in
the Kaggle database, achieving accuracies of 94% for
the test data and 99.94% for the training data.

Using eye movement analysis and a machine learning-
based approach, Hammoud et al. [Hammoud et al.,2023]
have developed a novel approach for the early diagnosis
of Parkinson’s disease (PD) and Progressive Supranu-
clear Palsy (PSP). The team used a deep learning sys-
tem to extract features from pupil images, which they
then visualized using a technique known as time-series
imaging. These images were fed into the model of dis-
ease detection to determine whether the subject had PD,
PSP, or neither. Interestingly, the maximum performance
of the model occurred when the subject was undergoing
optokinetic activity, an eye movement test.

Nazir et al. [Nazir et al.,2020] proposed a model which
integrated Fuzzy K-means (FKM) clustering and the Fast
Region-based Convolution Neural Network (FRCNN)
approach. According to the authors, the model was
designed for the automatic detection and diagnosis of
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diabetes-related ocular pathologies such as DR, DME,
and glaucoma. The methodology was divided into two
major stages, which incorporated eye disease identifica-
tion and the use of FKM clustering in localizing and seg-
menting the affected regions. The FRCNN approach sig-
nificantly improves the segmentation performance and
shows a stronger capability in extracting deep feature
images for optimal representations of ocular problems.
On average, the Intersection over Union (IoU) was 0.95,
and the mean average.

Malik et al. [Malik et al.,2019] proposed a unified
framework to record diagnostic data in an internation-
ally standardized format to enable the disease diagnosis
and prediction using machine learning algorithms, fo-
cusing on hierarchical data organization to enhance ma-
chine readability and precise analysis by machine learn-
ing models. Among these algorithms are decision trees,
random forests, Naive Bayes, and even neural networks.
With this, performance across these algorithms can be
compared and the best method selected for each dataset.
Additionally, the framework allows more emphasis on
self-learning and its ability to come up with unique clas-
sifications of diagnoses and symptoms.

Table 1. Summary of MED with Limitation Inference

Ref Scope Model Moda- Data Dataset Relevance Limitation

No Used lity Size Used

[4] Automatic  CNN- Fundus 3000 ODIR Classifi- Limited
detection DNN im- cation dataset size
of mul- ages mod- may affect
tiple eye ule generaliza-
diseases tion

[5] Eye Pre- Fundus 11,897  Multiple Feature- Generaliz-
disease trained im- (e.g., level ability s
classi- CNN ages OIH) fusion unclear
fication + for due to no
from Fea- DSS external
fundus ture validation
images fu-

sion
(PCA)

[6] Predicting  TransferOCT 4000 Kaggle  Structural Dataset
eye dis-  learn- im- imag- imbalance
eases ing ages ing may  bias
from input learning
OCT

[7] Neurological DL Eye 30 Burna- Comple- Needs inte-
disease Frame- move- sam- zyan mentary  gration for
diagnosis work ment ples Cen- diag- broader ap-
via eye (non- tre nostic plicability
move- modal-
ments recti- ity

nal)

[8] Disease FRCNNFundus 1985 DiaretDB IROI Not tested
localiza- + im- MES- detec- in real-time
tion and FKM ages SI- tion clinical
segmen- DOR, for workflow
tation ORIGA DSS

[9] Comparative ML Clinical Not Internal  Clinical  Dataset
study us-  Mod- men- hos- data size undis-
ing els tioned pital mod- closed;
clinical dataset  ule repro-
parame- ducibility

ters

concern
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Figure 1 shows limitation of MED detection. It has
various problems, including the inability to evaluate
robustness on a large dataset, difficulties with cross-
modality image integration, and a lack of real-time
datasets and multi-disease model validation. Because of
these constraints, developing and evaluating many eye
disease prediction models that can perform reliably and
quickly in real-world settings is complex.

’ Limitation of Multiple eye disease ‘

Evaluate Robustmess on| | Multi disease model | | Cross modality image | | Difficulty in real time
large dataset evaluation integration data set

Figure 1.

Exploring Limitations in MED Detection: A Diagrammatic
Analysis

2.1 Comparative and Comprehensive Study

The Comparative Study in this review elucidates the
symptoms and clinical features that are conventionally
utilized to diagnose various ophthalmic conditions. Tra-
ditionally, clinicians have relied on the identification of
symptoms such as microaneurysms, hemorrhages, optic
nerve damage, and lens opacity to diagnose conditions
including diabetic retinopathy, glaucoma, and cataracts.
However, manual identification of these symptoms can
be subjective and time-intensive. By leveraging ad-
vanced image processing techniques, computer vision,
and deep learning architectures, these manual processes
can be supplanted with artificial intelligence (AI) mod-
els that offer enhanced accuracy and efficiency in diag-
nosis. Al systems offer the automatic identification and
quantification of these features from multiple imaging
modalities, enhancing resolution and minimizing poten-
tial human errors in disease detection [Goel et al.,2021].

