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A Real-time Approach to Optimal
Energy-Consumption for Autonomous Underwater
Vehicles in Unknown Time-Varying Flow Fields

Mario A. Jordán, and Jorge L. Bustamante

Abstract– This paper concerns the estimation of optimal
energy paths to dose power demands in autonomous under-
water vehicles with the end to achieve maximal autonomy in
the presence of a flow field. The trajectories searched for are
parameterized and structured on a grid (usually employed
in sampling missions on the sea bottom) with a relative ori-
entation with respect to the current flow. The optimal solu-
tion is a set of cruise velocities along the path. A practical
approach is developed in real time for accomplishing path
corrections due to spurious in the flow. A theoretical back-
ground is developed and a simulation study is given with
comparative optimal and suboptimal solutions.

Keywords–Optimal energy spent - Unmanned underwater
vehicles - Time-varying Flow Field - Maximal autonomy -
Energy optimization - Control systems.

I. I������	�
��

A preventive analysis of power supply demands in the
guidance of unmanned subaquatic vehicles is always evalu-
ated as an important task when an inboard closed-energy
system is employed like in the autonomous underwater ve-
hicles. This scenario takes place above all when long nav-
igation times or large run paths have to be fulfilled for a
specific mission such as long data gathering. Additionally,
the influence of currents in the fluid environment suggests
a more critical trouble in the analysis [R. Blidberg, 2001].
It is well known that large cruise velocities in marine sys-

tems are associated with high energy consumptions. This
is particularly more accentuated in subaquatic vehicles in
where the motion resistance force increases about propor-
tional to the square of the velocity. Even if the vehicle nav-
igates at low rates of motion, the action of perturbations
like currents may influence the demand of energy during
more extensive periods causing ultimately the exhaustion
of the reserve with relatively shorter run paths than those
expected [Woodrow et. al, 2005].
When maximal autonomy is search for planned missions,

the anticipated calculation of a "point of no return" of an
autonomous vehicle is a desired task mainly for security
reasons. This involves practical the estimation of optimal
trajectories minimizing time, energy, maximizing length of
the path, or combination of them [Chyba et al., 2009]
In this paper we focus two important practical cases for

AUVs (autonomous underwater vehicles). In the first one,
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a pipeline has to be tracked with inspection ends using cam-
era with vision-based control or metal detector systems. In
the second case, a region over the sea bottom has to be sur-
veyed on transects and grid lines (see Fig. 1). A common
feature of both cases is that the trajectory is somewhat
fixed, however in the second case an optimal orientation
should be given because of the direction of the flow field.

Fig. 1 - Navigation in a time-varying flow field. Top:
Maximal autonomy in bidirectional path. Bottom:

Maximal number of uniformly spread samples onto a grid

Another point which is not touched in the literature is
the influence of the vehicle shape (usually torpedo form
with quite distinct hydrodynamics coefficients in the main
axes) in the energy consumption when the fluid flow acts
from quite different directions other than from frontal side.
Finally, other related interesting scenarios can be found

in missions with requirements on minimal navigation times.
Such scenarios are generally motivated, for instance, by
sampling missions in where the validity of the results rests
on the constancy of experiment conditions in time. This
may vary for instance with the tide and solar radiation
periods.
On the contrary, we will depart from a real scenario

which is to consider that the flow field is unknown and time-
varying. This contrasts with the majority of the approaches
found in the bibliography, which depart from the knowl-
edge of current maps that will facilitate a global energy- or
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time-optimized vehicle motion. Additionally we postulate
another useful fact that modern navigation systems do has
the possibility of measuring the current as a local vector of
flow field. Technologies sustained by the Acoustic Doppler
Current Profilers (ADCP) or the Doppler Velocity Logs
(DVL) support this fact.
Related present and past work has been posed in the

context of the Maximum Principle of Pontryagin, with the
goal to design a control strategy that generally searches
for a vehicle trajectory that minimizes run time between
two extreme positional and kinematical configuration sets
[Chyba et al., 2004]. Even if these optimal trajectories
can be computed numerically based on a complete descrip-
tion of the vehicle dynamics, they are generally not imple-
mentable due to the multiple and rapid thrust switching
required by the thrusters [Chyba and Haberkorn, 2005].
However, sacrificing the continuity of the solution and al-
lowing the manipulated thrusts to evolve stepwise, a toler-
able gap between this practical and the optimal solutions is
achieved [Chyba et al., 2008]. Finally, it is interesting that
later a combination between minimal time and minimal en-
ergy consumption could be established and implemented,
however in the practical sense pointed out above [Chyba et
al.,2009].

