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Abstract
We study a controlled stochastic Lotka-Volterra model

for a one-predator-two-prey model with white noise. We
consider an optimal control problem for this model and
the stability of its solutions. We discuss a type of sta-
bility for state trajectories, optimal control and adjoint
trajectories, called the Turnpike property. We assume
linear growth and Lipschitz conditions in the drift and
diffusion terms, prove the Turnpike property, applying
the Hamiltonian formalism and the maximum principle
to this stochastic control problem, and express the opti-
mal control in terms of state and adjoint variables. Fi-
nally, we illustrate our results with an example in which
we numerically solve the stochastic differential equation
systems of the model.

Key words
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1 Introduction
In mathematical ecology, the Lotka-Volterra systems

represent one of the most important models to analyze
population dynamics, because they describe very well
many aspects of interactions between species in compe-
tition, such as persistence, extinction, and stability of
its solutions, [Lotka, 1956], [Volterra, 1931], [Chap-
man, 1967]. These models are more realistic if we
consider natural random environmental variations, in-
troducing Wiener processes. Recently, many papers
have been written about stochastic Lotka-Volterra mod-
els with white noise, studying persistence, extinction,
boundedness, local, stability and more properties. In
[Romero et al., 2021] we analyze the turnpike property
of a stochastic controlled Lotka–Volterra system with
white noise for two species. Also, in [Bao, 2012] was

studied the asymptotic convergence of a general stochas-
tic population dynamics of the type Lotka-Volterra and
driven by Lévy noise, given some important asymp-
totic pathwise estimation assuming different conditions
over the Poisson’s process coefficient, but they don’t
consider any control functions in the processes. The
Lotka-Volterra equations have also been applied to laser
physics (optical and photonic devices), to describe pop-
ulation inversion and the number of emitted photons, as
in [Aboites et al., 2022]. In this case, the authors study
their regions of stability and the transformation of a fixed
point into a limit cycle. The model to consider here
is given by the following non-linear stochastic ordinary
differential equations system with initial and final condi-
tions:

dx1 = ηx1(t)− βx1(t)x2(t)− δx1(t)x3(t)

−A1x1(t)u1(t)dW1(t)

dx2 = ωx2(t)− βx2(t)x1(t)− ϵx2(t)x3(t)

−A2x2(t)u2(t)dW2(t)

dx3 = −κx3(t) + δx3(t)x1(t) + ϵx3(t)x2(t)

−A3x3(t)u3(t)dW3(t), (1)

x1(0) = x10, x2(0) = x20, x3(0) = x30,

x1(T ) = x11, x2(T ) = x21, x3(T ) = x31, (2)

where η, ω, κ are positive constants in (0, 1], being
the intrinsic growth rates of two preys and predator
population, respectively, β, δ, η and ϵ in (0, 1], are
positive constants, meaning the contact rates per unit
of time between prey-prey, predator-first prey, and
predator-second prey, respectively. u1(t), u2(t), u3(t)
are the controls, representing, by example by the hunting
in each population, for which we have modulated their
effect with constants A1, A2, A3 ∈ (0, 1]. To take
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into account environmental fluctuations on the prey
and predator populations, we introduce standard inde-
pendent Wiener processes W1(t),W2(t),W3(t) with
parameters α1, α2, α3 ∈ (0, 1], respectively, in three
independent random variations for each population,
defined over a probability space (Ω,F ,P). We establish
the following Stochastic Optimal Control Problem:

Stochastic Optimal Control Problem (SOCP): To find
the controls u1(t), u2(t), u3(t) in system (1) with con-
ditions (2), which minimize the following expected cost
functional in the Lagrange form:

J(u1, u2, u3) = E
{1
2

∫ T

0

3∑
i=1

(
x2
i (t)+u2

i (t)
)
dt
}
, a.s.

(3)
Definition 1. The control u∗(t) = (u∗

1(t), u
∗
2(t), u

∗
3(t))

associated to system (1) is said to be an optimal con-
trol if it satisfies J(u∗(·)) = minu(·) J(u(·)). The
corresponding state x∗(t) is called the optimal state,
and (x∗(t), u∗(t)) is called the pair optimal. Besides,
consider the complete steady-state solution {x̄(t), ū(t),
p̄(t), q̄(t)} of system (1) with the cost functional (3), ad-
joint system (7) and variable q(t).