It is important to study is to automate a manual diag-
nostic processes to build effective Al framework. For ex-
ample, diagnosing diabetic retinopathy—understanding
how clinicians detect microaneurysms and hemorrhages
can help guide the development of AI models that can
automatically spot these characteristic findings in optical
coherence tomography (OCT) or fundus images. Like-
wise, knowing which regions are examined in glaucoma
to determine damage to the optic nerve allows Al mod-
els to concentrate on these areas in Heidelberg Retina
Tomograph (HRT) scans. This knowledge ensures that
Al models not only replicate but exceed human diag-
nostic capabilities by providing faster, more reliable,
and highly accurate predictions for various eye diseases
[Bourne et al.,2013].
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Table 3. MED Clinical Data and Symptoms Comparison Table 2. MED Image Modalities and Feature Comparison
Type Clinical Diagnosis ~ Symptoms Primary Vision Disease Image Ophthalmo- Image Features Level
Af- Loss Modal- scope Infer-
fected ities ence
Area
Diabetic OCT, Microaneurysm, ¢ Normal retinal 0: No DR
Diabetic eHigh blood sugar  eEye floaters Retina  Gra- Retino- HRT, haemor- appearance 1: Mild
Retinopa- levels eBlurriness dual, pathy Fun- rhages, hard  *Microaneurysms  NPDR
thy eHigh blood pres-  eBlack spots in vi- periph- dus exudates, * Hemorrhages 2:  Moder-
sure sion eral images cotton wools, ¢ Venous beading ate NPDR
eHigh cholesterol eLoss of central abnormal * Neovasculariza- 3:  Severe
eSmoking vision new vessels tion, fibrous tissue ~ NPDR
eLong-term  dia- eBlindness 4: Prolifer-
betes ative DR
oObesity
Glau- OCT, Cup-to-disc e Slight visual  Mild
Glaucoma eHigh blood sugar eTunnel vision Optic Peri- coma HRT, ratio, neural  field loss, slight ~ Moderate
eElevated Intraoc- eBlindness nerve pheral Fun- retinal rim,  cupping Severe
ular Pressure (IOP) (tunnel) dus parapapillary ¢ Moderate visual
oOptic nerve dam- images atrophy field loss, moder-
age ate cupping
eVisual acuity re- e Severe visual
duction field loss, large
e Age-related risk cupping
Cataract eDiabetes duration oCloudy/blurred Eye Central Cataract OCT, Mean in-  « Slight to dense  Mild
e Aging (senile) vision lens HRT, tensity, lens opacities Cataract
eoGenetics eGlare/sensitivity Fun- uniformity, ¢ Reduced lens Severe
eSmoking to light dus std.  devia-  transparency Cataract
oUYV exposure eDifficulty  with images tion, entropy . Advanced
oObesity night driving cataract character-
eYellowing of istics
colors
eFrequent lens Diabetic OCT, Retinal « Cysts on OCT Presence /
prescription Macular HRT thickness * Retinal thicken-  Absence
changes Edema measurement ing in macula Macular
* Fluid accumula- thickness
Diabetic eHigh blood sugar eDistorted central ~ Macula  Central tion
Macular eHigh cholesterol vision (retina)  and pe-
Edema eHigh blood pres- eTrouble reading ripheral
sure or recognizing
oKidney disease faces
'gmoki_ng ®Washed-out  col- The above table 2 presents various features that are
eGenetics ors

eCaucasian ethnic-
ity

e Visual distortion
eCentral vision
loss or blind spot

used to identify each eye disease, along with its imaging
technology, which is used to examine its features. The
basic modalities that have been used are OCT (Optical
Coherence Tomography), which is an eye imaging tech-
nique that uses light for in-depth retina scans. The topog-
raphy of the optic nerve head can be mapped using the
HRT (Heidelberg Retinal Tomograph), a tool for glau-
coma diagnosis and monitoring. A fundus image, which
captures the retinal image as well as the optic nerve
and blood vessels, is a helpful instrument for assessing
different eye conditions [Goel et al.,2021], [Bourne et
al.,2013], [Safi et al.,2018], [Mishra et al., 2022].