One can also obtain substantially energy savings by ac-
tuating only a reduced set of motors or bypassing adverse
currents and also exploiting favorable currents [Kruger et
al.,2007]. Moreover, some approaches deal directly with
the dynamics equation for choosing trajectories such that
hydrodynamic drag on the system is reduced [Sarkar and
Podder , 2001]. Other approaches generates directly the
speed along the path based on energy of the ocean cur-
rents and a cost function containing information of inertia
to speed up the convergence to the global minimum [Yang
and Zhang, 2009].
The approach touched on in this work is different. It con-

cerns the design of an algorithm to generate maximal run
distance over an arbitrary parameterized and structured
path for long data gathering. The motivation is to develop
a practical approach in where corrections of optimal rate
of the vehicle motion after changing perturbations (time-
varying flow field) result in real-time implementations dur-
ing the guidance along the path. A theoretical background
is developed and a simulation study is given with compar-
ative optimal and suboptimal solutions.

II. P����� ���	�
��
��

A. Problem statement

We will posse the problem of optimal energy consump-
tion to achieve maximal autonomy as
Initial conditions :

• Given a high-performance control system for guidance
the unmanned underwater vehicle,
• the dynamics of the energy source (here batteries),
• an unknown uniform planar flow field vc=[vcx ,vcy ,0 ,

0,0,0]
T

,
• an initial battery energy value E0 > 0,

• a final battery energy value Ee with E0 > Ee ≥ 0 (here
the energy reserve), and
• a spacial reference path ηref (ξ) of a large length L, me-
andering uniformly over a prescribed grid like in Fig. 1,
with ξ an unknown angle of the grid orientation,
Goal :

• then, one is interested in computing the control action
to guide the vehicle from the start point of ηref (point A
in Fig. 1), reaching the largest run stretch Lmax ≤ L as
possible (point B in Fig. 1) before to return to A again,
beginning with E0 up to empty out the energy to the low
level Ee.
In our context of a sampling mission this goal means to

allow the vehicle enter in the region of interest to gather the
maximal number of samples as possible on a grid. Clearly
Lmax depends also on ξ.
Since we are thinking in a guidance control system with

eventual unpredictable perturbations, possible solutions
should have to be obtained in real time. The idea behind
a high-performance controller will be clarified later.

B. Vehicle dynamics

We start from the dynamics of an underwater vehicle (cf.
[Fossen,1994])

.
v=(Mb +Ma)

−1
(
−C (v)v−D(v|)v+g(η)+τ

)
(1)

.
η=J (η)(v+vc). (2)

Herein η= [x , y , z , φ, θ, ψ]T is the generalized position in
an earth-fixed frame where the first three components de-
scribe translations and the remainder rotations. Addition-
ally v= [u, v ,w , p, q , r ]T is the generalized velocity vector
in a vehicle-fixed frame where its components are the mo-
tion modes with respect to the main vehicle axes, namely:
surge, sway, heave, pitch, roll and yaw, respectively. More-
over, J is the rotation matrix, Mb is the inertia matrix of
the body and Ma is the additive mass of the surrounding
fluid (the sum of both is referred to the inertia matrix M
employed later), C the Coriolis matrix, D the nonlinear
drag matrix, g is the restoration force and τ the propul-
sion force considered as the manipulated variable in the
control system. Finally J(η) is the well-known rotation
matrix depending on the angles φ, θ and ψ.

C. Autonomous navigation system

One starts the discussion in the framework of a path
tracking problem accomplished by an autonomous naviga-
tion system whose elements are described in the Fig. 2.
The controller builds up a generalized thrust τ according
to a feedback of the spatial and kinematic states η and v,
respectively in order to attenuate the respective path er-

rors
∽

η and
∽

v with respect to the reference trajectories ηref
and vref . The control algorithm includes a compensation
of the thrusters dynamics, which are also dependent on the
kinematic state [Healey et al., 1995]. Finally the control
action ends in the vector nref which are the rpm’s on the
thrusters to accomplish the control goal.
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Fig. 2 - Control system for tracking of geometric and
kynematic reference trajectories

It is important for further discussion to assume a high-
performance controller. Such a controller would have to

be able to attenuate
∽

η and
∽

v rapidly. A design that pos-
sesses this feature is developed in [Jordán and Bustamante,
2008].
Accordingly to this work, the tracking errors are defined

as

∽

η=η−ηref (3)
∽

v=v−J
−1

(η)J (ηref )vref+J
−1

(η)Kp
∽

η, (4)

and the feedback vector (control action)

τ=Cv+Dv+g +M

(
d

dt
(J

−1

(η)
.
ηref )−

dJ
−1

(η)

dt
Kp

∽

η+(5)

+J
−1

(η)K
2

p

∽

η−J
−1

(η)KpJ (η)
∽

v
)
−Kv

∽

v−J
T ∽

η.

