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Abstract—The paper is devoted to game-theoretical 
control problems motivated by economic decision making 
situations arising in realization of large-scale projects, such as 
designing and putting into operations the new gas or oil 
pipelines. The approaches and models discussed in the paper 
seem to be also useful in the fields of physics, biology and 
other natural sciences. 
 

I. INTRODUCTION 
 

The problem description is the following. Let us assume 
that there is a market with increasing demand for some 
goods (say, natural gas or oil). One can supply goods 
produced (delivered) as a result of realization of a project 
(for example, to supply gas to this market by constructing 
the corresponding gas pipelines). Evidently, appearance of 
the new participants at the market, while saturating it, leads 
to a decrease in sales for the existing participants. It means 
that the earlier a participant enters the market the greater 
profit he or she  gets. At the same time, the present value of 
the cost of project realization is decreasing, and also the 
demand and prices may be increasing, therefore the later 
entering the market might be preferable. The above 
arguments lead to a game-theoretical problem, in which the 
moments of time when each participant enters the market, 
play crucial role. 

The detailed investigation of the problem for the case of 
gas pipeline construction included mathematical and 
computer modeling of Turkey's gas market development. In 
the paper [1] a rigorous mathematical model was proposed, 
where the above problem was formalized as a non-
cooperative game in which the moments of entering the 
market (commercialization times) were taken as control 
variables. Integral payoff functional for each participant 
(Player) was defined as a future profit determined in a 
corresponding way for the whole operating period. A 
software based on this model presented in [2]. 

In the following research attempts have been made to 
extend the developed approach and obtained results to 
modeling the China's natural gas market. However, most of 
the assumptions admissible for Turkey's gas market turned 
out to be unfit for specific China's market. The main 
economic distinction is that price formation mechanism can 
not be considered as purely market in this case. Problem 
description and numerical results for real data related to the 
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planned gas pipelines from Russia are presented in the 
paper [3]. 

In the present paper we propose a mathematical model 
that takes into account the features of not purely market 
economy.  That leads to the fact that some assumptions of 
the model are significantly different and sometimes are 
opposed to those accepted in the in [1]. The main features 
of the model are the following. The problem is considered 
within finite horizon, profit rate return function are 
supposed to be monotonously increasing rather than 
decreasing, cost of construction is constant for each 
participant. Criteria functions, which are to be minimized 
are defined as combinations of return of investment time 
and time of entering the market. 

 
II. PROBLEM  FORMULATION  

 
The precise problem formulation is the following.  

For the case of two participants the benefit rate function for 
each of them is given: 
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The functions defined above determine the benefit of 

the participants  for each fixed time interval. Thus, the 
profit of the first participant during period [ , ]t t δ+  is 
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∫  and depends on the moment when the 

second player enters the market. Analogously the profit of 
the second participant is determined. We assume the 
functions ( )ij tϕ  to be continuous, concave and 
monotonously increasing on [0,T].  Besides 

1 2( ) ( ), 1,2; [0, ]i it t i t Tϕ ϕ> = ∈ . 
We also assume that realization costs of the projects 

(construction costs of pipeline) are fixed and denoted by 
, 1,2iC i = .  The value 1 2( , )i i t tΔ = Δ  that is defined by 

the equality 
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is called the payback period of the project i . Here 
1,2 ;j j i= ≠ . 



Problem statement considered in this paper supposes 
that each participant tries to achieve two goals: to minimize 
their payback period 1 2( , )i i t tΔ = Δ  and to minimize the 
commercialization time of the project, that is the time it  of 
entering the market. Preferences of participants related to 
priorities between these two criteria may be different and 
are determined by the choice of weights. Control variables 
for each participant are (as in cited papers [1-3]) the 
commercialization times it . 

According to slightly simplified formulation of this 
problem we define payoff functions that are to be 
minimized by the choice of commercialization times it  as 
follows: 

1 2 1 2( , | ) ( , )i i i i if t t t t tα α= + Δ , 
 
where iα  is a weight coefficient, 0 1iα≤ ≤ . With  1iα =  
both criteria are equitable, in case 0iα =  one has unique 
criterion  -  the payback period. 

Thus, in the paper we consider the following 
problems.  
Problem 1.    Construct    and     investigate     the   function 

0 0
1 1 2 1( | )t t t α=  (in general - multivalued) defined by  the 

equation 
                       

1

0
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t
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According to standard terminology the function 
0 0
1 1 2 1( | )t t t α=  is called the function of best replies of the 

participant 1 to the choice 2t  of the second participant. 

Similarly, the function 0 0
2 2 1 2( | )t t t α=  is defined - the 

function of best replies of the participant 2 to the choice  
1t of the first participant. 