Definition 2. Given a real polynomial

f(y) = yn + a1y
n−1 + ...+ an. (4)

whose zeros all lie in the left half-plane is called Hurwitz
polynomial. Given the polynomial (4), let us define the
corresponding matrix called Hurwitz matrix of f by:

H(f) =


a1 a3 a5 ... 0
1 a2 a4 ... 0
0 . . ... 0
. . . ... 0
. . . ... 0
0 . . ... an

 .

and the determinants ∆1 = a1, and

∆k =


a1 a3 a5 ... a2k−1

1 a2 a4 ... a2k−2

0 a1 a3 ... a2k−3

0 a0 a2 ... a2k−4

. . . ... .
0 0 0 ... ak

 .

for k = 2, 3, · · ·n, with aj = 0 for j > n.
Definition 3. We will say that a Stochastic Optimal Con-
trol Problem 3 satisfies the Turnpike property iqf there
exist constants C1, and C2 such that:

E||xT (t)− x̄(t)||2 + E||uT (t)− ū(t)||2

+E||pT (t)− p̄(t)||2

≤ C2e
−2C1(t−t0). (5)

Some nonlinear control systems have the following
property called turnpike property: the optimal trajectory,

the optimal control, and the corresponding adjoint vector
remain exponentially close to a steady state. The Turn-
pike property of a solution of an optimal control prob-
lem means that an optimal trajectory for most of the
time could stay in a neighborhood of a balanced equi-
librium path, corresponding to the optimal steady-state
solution. This property is a characteristic of the Turn-
pike theory which was introduced in 1958 in mathemat-
ical economics and recently has been applied in Con-
trol Theory in [Trélat et al., 2015], [Zaslavski, 2006] and
[Sun et al., 2022 ]. We will analyze the stability of the
optimal-trajectory Turnpike property of the solutions of
the stochastic controlled Lotk-Volterra model.

2 Preliminaries
Considering the stochastic differential system (1), we

assume the following hypothesis related to the Lipschitz
and linear growth conditions in the variable x:

(H1) There exist constants κ1 < ∞, κ2 < ∞, κ3 < ∞
and κ4 < ∞ such that f(x, t, u) and g(x, t, u) satisfy:

a) At most linear growth condition:

||f(x, t, u)||2 ≤ κ1(1 + ||x||2),
||g(x, t, u)||2 ≤ κ2(1 + ||x||2),

b) Lipschitz continuity:

||f(x, t, u)− f(y, t, u)||2 ≤ κ3||x− y||2,
||g(x, t, u)− g(y, t, u)||2 ≤ κ4||x− y||2,

(H2) Controls are bounded: there exists κ5 < ∞, such
that ∀t ∈ R: ||u(t)|| ≤ κ5

We are interested in exponential stability of solutions
of SOCP and in a kind of stability of the controls and
optimal trajectories, called turnpike property. The turn-
pike property of a solution in an optimal control problem
means that an optimal trajectory, for most of the time
could remain exponentially close to a balanced equilib-
rium path, corresponding to the optimal steady-state so-
lution. To solve this SOCP, we use the stochastic maxi-
mum principle [Oksendal, et al., 2007], [Gu et al., 2016],
which is the extension of the Pontryagin maximum prin-
ciple corresponding to Ito diffusions (Kushner, Bismut)
and jump diffusions (Oksendal). We define a general-
ized Hamiltonian function H(x(t), p(t), q(t), u(t)) as-
sociated to SOCP:

H = ηx1(t)p1(t)− βp1(t)x1(t)x2(t)
−δp1(t)x1(t)x3(t)−A1p1(t)x1(t)u1(t)
+ωp2(t)x2(t)− βp2(t)x2(t)x1(t)
−ϵp2(t)x2(t)x3(t)−A2x2(t)p2(t)u2(t)
−κp3(t)x3(t) + δp3(t)x3(t)x1(t)
+ϵp3(t)x3(t)x2(t)−A3p3(t)x3(t)u3(t)

−1

2

3∑
i=1

(
x2
i (t) + u2

i (t)− 2αiqii

)
.