So the path error system of Fig. 2 results in

.
∽

η = −Kp
∽

η+J
∽

v+J vc (6)
.
∽

v = −M−1Kv
∽

v−M−1J
T ∽

η+J
−1

KpJvc. (7)

nref = f(τ,v). (8)

where f is a nonlinear function describing the static charac-
teristic of the thrusters and Kp ≥ 0 and Kv ≥ 0 are design
matrices in the controller [Jordán and Bustamante, 2008,
2009]. This control system is asymptotically stable in the
space of η and v and is shown to be potentially be able to
achieve a high performance.

D. Energy balance

One assumes the total energy available for the au-
tonomous navigation is supplied internally by batteries and
also eventually from the surrounding flow field. The more
convenient vehicle orientation ξ to accomplish the route
A-B-A is also a result of the intended optimization goal.
The energy in the batteries is subject to

Eb(t; ξ) = E0 −

∫ t

t0

ib(t; ξ) Vb dτ = (9)

= Em +Ens +Elb +Et

with ib the battery supplied current and Vb the voltage, Em
is the mechanic energy of the vehicle motion, Ens the en-
ergy spent by the vehicle motion and mission equipments,
Elb the energy lost in the battery and Et is the thruster
energy lost due to armature warm and drag effects at the
thruster blades
The partial energies are

Em(t; ξ) =

∫ η(t;ξ)

0

τ
T

dη=

∫ t

0

τ
T

vdt ′ (10)

Ens(t) =

∫ t

0

pnsdt
′ = p̄ns t (11)

Elb(t) = E0 − ξb

∫ t

0

t dt́ = E0 −
ξb
2
t
2

(12)

Et(t; ξ) = nRt

∫ t

0

i
2

t dt́ + n

∫ t

0

f
T

t vt dt́ = (13)

=
n∑

i=1

∫ t

0

iti Vtdt́ − Em(t ; ξ), (14)

where E0 is the energy at the start point, Rt and it are the
armature resistant and current, respectively, Vt is the volt-
age applied to the thruster, pns is the power needed for the
operation of the equipments which is assumed constant and
equal to p̄ns , ξb is a constant representing the leakage rate
per time unit in the battery, n is the number of propellers,
vt is the traslational velocity vector projected onto every
propeller axis and fa is the drag force offered by fluid re-
sistance at the thruster blades whose velocity through the
blades is a nonlinear function of vt. Due to the difficulty of
determining fa , Eq. (14) represents an alternative to (13)
for computing Et upon the armature currents iti and the
thruster voltage Vt.

III. O��
�� ����
��

Let η(t) has the shape of a meandering path according
to Fig. 1. It is valid

L(t) =

∫ t

0

η̇x ,y,z (t́ ; ξ)dt́ (15)

with η̇x ,y,z=[ẋ , ẏ, ż ]
T

. It is noticing that η̇x ,y,z and also
ηx ,y,z are optimal vectors in the direction ξ, where ξ is a
parameter of the main course.
The optimal path is described by a velocity vector func-

tion vopt(t) = J
−1

(ηopt)η̇opt(t)− vc that accomplish

max
·

ηx,y,z , ξ

L(t) = Lmax, (16)

withE0 when ηopt(0) andEe when the vehicle return to the
start point with a rotations of 90 degrees per path corner.
In [Chyba et al., 2009] the approach suggested had con-

sisted in calculating an optimal generalized force function
τopt(t) (i.e., the control action), we instead follow a differ-
ent way consisting in defining directly the optimal course
rate vopt(t). This has the advantage of attaining approxi-
mative but implementable solutions.



4

First we conceived the geometric path ηx ,y,z as com-
posed by rectilinear stretches. We take advantage of
the fact that the control system transients are originated
mainly by course changes, it is, at a rotation points.

As the supposed controller has a wide frequency band,
we can assume that the energy consumed during transients
occurs in short periods referred to as ∆T .