The above table 3 presents additional information like
clinical diagnosis and symptoms, which are used to iden-
tify various eye diseases. These data can be combined
to raise the accuracy level of the automatic diagnosis
of any eye diseases [Alyoubi et al., 2020], [Medical-
NewsToday], [Healthline], [Li et al., 2019], [Harangi et
al.,2019].
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2.2 MED Diagnosis Framework

The stages of MED framework with methods are given
in Figure 2. The workflow is designed to explain the
techniques involved in each stage of handling image and
clinical dataset [Phan et al., 2019], [AlGhamdi et al.,
2019], [Asaoka et al., 2019].

Framework Module KROdRE S OCE [Eage Clinical Data
Data
CLAHE, denoising. Data preprocessing,
Acquisition & Preparation resizing, illumination cncoding,
comection normalization
Expert grading, mask Diagnosis/stage
Data Annotation annotation (e.g.. labels from EHR or
lesions, optic disc) records
Segmentaticn, ROI Feature extraction and
detection{U-Net, selectiond Statistical,
Feature Extraction DeeplLab, ROI clinical score
detection, CNN
feature maps) PCA)
DR stage classification Risk prediction using
Classification with CNN, ViT. or XGBoost, SVM, or
ensemble models logistic regression
i Dice, loU, Accuracy, Precision, Accuracy, precision,
[ Evaluation l [ Recall ] [ recall Fl-score }

Figure 2. Unified MED Workflow

The workflow is divided into vertical modules, which
are based on the specific type of dataset. Let us under-
stand the workflow of unstructured datasets. It consists
of image acquisition and preprocessing. The images are
divided into different classes by identifying various ocu-
lar conditions such as normal, diabetic retinopathy, glau-
coma and macular degeneration.The images are grouped
according to the diseases to which they relate; therefore,
the model is able to identify the distinguishing character-
istics attached to each disease. In each stage of the mod-
ule, many techniques are used for effective feature ex-
traction and classification. Different preprocessing tech-
niques, including contrast and noise adjustment, have
been performed to clean the noise in the image dataset
and to normalise the input for further downstream anal-
ysis. Depending on the model, the size of the images
is normalised to obtain the same dimensions (if needed)
and similar intensity values across various datasets. Af-
ter normalisation, the images are sent to segmentation,
which focuses on marking important anatomical struc-
tures such as the retina or optic disc. This step helps
focus the algorithm on regions of clinical interest. After
segmentation, Region of Interest (ROI) detection is car-
ried out to identify specific characteristics, eg., lesions
or other abnormalities related to the disease, for better
analysis [Bajwa et al., 2019], [Lu et al.,2020], [Ramani
et al., 2020].

Segmentation and ROI detection are performed as two
completely distinct steps, as they serve different pur-
poses. While segmentation is the general procedure
of dividing the entire image into various regions to al-
low the algorithm to focus on corresponding anatomical
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parts, it splits the foreground structures like the retina
from the background and detects most of the impor-
tant structural elements of the eye. On the other hand,
ROI detection looks deeper into specific areas within
these segmented regions—for instance, lesions or mi-
croaneurysms within the retina. This detailed approach
allows the system to highlight what might be the most
significant image features related to certain eye diseases.
By separating each stage, the system ensures that the
image undergoes systematic processing, which facili-
tates increased diagnostic precision [Zhang et al., 2019],
[Torre et al., 2020].

Another vertical workflow involves structured data,
which includes details such as patient-specific clinical
information—age, blood pressure, HbAlc level, and
medical history. These data then undergo a systematic
iterative process beginning with data acquisition from
clinical records, followed by multiple steps of data clean-
ing and normalisation that ensure consistency and com-
parability across variables [Bourne et al., 2013b], [Con-
gdon et al., 2004]. After preprocessing, the important
clinical features for identifying each MED condition are
extracted using feature selection algorithms. Classifica-
tion algorithms such as XGBoost, Random Forest, etc.,
have been used in identifying the type of MED based on
the selected feature in the previous step. The developed
MED framework is evaluated using metrics such as ac-
curacy, precision, recall, and F1 score. This organised
data pipeline provides a stable platform for MED identi-
fication within a data-driven decision-making system [Li
et al., 2021], [Rekhi et al., 2017] .