(6)



CYBERNETICS AND PHYSICS, VOL. 14, NO. 1, 2025 27

Figure 1. The limit trajectory of the optimal states x1(t), x2(t),
x3(t), using the Runge-Kutta scheme.

So, the adjoint equations in the unknown process p(t),
corresponding to process x(t), are the following back-
ward differential stochastic equations:

dp1(t) =
(
ηx1(t)− p1(t) + βp1(t)x2(t)

+δp1(t)x3(t) +A1p1(t)u1(t)

+βp2(t)x2(t)− δp3(t)x3(t)
)
dt

+
∑3

i=1 q1i dW1(t)

dp2(t) =
(
ωx2(t)− p2(t) + βp2(t)x1(t)

+ϵp2(t)x3(t) +A2p2(t)u2(t)

+βp1(t)x1(t)− ϵp3(t)x3(t)
)
dt

+
∑3

i=1 q2i dW2(t)

dp3(t) =
(
κx3(t) + p3(t)− δp3(t)x1(t)

−ϵp3(t)x2(t) +A3p3(t)u3(t)

+δp1(t)x1(t) + ϵp2(t)x2(t)
)
dt

+
∑3

i=1 q3idW3(t),

(7)

We denote
∂H

∂u
by Hu,

∂2H

∂u2
by Huu, · · · and so on for

Hx, Hu, Hp, Hq, Hux, Hup, , Huq, Hxu, Hxp, Hxq,
Hpu, Hpx, Hpq, Hqu, Hqx, Hqp, Hxx, Hpp, Hqq .

We will now define some matrices that will play an
important role in the next section.

A = Hpx −HpuH
−1
uuHux,

R = −Hxx +HxuH
−1
uuHux,

B = Hpu,

the 6 × 6 matrix Q =

(
−HpuH

−1
uuH

∗
pu

−Hpx +HxuH
−1
uuHuq

)
, and

M̂ =

(
A −BH−1

uuB
∗

R −A∗

)
, where A∗, B∗, H∗

pu denotes

transposition of A, B, Hpu, respectively.

3 Turnpike Property
We will start by establishing some criteria on the

asymptotic stability of the equilibria of stochastic first
order differential system. First, we have the Hurwitz cri-
terion:
Theorem 1. [Routh-Hurwitz criterion [Routh, 1905]].

If all the determinants ∆k defined above are positive,
the polynomial f(z) has only zeros with negative real
parts, i.e. f(z) is a Hurwitz polynomial. Considering
the n th-order, linear equation with constant coefficients
[Arnold, 1974],

yn + a1y
n−1 + ...+ any = 0, (8)

the corresponding equation to (8) with noisy coefficients

Y n
t +(a1+ξ1(t))Y

n−1
t + ...+(an+ξn(t))Yt = 0, (9)

where ξ1(t), · · · ξn(t) are in general correlated Gaussian
white noise processes with covariance

E(ξi(t)ξj(s)) = Sijδ(t− s), (10)

is rewritten as a stochastic first-order differential equa-
tion

dXn
t = −

n∑
i=1

biX
n+1−i
t dt−

n∑
i=1

n∑
j=1

GijX
n+1−i
t dW j

t ,

(11)
with G an n× n such that GG′ = S.
The asymptotic stability of (11) is determined by the fol-
lowing theorem.

Theorem 2. [Khasminskiy criterion [Khas’minskiy,
1969]] The equilibrium position of (11) is asymptoti-
cally stable in mean square if and only if ∆k > 0, i =
1, · · · , n and ∆n > ∆/2

∆ =


q̄
(0)
nn q̄

(1)
nn q̄

(2)
nn ... q̄n−1

nn

1 a2 a4 ... 0
0 . . ... 0
. . . ... 0
. . . ... 0
0 . . ... an

 .

where

q̄(n−k−1)
nn =

∑
i+j=2(n−k)

S̄ij(−1)j+1

S̄ = SST . (12)

We will now present the main result of this work
concerning the stability of optimal solutions of the
stochastic Lotka-Volterra model, the turnpike property.
The turnpike property means that the most important
fact about the behavior of solutions is the optimality
criterion considered and it is irrelevant the choice of
time interval or the data used, for times far from the
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Figure 2. The limit trajectory of the optimal controls u1(t), u2(t),
u3(t) , using the Runge-Kutta scheme.

