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Abstract
For simultaneous optimization of the plasma shape

and vertical position controllers are proposed math-
ematical model of the structural parameter optimiza-
tion of the plasma dynamics.Dynamic optimization ap-
proach to plasma based on an analysis of the trajectory
of the ensemble. This ensemble describes the transition
process in a tokamak, expose the raw data and external
disturbances. The structure of this approach is given
to optimize the dynamics of an ensemble of trajecto-
ries in tokamak ITER. The trajectory of the ensemble
alarmed in the initial set of points and a set of external
disturbances.Earlier, on an example in work [Zavad-
sky, Ovsyannikov, and Chung, 2009] one regulator for
optimization was used. This work is devoted to opti-
mization of two regulators.
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1 Introduction
Problem analysis and synthesis of stabilizing con-

troller current position and shape of the plasma in a
tokamak is very important. Linear systems are widely
used in problems of designing control systems for com-
plex objects. Synthesis regulator that stabilizes the
plasma in a tokamak form, is made based on the lin-
earization of the distinguishing equations that deter-
mine the behavior of the plasma. The procedure for the
reduction and LQG-analytical algorithms are applied
to the construction of the controller LTI-object, see
[McArdle et al., 1998]- [Ovsyannikov, Veremey, and
Zhabko, 2006], [Misenov, Ovsyannikov, and Ovsyan-
nikov, 1997] for more information. Object of the con-
trol in the state space can be described by the following

equations:

ẋ = Ax+Bu+Gf(t),

e = Lx+Mu,

y = Cx+Du+ Ff(t),

(1)

where x ∈ En is the state space vector,u ∈ Er is
the control voltages vector, y ∈ Ed is the diagnostic
signals vector, e ∈ Ed is the measurement variables
vector, all the matrices in the model are known, with
constant components, f(t) is the vector function of ex-
ternal disturbances, which is called li, β−drops distur-
bance and is defined in the following form

f(t) = fdrop(t) =

(
w1(t)
w2(t)

)
,

w1(t) = dβe
−(t/tβ), w2(t) = dle

−(t/tl),

(2)

where dβ , dl, tβ , tl are known real numbers. The con-
trol object is closed with a set of controllers of a de-
creased dimension with the LTI-object structure by
vectors y and u are the output and input of the object
( 1) respectively, matrices Ac, Bc, Cc are the constant
component matrices of the controller, which can be ob-
tained, for example, using the reduction procedure and
the LQG-optimal synthesis [Zavadsky, Ovsyannikov,
and Chung, 2009].
By “Synthesis of controllers” we mean a choice of

controller parameters component LTI, which gives us a
closed object, which is stable. On the trajectory of the
closed system, we define a quadratic functional quality
and consider the problem of minimizing it.
In addition, we must take into account the nonlin-

ear constraints on the amplitude of the voltage signals
control. For example, there are 11 coils control with
constraints on the amplitude of the voltage in tokamak
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ITER. These constraints have various numerical values
ui where i is index of coil. The numerical value of val-
ues ui depends on the ci(amplitude maximum for i-th
coil). This complicates the design of the controller and
allows not only the rise of the value of the control volt-
age signals.
Note that the controller design model analyzed by lin-

ear, but checked at the controller and a nonlinear model
must possess the appropriate characteristics [Zavad-
skiy, 2014; Zavadskiy, 2014(2); Zavadskiy, 2007].

2 Vertical and Shape Simultaneous Optimization
of Trajectories Ensemble

Let us describe the mathematical model of ITER
plasma control system. Matrices Ac, Bc, Cc are used
for describing dynamic shape controller. And matrices
Aν , Bν , Cν are used for describing of the vertical posi-
tion controller, see Fig. 1.

Figure 1. Simultaneous optimization for vertical position and
shape.

The elements of these matrices will be taken as pa-
rameters that are to be optimized and combined into a
vector of parameters

p = {pk} ←→ {Ac, Bc, Cc, Aν , Bν , Cν}.

A mathematical model of the structural dynamics
of parametric optimization of a number of paths that
alarmed in the initial set of points and a set of external
disturbances. The structure of this approach is the op-
timization of transients full-size control object that is
closed regulator of reduced dimension.

ẋ =


Ap 0 0 0 BpCp

WwpCp Awp BwpCv 0 0
0 BvCwp Av 0 0
0 BfCwp 0 Af 0
0 0 0 BcCf Ac

x,

y =
(
0 Cwp 0 0 0

)
x.