2.3 History of Segmentation Techniques in MED
Prediction:

The segmentation techniques utilized in MED detec-
tion, is illustrated in Figure 3, It has been evolved
from rudimentary methods such as thresholding, re-
gion growing, and edge detection in the 1990s to so-
phisticated deep learning hybrid models. During the
2000s, methodologies including K-means clustering, ac-
tive contour models, graph cut, and watershed signifi-
cantly enhanced anatomical localization of complex eye
anatomy. Between 2015 and 2018, advancements in
deep learning models such as Convolutional Neural Net-
works (CNNs), Fully Convolutional Networks (FCNs),
U-Net, and DeepLab facilitated pixel-wise accuracy for
segmentation of retinal layers and features [Nazir et al.,
2021], [Zago et al., 2020], [Kunwar et al., 2015].

Convolutional Networks (FCNs), U-Net, and DeepLab
enabled pixel-level precision in segmenting retinal layers
and features.CNNs are characterized by the equation

y=fWxz+0b)

Where W represents the weights, x is the input, and b
is the bias. U-Net’s efficacy is attributed to its encoder-
decoder structure with skip connections. Its segmenta-
tion accuracy is commonly quantified using Dice Loss:
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Figure 3. Evolution of Segmentation Techniques in MED
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DiceLoss =1 — S5+
[A]+]B]

DeepLab, employing atrous convolutions, is defined
by:

ylil = 2k wli + - KJwlk]

where 1 is the dilation rate, extending the receptive
field for better segmentation. From 2019 to 2020, hy-
brid models like Mask R-CNN, Residual U-Net, and At-
tention U-Net further enhanced segmentation. Mask R-
CNN loss includes:

L= Lcls + Lbow + Lmask

while Residual U-Net improves feature extraction with
residual connections:

y=[fa)+a

Attention U-Net applies attention mechanisms to refine
focus on relevant image regions:

= U(Watt : (Ienc S5 l’dec))

Since 2020, the availability of methods (eg., Cycle-
GAN, Pix2Pix) for synthesizing retinal images has given
developers flexibility to combine simple procedure and
benefit (ie., limited dataset and dataset label imbalance).
This resulted in a remarkable increase of the robust-
ness and generalizability of segmentation models in rare
or less frequent disease stages. In 2021 and beyond,
transformer-based models like SegFormer capture long-
range dependencies using the attention mechanism:

. Kt
Attention(Q, K, V) = softmam(%)

For achieving high segmentation accuracy, these mod-
els use a combination of cross entropy and Dice loss.
Although loss functions such as Dice Loss and cross en-
tropy are important, U Net and DeepLab are built on
strong architectures, access to large amounts of high-
quality annotated data, and powerful optimization tech-
nique. Focusing on this interplay gives a view of seg-
mentation performance that is more complete. Such has
made MED predicting machines more accurate and more
rapid and thus more life-enhancing by diagnosing other
diseases such as diabetic retinopathy etc.[Quigley et al.,
2006], [Bourne et al., 2017], [AlBander et al., 2018],
[Chen et al., 2015], [Mary et al., 2016], [Ayub et al.,
2016].
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2.4 MED Performance Evaluation

The deeper evaluation of these model results would
lead to the acquisition of significant knowledge regard-
ing model efficiency in identifying ocular diseases. Fig-
ure 4 represents five key metrics used in analyzing MED.
This close examination of performance differences is
helpful not only in selecting the most appropriate di-
agnostic model but also in evaluating its strengths and
weaknesses. By assessing these metrics, researchers can
identify areas where existing models perform well or
poorly, encouraging targeted efforts to address weak-
nesses and develop more robust diagnostic systems for
predicting MED. This iterative process of evaluation and
improvement is crucial for advancing the field and ulti-
mately improving patient care by providing more accu-
rate and reliable diagnostic tools [Sarkar et al., 2017],
[Nawaldgi et al., 2018], [Septiarini et al., 2018], [Zou et
al., 2018], [Chudzik et al., 2018].

Figure 4. Performance Metrics used in MED

2.5 Data Privacy and Ethical Guidelines for Al in
Ophthalmology

The following table 4 presents the Data Privacy and
Ethical Guidelines by using WHO’S guideline for health
that must be adhered to in order to ensure the safe and re-
sponsible development and implementation of Al mod-
els in ophthalmology. Compliance with these princi-
ples aids in safeguarding patient data, maintaining trust,
and meeting regulatory standards while ensuring that Al
tools support clinicians in enhancing patient care [Chen
et al., 2020], [Faizal et al., 2023], [Liu et al., 2022],
[Patankar et al., 2021], [Kuppusamy et al., 2022].