endpoints of the time interval.
Theorem 3. Given the steady-state solution
(x̄(t), ū(t), p̄(t), q̄(t)) of system (1) with the corres-
ponding cost functional, and the solution {x(t), u(t),
p(t), q(t)} of system (1) with the cost functional (3),
if there exist the H−1

uu matrix and if the norm of the
functional matrix Q is bounded, then the solutions
to SOCP satisfy the Turnpike property: there exist
constants C1, and C2 such that:

E||xT (t)− x̄(t)||2 + E||uT (t)− ū(t)||2

+E||pT (t)− p̄(t)||2

≤ C2e
−2C1(t−t0). (13)

Proof. We consider a perturbation of variables
x(t), u(t), p(t), q(t) around the steady-state solution
x̄(t), ū(t), p(t), q(t), p̄(t), q̄(t), as follow:

xT (t) = x̄(t) + δx(t),

uT (t) = ū(t) + δu(t),

pT (t) = p̄(t) + δp(t),

qT (t) = q̄(t) + ξ(t)δq(t), (14)

where ξ(t) is the Gaussian variable that models the white
noise: dW (t) = ξ(t)dt .Using the Hamiltonian per-
turbed and the stochastic Maximum Principle, we ob-
tain:

δu(t) = −H−1
uu

(
Huxδx(t) +Hupδp(t) +Huqδq(t)ξ(t)

δẋ(t) = δHp + δHq = Hpxδx(t) +Hpuδu(t)

+Hppδp(t) +Hpqδq(t). (15)

Observing that Hpp = Hpq = 0 and δHq = 0, we ob-
tain:

δẋ(t) = Hpxδx(t)−HpuH
−1
uu

(
Huxδx(t) +Hupδp(t)

+Huqδq(t)ξ(t)
)
, (16)

or equivalently:

δẋ(t) =
(
Hpx −HpuH

−1
uuHux

)
δx(t)

−HpuH
−1
uuHupδp(t)

−HpuH
−1
uuHuqδq(t)ξ(t).

Analogous for p(t) we get:

δṗ(t) = −Hxxδx(t)−Hxuδu(t)

−Hxpδp(t)−Hxqδq(t)

= (−Hxx +HxuH
−1
uuHux)δx(t)

+(−Hxp +HxuH
−1
uuHup)δp(t)

−
(
Hxq −HxuH

−1
uuHuqξ(t)

)
δq(t). (17)

Now, following [Trélat et al., 2015] for our stochastic
extended system, we define

Z(t) = (δx(t), δp(t))⊤,

dŴ (t) = (dW (t), dW (t))⊤,

where dW (t) = (dW1(t), dW2(t), dW3(t)), dWi =
ξi(t)δqi(t) and

Z0 =

(
xT (0)− x̄
pT (0)− p̄

)
.

So, we may write the systems (1) and (7) with conditions
(2) as follows:

dZ(t) = M̂Z(t)dt+QdŴ (t)

Z(0) = Z0. (18)

Existence-and-uniqueness of solution of equation (18)
is guaranteed by assumption H1 and [Oksendal, et al.,
2007]. Besides, since M̂ is a matrix time-independent
[Trélat et al., 2015], the solution of system (18), is given
by:

Z(t) = eM̂(t−t0)Z0 +

∫ t

t0

eM̂(s−s0)QdŴ (s). (19)

Now, we focus the matrix M̂ in the deterministic part of
equation (19) to apply the methods of the Riccati theory
used in [Trélat et al., 2015] to found the constant C1:
considering the algebraic Riccati equation:

XA+A∗X −XBH−1
uuB

∗X −R = 0, (20)
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Figure 3. The limit trajectory of the optimal co-states p1(t), p2(t),
p3(t) , using the Runge-Kutta scheme.

and its minimal symmetric negative definite matrix so-
lution, E−, whose existence and uniqueness is guaran-
teed in Lemma 6 and Theorem 6 of [Molinari, 1977],
allowing to obtain a diagonal matrix equivalent to M̂
that satisfies equation (19), whose upper diagonal is
A+BH−1

uuB
∗E− and its eigenvalues have negative real

parts, . So, defining

C1 = −max{µ|µ ∈ Spec(A+BH−1
uuB

∗E−)}, (21)