In this way the lost energy during a transient is computed
as

∆Ebtrans(tt) = Eb(tt+∆T )−Eb(tt) = Vb

∫ tt+∆T

tt

ib dt́−Eb(tt),

(17)
with tt an entrance time point to a new stretch. So Eb(t) is
a decreasing but not a continuous-time function. Outside
the periods∆T , the velocities on every rotation and stretch
correspond to kinematic steady states.

The second consideration is that the steady state veloci-
ties are (practically close to) the reference velocities vref (t)
on each stretch. So, we can compute the optimal thrust
τ opt(t) indirectly by searching for the optimal set of con-
stant vref (t) on every stretch and allowing the controller
to force the advance rate v(t) to be close to vref (t). Simul-
taneously, an optimal direction ξ for the final meandering
path must be established from this optimization procedure.

IV. O��
�
���
�� ���	�����

Firstly we look at (10) and notice the incidence of the
impulse thrust on the mechanic energy. Now, if we consider
that the control system can achieve a good performance
[Jordán and Bustamante, 2008, 2009] then control errors
are approximately null and it is valid vref≈v and ηref≈η.
Additionally, let the vehicle motion be also done with good
regulations of the pitch and roll angles about fixed angles,
so J(ϕ, θ) remains constant during the course. Then, we
conclude from (5) that the generalized force τ calculated
by the controller depends approximately on the drag forces
and buoyancy.

Another thing is that we can measure the local flow vec-
tor and so we can assume that this will remain constant in
a vicinity of the measurement point.

It is worth noticing that the local measurement of the
current will enable us to develop an optimization algorithm
that can compute dynamically the optimal solution inde-
pendently of the whole flow field. This implicates on the
other side that the optimal control law is not known be-
forehand and is recalculated for the remainder path in real
time. The amount of calculations to be done is also reduced
by the fact that we contemplate a rate-based approach in-
stead of a force-base approach as mentioned before.

Now, let us contemplate a planar path at constant depth.
For every rectilinear stretch i including the rotation at the
endpoint, the remainder energy is

Ei = Ei−1 −∆Ei − p̄ns (ti − ti−1)− (18)

−

∫ ti

ti−1

cx |ui | (ui)
2

dt́−

∫ ti

ti−1

cy |vi | (vi)
2

dt́

where u
i
and vi are the planar coordinates of vxyi which

are measure locally at the step i and supposed the remain
constant up to the step i + 1. Additionally, ∆Ei sums
up ∆Ebtrans , Elb and Et together, and cx and cy represent
coefficients of the drag forces in the direction x and y of the
vehicle. The rotations about the end of the stretch points
are computed separately.
Assuming a constant velocity vxyi and calculating from

(18) the period taken for covering the length Li one gets

Li =
Ei−1 −∆Ei −Ei

(p̄ns + cxu
3

i + cyv
3

i )
(ui + vci) (19)

with vci the component of vc on the advance direction on
the stretch i. Thus

vci = |vc| cos(ξ) (20)

vi = |vc| sin(ξ). (21)

Considering now n stretches from the start point to the
point of no return and n stretches for turning over to the
start point, it is valid

L1 =
E0 −∆E1 −E1

(p̄ns + cxu
3

1 + cyv
3

1)
(u1 + vc1) (22)

L2 =
E1 −∆E2 −E2

(p̄ns + cxu
3

2 + cyv
3

2)
(u2 + vc2) (23)

............

Ln =
En−1 −∆En −En
(p̄ns + cxu

3

n + cyv
3

n)
(un + vcn) (24)

Ln+1 =
En −∆En+1 −En+1

(p̄ns + cxu
3

n+1 + cyv
3

n+1)

(
un+1 + vcn+1

)
(25)

............

L2n−1 =
E2n−2 −∆E2n−1 −E2n−1

(p̄ns + cxu
3

2n−1 + cyv
3

2n−1)

(
u2n−1+vc2n−1

)
(26)

L2n =
E2n−1 −∆E2n

(p̄ns + cxu
3

2n + cyv
3

2n)
(u2n + vc2n) (27)

The stretches Ln and Ln+1 are the same, however they
may have different lengths that previous stretches. More-
over there are four different cases for the location of the
point of no return (see Fig. 3).