(3)
Where matrixes of the structure are defined in [Zavad-

sky, Ovsyannikov, and Chung, 2009]. Proposed to use
a composite criterion as executive function, which al-
lows you to optimize the transition process, alarmed
by the initial set of points and a set of external distur-
bances.

Let’s examine the object of the control equation ( 1)
with constant agitation applied ( 2), which is closed
vertical position and the shape controllers. We com-
bine a system of linear differential equations using
a mathematical model of ITER plasma control sys-
tem.To do that, let us introduce the following vec-
tors and matrices: extended state-space vector x =
{xst, xν , xp, xf , xc} that includes plasma states, ver-
tical controller states, power system states, filter sys-
tem states and shape controller states; matrices P and
N with constant components such what P is a matrix
of the linear part of the system mentioned above, and
N is the coefficient of the non-linear part; the matrices
L and K for linear combinations with extended state-
space vector. So, by using the newly introduced vari-
ables, we represent the control system in the following
form:

ẋ = P (p)x+N(p)f(t),

x(0) = x0,

f(t) = f(dβ , tβ , dl, tl, t),

e = Lx(t, x0, p),

u = K(p)x(t, x0, p),

(4)

where x ∈ E112 is the extended state space vector,e ∈
Ed is the measurement variables vector,u ∈ E11 is the
control voltages vector,P,N,L,K are the above intro-
duced constant component matrices,f(t) is the li, β −
drops disturbance, p = {pk} is a vector of parame-
ters. Note, that the matrices Ac, Bc, Cc, Aν , Bν , Cν of
a designed regulators ( 1) will be taken as parameters
that are to be optimized. We combine the elements of
these matrices into a vector of parameters p = {pk},
where each parameter has it own index. By labeling
it P (p)and N(p) we emphasize that it depends on the
parameters that are being optimized. Based on this dif-
ferential system ( 4) we have measurement variables
vector e and control voltages vector u.
The transition process is described in the ensemble of

trajectories [Zavadsky, Ovsyannikov, and Sakamoto,
2010]. In this paper we just mentioned that the transient
component used executive criterion I(p). This criterion
must be minimized, it is performed by gradient.

3 Numerical Simultaneous Optimization Results
The results of the optimization is considered based on

the transient authenticated documents - gaps that are
members of the vector of variables e ∈ Ed measur-
ing object contr ol ( 4). Simulation of transient object
has agreed with optimized control and primary con-
troller is shown. This initial controller obtained using
the approach described in [Zavadsky, Ovsyannikov,
and Chung, 2009; Misenov, Ovsyannikov, and Ovsyan-
nikov, 1997], and already has the appropriate features.
We can also say that with the help of the envelope es-

timate, since we can select a maximum voltage con-
trol according to their limitations, and then raise them
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and get a better job for the variables measuring ei, see
Fig. 2, Fig. 3.

Figure 2. Trajectories ensemble with initial parameters values. In
vertical axis ensemble bound of squared gaps, in horizontal axis
time, sec.

Figure 3. Trajectories ensemble after vertical and shape simultane-
ous optimization. In vertical axis ensemble bound of squared gaps,
in horizontal axis time, sec.

In addition, we consider the basis for performance op-
timization of numerical features such as the integral
squared gaps

Igaps =

T∫
0

∑
i=1,...,6

g2i (t)dt

and the settling time

tsettling = min
t̃
{t̃ : max

i=1,...,6
gi(t)

2 ≤ 0.2, ∀t ≥ t̃},

Table 1. Settling time and integral of squared gaps for control ob-
ject.

previous results new results

Igaps = 0.024 Igaps = 0.0197

tsettling = 0.61sec. tsettling = 0.415sec.

which are presented in Table 1.

4 Conclusion
This work is dedicated to questions concerning syn-

thesis and optimization of tokamak plasma control sys-
tem. The model of ITER plasma control system is dis-
cussed and the simultaneous parametric optimization is
suggested. The model of control system includes con-
trollers of vertical position and shape of plasma. It is
optimized both of these controllers simultaneously. We
take the structural diagram of control system as differ-
ential equations system 4. The gradient method of si-
multaneous optimization is implemented for C++ and
Matlab environments. Results of the computations are
obtained and discussed. Numerical characteristics such
as the integral of squared gaps and the settling time are
presented for the both initial and the optimized con-
trollers. For the optimized controller the squared gaps
and settling time are lower, correspondingly.
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