C1 > 0 and we have, [Sun et al., 2022 ]:

||eM̂(t−t0)|| ≤ e−C1(t−t0). (22)

By [Oksendal, et al., 2007], from (19), we apply the
Schwarz inequality, Ito’s isometry and we use the in-
equality ∣∣∣ n∑

i=1

xi

∣∣∣2 ≤ n

n∑
i=1

|xi|2, n ∈ N, (23)

for n = 3, to obtain:

E||Z(t)||2 ≤ 3(E||e−C1(t−t0)Z0||2

+E||
∫ t

t0

e−C1(s−s0)QdŴ (s)||2. (24)

The previous inequality yields:

E||Z(t)||2 ≤ 3
(
e−2C1(t−t0)||Z0||2

+e−2C1(t−t0)

∫ t

t0

E||Q||2ds
)
,

and, by assumptions (H1a), (H2) and the boundedness
or matrix Q, we deduce:

E||Z(t)||2 ≤ 3e−2C1(t−t0)
(
||Z0||2 +

∫ t

t0

E||Q||2ds
)

≤ 3e−2C1(t−t0)
(
||Z0||2 + ||Q||2

)
.

Finally, considering ||Z0|| < ∞ and ||Q|| < ∞,
from Gronwall inequality and setting C2 = 3(||Z0||2 +
||Q||2), the inequality (25) can be rewritten in the form:

E||Z(t)||2 ≤ C2e
−2C1(t−t0), (25)

from which the proof is complete.

4 Numerical simulations
In this section we carry out numerical simulation of

the solutions of the example here presented for our
model driven by white noise. Being the parameters
in the equations (1) and (7) the intrinsic growth rates
of two preys and predator population and the contact
rates per unit of time between species and being con-
stants in (0, 1], they have been chosen for the conve-
nience of the simulations the following values: η =
1, δ = 0.30, β = 1, ω = 1, ϵ = 0.30, κ =
1, A1 = 0.4, A2 = 0.2, A3 = 0.5, although the val-
ues η = 0.50, δ = 0.30, β = 0.20, ω = 0.40, ϵ =
0.30, κ = 0.70, A1 = 0.4, A2 = 0.40, A3 = 0.19
were also tested. Solving the steady-state system we
obtain x̄ = (0.47, 0.52, 1.45), p̄ = (−1.3,−1.9,−0.9)
and ū = (0.25, 0.2, 0.7). We obtain so the Hessian ma-
trix Hpx, Hpu, H−1

uu , Hxx and Hux, also the matrix R,
B, A and E−. So, Hpx is the matrix which columns

are:

(
1− x2 − x3 − 0.4u1

−x2

−x3

)
,

( −x1

1− x1 − x3 − 0.2u2

−x3

)

and

( −x1

−x2

1− x1 − x2 − 0.5u3

)
. The other matrix are:

Hpu =

−0.4 0 0
0 −0.2 0
0 0 −0.5

 , H−1
uu =

−1 0 0
0 −1 0
0 0 −1



Hux =

 −0.4p1 −p1 − p2 −p1 + p2
−p1 − p2 −1 −p2 + p3
−p1 + p3 −p2 + p3 −1

 ,

Hxx =

 −1 −p1 − p2 −p1 + p2
−p1 − p2 −1 −p2 + p3
−p1 + p3 −p2 + p3 −1

 ,

R =

 1.12 3.2 0.4
3.2 1.38 −1
−0.4 −1 1.45

 , B =

−0.4 0 0
0 −0.2 0
0 0 −0.5

 ,

A =

−1.278 −0.47 −0.47
−0.52 −1.036 −0.52
−1.45 −1.45 −0.565

 .

Beside, we find the solution of Riccati equation

XA+ATX −XBH−1
uuB

TX −R = 0,
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Figure 4. (x1, x2, x3)-limit trajectory in the phase space, using the
Runge-Kutta scheme.

using MatLab to obtain:

E− =

−0.9510 −0.0635 1.4880
−0.0635 −1.9559 2.4749
1.4880 2.4749 −3.4496

 .