B

B

B

B

Ln

L1

1

2

4

3

A A

AA L1

L1

L1

Ln

Ln

Ln

Fig. 3 - The four cases for the location of the point of no
return (point B)
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We are searching for a maximum of Ln. So with (24)
and (25) and Ln = Ln+1 one attains

Ln =
1

2
(En−1 −∆En −∆En+1 −En+1) (28)

(
(p̄ns+cxu

3

n+1 + cyv
3

n+1 )(
u
n+1
+vcn+1

) +
(p̄ns+cxu

3

n + cyv
3

n)

(un+vcn )

)−1

.

From (27) backwards we obtain En+1 because with
exception of Ln = Ln+1 the remainder lengths of the
stretches are known from the structured path, for instance

E2n−1 =
L2n(p̄ns+cxu

3

2n
+ cyv

3

2n
)

(u
2n
+vc2n )

+∆E2n, (29)

and in the same way from (19) forwards, one accomplishes
an expression for En−1 and so on up to

E1 = E0 −∆E1 −
L1(p̄ns+cxu

3

1
+ cyv

3

1 )

(u
1
+vc1 )

. (30)

For simplicity, the final energy Ee = E2n = 0.
Finally Ln can be written as

Ln=



E0 −
n−s∑

i=1

∆Ei −
n+s∑

i=n+2

Li

(
p̄ns+cxu

3

i
+ cyv

3

i

)

(ui+vci )
− (31)

−
n−1∑

i=1

Li
(
p̄ns+cxu

3

i
+ cyv

3

i

)

(u
i
+vci )





(
(p̄ns+cxu

3

n+1 + cyv
3

n+1 )(
u
n+1
+vcn+1

) +
(p̄ns+cxu

3

n + cyv
3

n)

(un+vcn )

)−1

Since Ln has a maximum with respect to the choice of
the velocities ui we obtain from

∂Ln
∂ui

= 0 for i = 1, ..., 2n
the following restrictions

p̄ns + cyv
3

i − 2cu
3

i − c3v
2

i vci = 0 (32)

One notices from (32) that the optimal velocity ui in
each stretch is independent of the velocities in the remain-
der stretches. Moreover So, the ui´s can be calculated
beforehand in order to know how many stretches will be
covered with the available energy E0 until achieving the
maximal Ln = Ln+1 and finally obtaining L =

∑2n
i=1 Li.

As the structured path is also parameterized in ξ, one
sees that its course orientation influences the energy con-
sumption in the presence of a flow field. This dependence
is seen from (20)-(21) in (32).
The optimal ξ determines the ultimate path orientation.

This is obtained from the condition ∂Ln
∂ξ

= 0. For reasons
of conciseness, an analytical expression of this condition
is not written out here. Conceptually this is an implicit
nonlinear function with multiple maxima and minima (see
Fig. 5 in the context of an example).
Hence, the optimal ξ to maximize Ln has to be attained

numerically (for instance, using the Newton-Raphson

Method) starting with an appropriate initial condition.
Our experience is that ξ0 =

π
4 is a good start value.

The generalization of the algorithm for a three-
dimensional velocity vxyz i is straightforward. This has
sense when the altitude in motion is maintained constant
over an irregular terrain. Finally, the inclusion of an energy
reserve Ee implies simply to add E2n = Ee to the terms in
the right hand of (29).

V. V��
	� ��
���	� �
�� ������ ���
�
���
��

The previous algorithm can be embedded in a navigation
system as illustrated in Fig. 4. The new block conforms
an outer loop and contains the real-time algorithm with
optimal spent of energy along the proposed path in long-
data gathering missions.

The block generates the optimal velocities ui, which are
associated to the kinematic reference vref for the controller.
Also the optimal orientation of the path with respect to ξ
gives the ultimate coordinates for the geometric reference
ηref .

Basically the condition for stability of the nested loops
is that η̇ref be bounded in every stretch. The proof falls
outside the scope of this paper and pertains to the condi-
tion for the stability of the control system given in [Jordán
and Bustamante, 2009].

Inverse dynamics and
statics of actuators

Controller

Perturbations

Energy 
optimizer

Vehicle 
Dynamics

E0 , Ee

ηηηη ref (x,y,z,α)

η refη (t) v refv (t)

ib(t)ηηηη (t)V (t) ττττ (t)

V (t)

n ref(t) V
~(t)

~ηηηη (t)

Fig. 4 - Nested control loops with energy optimizer

If the course and/or the intensity of the flow field change
suddenly at a coordinate of the path, the remainder opti-
mal velocities can be released and recalculated again with
the available energy. The algorithm described here is time-
saving and efficient that it can be applied in real-time with
standard computational hardware.