2.6 Real-World Testing and Performance Evalua-
tion for AI in Ophthalmology

Real-world testing is crucial for Al and models to
seamlessly integrate into high-impact workflows, man-
aging diverse patient data and real-time demands. This
testing evaluates the model’s practicality, reliability, and
scalability in routine healthcare operations. Figure 5 out-
lines critical aspects of real-world testing, such as clin-
ical integration, system compatibility, and key perfor-
mance indicators (eg., accuracy, efficiency, false posi-
tive/negative rates). It also assesses Al’s impact on pa-
tient care, ensuring improvements in diagnosis and treat-
ment outcomes. The system is then honed based on clini-
cian feedback, with performance trends visually tracked.
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Table 4. Key Data Privacy and Ethical Guidelines for Al in Ophthal-

mology
Category WHO Guideline Compliance Key Practice
Privacy Upholding Personal ~ Secure, Anonymization, en-
Laws Data Protection anonymized pa-  cryption
tient data handling
Data Ensuring Data In-  Protect from  Encryption, access
Secu- tegrity and Confi-  breaches, unautho-  control
rity dentiality rized access
Ethical Promoting Equity  Prevent discrimina-  Diverse  datasets,
Use and Inclusiveness tion, ensure trust explainable Al
Consent Protecting Human  Ensure patient  Clear communica-
Autonomy awareness, agree-  tion, legal compli-
ment ance
Regu-  Promoting Human  Adhere to medical Regulatory ap-
lations  Well-Being and  device regulations proval, safety
Safety checks
Human Ensuring  Trans-  Support, notreplace  Assist  clinicians,
Over- parency and Ac-  human judgment retain accountabil-
sight countability ity

The solution undergoes testing across different clinical
scenarios to validate its generalizability [ambyal et al.,
2020], [Almazroa et al., 2015], [Ramzan et al., 2019],
[Phan et al., 2016], [Samagaio et al., 2018]. Several
studies have shown successful real-world applications
of AI especially in the field of ophthalmology. Li et
al. based on 47,269 individuals in China with sensitivity
and specificity of the Al model being very high [Li et al.,
2021]. Gulshan et al. analyzed performance variability
of several different systems that are approved in the US
by the FDA [Gulshan et al., 2019]. Kanagasingam et al.
found a 100% sensitivity using THEIA system at new
zealand clinics [Kanagasingam et al., 2022], [Plotnikov
et al., 2019]. Standardization of real-world evaluation is
enabled by many benchmark datasets such as Messidor,
REFUGE and DRIONS-DB.

Figure 5. Real-World Testing and Performance Evaluation Frame-

work

3 Overall Summary

This review focuses on identifying the gaps in develop-
ing an Al-based, data-driven framework that could diag-
nose diabetic ocular complications in terms of MED. It
highlights the drawbacks of previous diagnosis systems
which could only detect one kind of disease and helps in
understanding the Al-based cutting-edge segmentation
methods for anatomical analysis from fundus imaging
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and optical coherence tomography (OCT), such as U-
Net, SegFormer, etc. A MED framework is presented in
the review, including important steps and methods in-
volved in each stage, such as preprocessing, segmen-
tation, and classification. Therefore, Al offers promis-
ing solutions for predicting all stages of disease, starting
from early detection till advanced stage. It also focuses
on ensuring the reliability of models, addressing ethical
considerations and safeguarding data privacy. Addition-
ally, the review emphasizes the importance of improving
diagnostic accuracy and achieving practical implemen-
tation of Al models in real-world ophthalmic practices.
By emphasizing the crucial areas for advancement and
further improvement, this study establishes the ground-
work for future studies and advancements in Al-driven
solutions in the field of ophthalmology.

4 Conclusion

This review provides a thorough analysis of the chal-
lenges and solutions involved in developing a MED
framework. This also highlights the importance of clini-
cal data using image datasets to improve the framework
from early detection to other stages of diagnosis. It also
goes beyond simply highlighting the gap in developing
the MED framework by critically investigating the tech-
nical workflow in each stage of building the data-driven
MED model. The review also examines the evolution
of segmentation techniques, with a focus on modern ap-
proaches like GAN, U-Net and SegFormer, and evalu-
ates the steps in constructing an efficient, adaptable Al-
based MED framework. Considering the sensitivity of
medical data and the possible consequences for deci-
sions on patient care by Al, this emphasis on ethical
considerations is highly relevant. Future work should
endeavour to overcome these limitations with better in-
tegration of datasets, improved segmentation techniques,
and ensuring ethical use, leading to more effective and
robust Al healthcare solutions. This review helps in im-
proving the accuracy and scalability of diagnosis and
also helps in building a complete decision support sys-
tem that can handle structural and unstructured data.
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