Since

Huq = 0, −Hpx =

−1.07 −0.47 −0.47
−0.52 −0.96 −0.52
−1.45 −1.45 −0.34

 ,

so we have

Q =


−0.40 0 0 0 0 0

0 −0.20 0 0 0 0
0 0 −0.50 0 0 0
0 0 0 −0.070 −0.470 −0.470
0 0 0 −0.520 −0.960 −0.520
0 0 0 −1.450 −1.450 −0.340

 ,

and ||Q|| = 2.5391. Now we find the matrix A −
BH−1

uuB
TE−:

A−BH−1
uuB

TE− =

−0.9510 −0.0635 1.4880
−0.0635 −1.9559 2.4749
1.4880 2.4749 −3.4496

 ,

and its characteristic polinomial p(λ):

p(λ) = λ3 + 3.9718λ2 + 3.5433λ+ 0.7848,

which eigenvalues are: λ1 = −2.8104, λ2 =
−0.8215, λ3 = −0.3399. Since all eigenvalues are
negative, the hypotheses of the Routh-Hurwitz theorem
[Routh, 1905] are satisfied, so we can choose C2 =
2.8104.

The Hurwitz matix associated to matrix A −
BH−1

uuB
TE− is

H(p) =

3.9718 0.7848 0
1 3.5433 0
0 3.9718 0.7848

 .

So, we calculate ∆1, ∆2, ∆3 and ∆:

∆1 = 3.9718,

∆2 = det

(
3.9718 0.7848

1 3.5433

)
= 13.28847,

∆3 = det

 3.9718 3.5433 0
1 3.5433 0
0 3.9718 0.7848

 = 10.4287983,

∆ = det

1 1 1
1 3.5433 0
0 3.9718 0.7848

 = 5.7848184,

to verify that ∆3 > ∆
2 and we can choose C1 = (2∆n)

2.
Finally, we have verified the conclusion of the theorem.

In Fig. 1 we present the states limit trajectory x1(t),
x2(t) and x3(t), using the Runge-Kutta. Also, in Fig.
2 we present the limit trajectory of the optimal controls
u1(t), u2(t) and u3(t) and, in Fig. 3, the adjoint states
limit trajectory p1(t), p2(t) and p3(t) are presented. It
can be noted that in all cases, the optimal solution graph
is divided into three parts: the start of the process in
which the solution adjusts to reach the stationary equi-
librium solution, once reached, it remains in a vicinity
of it for a long time, until just before reaching the target,
where it adjusts again to reach it. Finally, in Fig. 4, we
have obtained (x1, x2, x3)-limit trajectory in the phase
space. To better appreciate the different white noise and
jump disturbances in the phase space, we have presented
the figures with each disturbance separately. We can ob-
serve that all these trajectories have the Turnpike prop-
erty.

5 Conclusions
In this paper we have studied an optimal control prob-

lem applied to a controlled stochastic Lotka-Volterra
model. The results of this work suggest that, in this
biological system of species in competition, to reach
the optimal state of prevalence, especially in long time
horizons, the system tends to remain into a near-optimal
equilibrium for a considerable time, going away only
shortly at the beginning and end of the process spending
most of its time near a optimal equilibrium. This behav-
ior, called Turnpike property, also appears in the field of
competition between other species, such as microbial or
algal species. [Djema, 2021]. We have shown that its
solutions exhibit the Turnpike property, by means of the
Stochastic Maximum Principle. We have found expres-
sions for the optimal controls that allowed us to solve
numerically the coupled stochastic differential equations
in the state variable and the adjoint variable. Using the
Stochastic Maximum Principle approach, we have been
able to verify that the studied model presents the Turn-
pike property in the controls, the states and the co-states.
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We have showed by means of an example that the Turn-
pike property is indeed satisfied and we have performed
a simulation of the results. Finally, comparing the results
of this controlled stochastic Lotka-Volterra model in ran-
domly disturbed environments, with the deterministic
model also studied previously, we can conclude that this
model is more realistic and that still the Turnpike prop-
erty, despite containing disturbances due to white noise.
Since during the simulations we noticed a high sensitiv-
ity of the results to the values of the parameters associ-
ated with white noise, it would be desirable to carry out
in future research the stochastic sensitivity function tech-
nique, as in [Kolinichenko, 2024], [Bashkirtseva, 2023].
It is important to provide methods that allow measure-
ment of parameters noise effects and prediction of sys-
tem behavior, involving stochastic sensitivity functions.
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