VI. C��� �����

Let us now illustrate the features of the proposed algo-
rithm according to a planar path with the structure de-
picted in Fig. 1, bottom. To this end, we start the case
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study with the following setup

E0 = 1.733 (MJ) Ee = 0 (w)
pns = 250 (w) ∆Etrans = 500 (J).

c
x
= 120 (Kg/m) c

y
=2400 (Kg/m)

∆X=100 (m) ∆Y=100 (m)
|vc|=0 .2 (m/s)

In Fig. 5 the variation of L with ξ obtained for the dif-
ferent angles by means of (22)-(27) and (32) is presented.
In many simulations with different setups, the optimal ori-
entation lays regularly close to π

4 . In this case the value
span of L is about of 30 (m), but this depends strongly on
E0. Much more large spans (for instance of the order of a
kilometer) are attained for a tenth of Eo.

 ξ (rad)

L 
(m

)

0  π/4  π/2  5π/4  π 5π/4 3π/2

4450

4460

4470

4480

7π/4 2π

Fig. 5 - Variation of L as a function of ξ
In Fig 6 the estimation of the distance for the point of no
return is illustrated in five different cases:
Case I) Optimized velocities without current (vc = 0)
Case II) Optimized velocities with current
Case III) Velocities obtained in Case I but with current
Case IV) Velocities 50% larger than in Case II
Case V) Velocities 50% lower than in Case II.
For the rectangular meandering path in Fig. 1, bottom,

it results a set of four different velocities ui´s which are
described in Table I. Additionally, the elapsed time and
the path distance covered bidirectionally is registered in
the third and forth columns respectively. Related to this
information, Fig. 6 shows the locations of the point of no
return in all the cases, and Fig. 7 details of the first three
cases.

Table I - Results for the five simulated cases

Case Velocities (m/s)
Time
(hours)

L
(Km)

u
1

u
3

u
2

u
4

I 1.014 1.014 1.014 −1.014 1.27 4.621
II 0.957 0.957 1.099 −1.099 1.22 4.478
III 1.014 1.014 1.014 −1.014 1.22 4.453
IV 1.435 1.435 1.648 −1.648 0.68 3.746
V 0.478 0.478 0.549 −0.549 1.67 3.084

One sees that the elapsed time in the first three cases
are very close into each other, although the Case I and II
are optimal only. In the nonoptimal Case IV the elapsed
time is the lowest one but L is not too large as in optimal

cases. The reason for that is the high energy Em spent
to overcome the drag resistance in the motion. On the
contrary, in the nonoptimal Case V, this effort is strongly
reduced but the exposition time to the current is larger
and this spent the available energy inefficiently in the long
term.

VII. C��	��
���

In this paper the design of an algorithm to real-time
planning of the optimal energy consumption in AUVs nav-
igating on structured meandering paths is developed. The
proposed algorithm is conceived for missions with gather-
ing of uniformly distributed data on a region of interest in
perturbed environments.

X (m)
0 200 600 1200

0

100

Y
 (

m
)
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400 800 1000

III II
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V

Fig. 6 - Five scenarios for the point of no return: 1)
optimized rates with null current, 2) optimized rates with
current, 3) path with the optimized rates of 1 but with
current, 4) 50%-augmented rates with respect case 2), 5)

50%-reduced rates with respect to case 2
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IIIII

Fig. 7 - Details of the end paths in Cases 1, 2 and 3

The algorithm can be embedded in a control system as
an outer loop that provides the optimized geometric trajec-
tory and a set of constant optimal velocities that are taken
as rate references along the partial stretches. Transients
are assumed to elapse a comparative small time than the
stationary kinematics. This assumption is supported by
the employment of a high-performance control system.
The optimization procedure has consisted in calculating

the location of the most distant point of no return on a
bidirectional meandering path by searching for a set of op-
timal velocities and a suitable orientation for the ultimate
path. The calculation of optimal velocities supposed the
maximization of the number of partial stretches as well as
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the optimal orientation of the whole path. In this way
the optimal distribution of spent energies along the partial
stretches are determined backwards starting from the end
point of the path.
Since the algorithm is timesaving, the optimal solu-

tion for the kinematics can be calculated in real-time and
restarted whenever changes of the flow field are detected.
Finally, a case study is simulated to illustrate compara-

tive features in optimal and nonoptimal cases.
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