The second problem under consideration relates to 
finding Nash equilibrium solutions in corresponding two 
player game. Using the introduced terminology it can be 
formulated in the following way. 
Problem 2. Find pairs  1 2{ , }t t   that satisfy the conditions  

0
1 21 1( | )t t t α∈ , 

0
2 12 2( | )t t t α∈ . 

The properties of the above problems and results of 
computer simulations are presented in the paper. 
 

III. PROPERTIES OF THE  PROJECT’S PAYBACK 
PERIODS  1 2( , )i i t tΔ = Δ  

 
Let us introduce the following notations that correspond 

to some specific moments of time.   

 Define  * **, , ,i i i it t t t by the following relations. 
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In the following we assume that the final time T is large 
enough  in comparison with time characteristics of the 
projects. Namely, the following assumption is supposed to 
be true. 
Assumption 1.   The inequalities hold true:  

* , 1,2.i it t i< =  
Remark that  under above conditions the following 

inequalities are true: * **0 i i i it t t t T< < < < < .   
In the following we will consider the function 

1 1 1 2( , )t tΔ = Δ . Similar results for the function 

2 2 1 2( , )t tΔ = Δ can be obtained by appropriate changing  of 
indices. 

Introduce the following functions of the argument 
[0, ]Tτ ∈ . Assign 
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Assumption 2.  For each possible 1t  the following inequality 
is true:   11 1 12 1 1 1( ) ( ( )).t t g tϕ ϕ< +  

 
This condition restricts the relationship between benefit 

rates 11 1( )tϕ ,  12 1( )tϕ and cost of construction 1C .  It is true 
when payback period of the project is sufficiently large in 
comparison with changing of the functions  1 ( )j tϕ  near the 

point 1t .  
To formulate the properties of the function 

1 1 1 2( , )t tΔ = Δ it is useful to introduce one more point 
' '
1 1 2( )t t t= . This point for a fixed value  2t  is defined by 

relation 
2
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 Remark that the point ' '
1 1 2( )t t t= is defined and non-

negative for   2 1.t t≥     
The  domain 1 [0, ] [0, ]D T T⊂ ×  where the function 

1 1 1 2( , )t tΔ = Δ  is correctly defined is determined  by the 
following relations: 1 20 ( )t z t≤ ≤  , 20 t T≤ ≤ . Here 

2 2( )z z t=  is such a  point  that 
2
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Under assumptions 1-2  the function 1 1 1 2( , )t tΔ = Δ  has 
the following properties.  

 



Lemma 1: Within the set 1D  the function 

1 1 1 2( , )t tΔ = Δ is defined correctly and is continuous. In the 

interior points of this set with '
1 1 2( )t t t≠ and 1 2t t≠  there 

exists partial derivative with respect to variable 1t  that 
satisfies the relation 
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Lemma 2:  When assumptions 1-2 hold true the 

function 1 1 1 2( , )t tΔ = Δ  as a function of variable   1t  
decreases in the interval 2[0, ( )]z t . The derivative 

1 1 2

1

( , )t t
t

∂Δ
∂

<0 and it is continuous within this interval 

excluding two points '
1 1 2( )t t t=  and 1 2t t= . At the first 

point the derivative increases and at the second - decreases. 
For each 1 2 1( , ) intt t D∈  the inequalities are true: 

 
1 1 1 1 2 2 1( ) ( , ) ( )g t t t g t≤ Δ ≤ . 

 
Graphical illustration of the above assertions for the 

example that will be considered in the last section of the 
paper are presented in Fig. 1. In Fig.1a  there is a graphic of 

benefit rate 1 2( | )t tϕ  with 2 1 2( , )t t t∈ being fixed. The area 
of the shaded figure is 1C  and its base is 1 1 2( , )t tΔ = 10.76 
for arguments 1t =15, 2t =20. In Fig.1b the graph of the 
function 1 1 1 2( , )t tΔ = Δ  for 2t =20 is presented. 

 
          
     a                                                    b                                    

 
Fig. 1.  Benefit rate 1 2( | )t tϕ  for 2t =20 1 2( , )t t∈  and 

corresponding 1 1 2( , )t tΔ = 10.76  
 
 
 

                   a                                                b 

 
Fig.2. Derivative of the function 1 1 1 2( , )t tΔ = Δ  for two 

different values of 2t .  
 
Fig. 2  illustrates the assertion of  Lemma 2.  Here the 

points A – D correspond to the points of discontinuity. For 
the example considered in the section VI there may be at 
most two such points. 

Closing this section we propose  an assertion that 
characterizes the value 1 1 1 2( , )t tΔ = Δ  as a function of 
argument 2t . 

Lemma 3:   On the assumptions 1-2 the function 
1 1 1 2( , )t tΔ = Δ  as a function of argument 2t  has the 

following properties. Let the point 1 1[0, ]t t∈  be fixed. Then 
in the interval 1[0, ]t the function is constant: 

1 1 2 2 1( , ) ( )t t g tΔ ≡ , in the interval 1 1 1 1[ , ( )]t t g t+  it 
decreases to the value 1 1( )g t , then, with 2 1 1 1( )t t g t> +  it 

is constant again: 1 1 2 1 1( , ) ( )t t g tΔ ≡ . If **
1 1 1[ , ]t t t∈ , then 

1 1 2( , )t tΔ  is defined only for 
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IV. BEST  REPLY FUNCTIONS 
 
As in the previous section we consider the problem from 

the point of view of the first participant. The goal of this 
section is to construct the function of best replies 

0 0
1 1 2 1( | )t t t α=  of the first participant for the choice 2t  of  

the second one, i.e. a solution of the Problem 1. The values 
of this function are defined by equation (2). 

Let us introduce the following notations: 
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Lemma 4:  Under conditions of assumptions 1-2 the 
functions 11 12 11 12( ), ( ), ( ), ( )p t p t q t q t  are continuous and 
 monotonously increasing in their definition domains. The 
 inequalities are true:  



            11 12 12 11 11( ) ( ) ( ), ( ) ( )q t q t p t q t p t> > >          (3) 
for each possible t . 
 
Let us fix a value 1α such that  

*
11 1 1 1(0) 1 ( ) ( 1,2)jq p t jα< − < = , 

and define the points 1 1 1, , qt t t− +  and 2
qt as solutions to 

equations 

1 11 1 1 12 1: ( ) 1 , : ( ) 1 ,t p t t p tα α− += − = −  
 

1 11 1 2 12 1: ( ) 1 , : ( ) 1q qt q t t q tα α= − = − . 
 
Remark that such 10 1α< < do exist and the roots of 

above equations are defined unambiguously. 
For defined 10 1α< <  we can construct the function 

0 0
1 1 2 1( | )t t t α=  (multi-valued at some specific points). Due 

to inequalities (3) we have  1 2 1
q qt t t+< <  and 1 1

qt t−< .  For a 

position of 1t
−  with respect to 1t

+  and 2
qt   there are several 

opportunities. In the following we will deal with the case: 
 
                                  1 2 1 1

q qt t t t− +< < <     .                      (4) 
 
Other dispositions of 1t

−  can be studied similarly. 
 
Theorem 1:  The following relations are true: 
 a) If 2 20 qt t< <  , then 0

1 2 1 1( | )t t tα += . 

 b) When 2 2
qt t≥  , but '

2 1( ) qt t t<  the set   0
1 2 1( | )t t α  

consists of one or two points: 1 2( )tγ  and 1t
+ , where  1 2( )tγ  

is   the unique solution to equation 
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that moves from the point 2

qt  to the point 1
qt  . 

c) When '
2 1( ) qt t t=  one has 1 1 2 1 1( , ) ( )t t g tΔ = ,and the 

root of the equation (5) coincides with the point 1
qt  . From 

this point, on the interval  '
2 2 1( )qt t t t−< <  the set  0

1 2 1( | )t t α  

consists of the unique point '
1 2( )t t . 

d) When 2t  is such that '
2 1( )t t t−>  the set 0

1 2 1( | )t t α  

consists of the unique  point 1t
−  . 

 
V. EQUILIBRIUM  SOLUTIONS 

 
Because of the fact that there is an interval in the 

definition domain, in which the function 
0( ) ( | ) , ( , 1, 2; )i j i j it t t t i j i jα= = ≠  is not constant, the 

existence of Nash equilibrium solutions and an algorithm of 

construction for them can not be obtained directly as in [1]. 
But the main idea is still true. 

Lemma 5. The pair 1 2{ , }t t  is a Nash equilibrium solution 
in the discussed game, if and only if this pair considered as a 
point of 1 2( , )t t -plane belongs to both graphs 0

1 1 2 1( | )t t t α=  

and 0
2 2 1 1( | )t t t α=  presented in the same plane.    

 
The proof of the lemma follows strait away from the 

definition of a Nash equilibrium solution . 
Therefore, to find the solutions one should use Theorem 1 

and construct the curves indicated in Lemma 5. If these 
curves have the common point, these points are the solutions 
we are looking for. An example of the case with three 
equilibrium solutions is shown in Fig.3. 

The last part of the section we devote to  constructing a 
finite algorithm of searching Nash equilibrium solutions for 
the case when the best replies function are approximated by 
piecewise-constant functions. This case is important for 
practice, where a year is usually taken as the unite of time. 

Such an algorithm can also be applied to more general 
situation when for each participant it is possible not only 
two, but several variants of benefit rate values, which 
correspond to different operating modes of gas pipeline. In 
what follows the set of Nash equilibrium solutions will be 
denoted by abbreviation NEP. 

Let the best reply function of the first participant 
0 0
1 1 2 1( | )t t t α=   takes an arbitrary finite number of 
0
1 , 1, ,nt n N= K in the corresponding intervals 1( , )n nζ ζ− . 

At the points , 1, 1n n Nζ = −K the set 0
1 2 1( | )t t α  consists of  

two points 0
1nt  and 0

1( 1)nt + .  Similar notations will be used 

for the function 0 0
2 2 2 2( | )t t t α= : 0

2mt , 1( , )n nη η−  - for the 
values and intervals of constancy respectively, 1,m M= K . 
Here 0 0 0, N M Tζ η ζ η= = = = . 

Put the points 0
2mt  in increasing order. Let us use the 

previous notations, but remark that the boundaries of  the 
constancy intervals would not be ordered. 

Construct an algorithm of determining the set NEP 
running over the numbers  1, ,n N= K . 

(A1) At the first step of the algorithm with 1n = mark 

out the points 
1

0 0
21 2, , kt tK . If there are no such points go to 

the next step taking 1n +  instead of n . 
 If such points do exist, for each 11, ,m k= K  check the 

relation 
                                 0

1 1[ , ]n m mt η η−∈ .                         (6) 
 

If this relation holds true, then a pair 0 0
1 2{ , }n mt t belongs to 

the set NEP. 
(A2) For an arbitrary step n  one has the value of index 

1nk −  formed at the previous step that corresponds to already 



considered points 0
2mt . If 1nk − =M, then the process is 

finished. When 1nk − <M the new points 0
2mt 1( , ]n nζ ζ−∈ , 

1 1nm k −≥ +  are marked out, and the new value of nk  is 
formed. Then for 1 1, ,n nm k k−= + K  one checks the 

relation (6). The pairs  0 0
1 2{ , }n mt t , for which it holds true, are 

referred to the set NEP. If nk <M   unit is added to n, and we 
go to the next step. If nk M=  ,  the process is over. 

Theorem 2: The set of Nash equilibrium points NEP in the 
problem with piecewise-constant best reply functions is 
determined by the algorithm (A1) - (A2). 

 
VI. EXAMPLE  

 
In this section the above constructions are concretized by 

the example, in which the benefit rate functions are linear. 
Assume that 

                   ( )ij ij ijt a t bϕ = + ,                     (7) 

where  1 2 2 10 , 0i i i ia a b b< < < < , 0 t T≤ ≤ , , 1,2i j = . In 
this case the assumption 1 is provided by inequality 

2
2 22 4i i ia T b T C+ > . 

The points * **, , ,i i i it t t t , as well as the function ' ( )i jt t  can be 
expressed by explicit formulas.  In particular, 
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Explicit formulas can be proposed for the functions 
1 2( , )i t tΔ , 1 2( , | )i if t t α and for their derivatives. When 

0 1iα< <  the expressions for ,i it t− +   take the form: 
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The assumption 2 puts more rigorous conditions on 
parameters of the problem. Let us remark without presenting 
the corresponding cumbersome inequalities that the obtained 
system of restrictions is consistent. More than that, it allows 
to consider in the framework of this approach some real, 
although approximate data of the planned natural gas 
pipeline systems. 

We finalize the section by presentation some numerical 
results. Let coefficients in the equality (7) be the same for 
both participants and are following: 

1 20.2; 2; 1.5; , 1.2;ij i ia b b i j= = = =  

as well as parameters 0.5iα = .  Put then 
40, 60.iT C= =  

It is easy to calculate the points * **, , ,i i i it t t t   for this case. 

Thus we have  *
it  = 18.12, it =33.20. The   

functions 1 2( | )t tϕ   and 1 1 2( , )t tΔ  were shown in Fig.1. 
The derivative of the function  1 1 2( , )t tΔ has been shown in 
Fig. 2. 

And finally, in Fig. 3 we present a graphical illustration 
of the best reply functions and Nash equilibrium points for 
this case. In presented situation, when both participants have 
the same parameters the solutions are symmetrical:  
(6.64, 4.14 ), (4.14, 6.64) and (5.03, 5.03). 
 

 
 
Fig. 3. Best reply function and Nash equilibrium points. 
 
 

VII. CONCLUSIONS 
 

In the paper a game-theoretic problem is considered 
motivated by investigations related to planning and putting 
into operation the gas pipeline systems. A new formalization 
of the problem is proposed that oriented to applications 
under not purely market price formation mechanism is 
proposed.  In mathematical terms the problem under 
consideration can be formulated as a non-cooperative two-
person game, in which Nash equilibrium solutions are to be 
found. The best reply functions in such a game are 
investigated, an algorithm of searching the solutions of the 
game under some condition is proposed. 
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