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Abstract
Sufficient conditions are obtained for existing of sta-

ble periodic solutions of time delay control systems
containing hysteresis nonlinearities.
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1 Introduction
The question on existence of periodic modes in non-

linear control systems and problem of exact construc-
tion of such modes are among central problems for au-
tomatic control theory. Special difficulties appear when
dealing with systems containing the so-called essen-
tial nonlinearities, which are nonanalytic functions of
phase (for example, relay nonlinearities). In this article
one system with hysteresis nonlinearity will be consid-
ered. Nonlinearities of this sort, for example, may de-
scribe spatial delay of control mechanism, e.g. autopi-
lot or stabilizer [V.I. Zubov]. Furthermore, study of
physical processes in systems containing springing or
magnetic elements, electrical relays etc. on certain as-
sumptions gives rise to different mathematical models
of hysteresis nonlinearity [Krasnoselsky; Visitin]. Nu-
merous works are devoted to the analysis of problem
of periodic oscillations presence in such systems [As-
trom; S.V. Zubov; Pokrovsky; Nelepin; Kamachlin]. A
wide variety of questions concerned to sliding modes
in nonlinear systems considered in [Utkin].
Some results of [S.V. Zubov] concerning control sys-

tems containing hysteresis nonlinearities will be ex-
trapolated below in case of time delay presence in such
systems.

2 Models under consideration
Let us consider following systems

ẋ = Ax + cu(t− τ), (1)

herex = x(t) ∈ En, t ≥ t0 ≥ τ , A is realn × n
matrix, c ∈ En, vectorx(t), t ∈ [t0 − τ, t0], is
considered to be known. Quantityτ > 0 describes
time delay of actuator or observer.
Control statement isu defined in the following way:

u(t− τ) = f (σ(t− τ)) , σ(t− τ) = γ′x(t− τ),

whereγ ∈ En, ‖γ‖ 6= 0, f describes a nonlinear
element of hysteresis sort and has one of the following
forms:

f(σ) =

{
m1, σ < l2,

m2, σ > l1,
l1 < l2, m1 < m2; (2)

or

f(σ) =

{
f1(σ) = α1 (σ0, 1 − σ) , σ < l2,

f2(σ) = α2 (σ0, 2 − σ) , σ > l1
(3)

( here|f1(σ)− f2(σ)| > 0 whenσ ∈ (l1; l2)); or

f(σ(t)) =

=





m1,




σ(t) ≤ m1
κ + l1,{

l1 < σ(t)− m1
κ < l2,

f(σ(t− 0)) = m1,

m2,




σ(t) ≥ m2
κ + l2{

l1 < σ(t)− m2
κ < l2,

f(σ(t− 0)) = m2,

κ(σ(t)− l1),

{
m1 < κ(σ(t)− l1) ≤ m2,

f(σ(t− 0)) > m1,

κ(σ(t)− l2),

{
m1 ≤ κ(σ(t)− l2) < m2,

f(σ(t− 0)) < m2.

(4)

Suppose that all nonlinearities introduced above are
walked in counterclockwise direction.



3 Main results
By the analogy with [Kamachkin] following result

may be formulated:

Lemma 1. If Reλ < 0, for any eigenvalueλ of ma-
trix A, and

−γ′A−1cm1 > l2, −γ′A−1cm2 < l1,

then system (1), (2) has at least one non-trivial periodic
solution.

Suppose that exists the periodic solution of sys-
tem (1), (2) having two switchig pointss1, 2 ∈ En such
asγ′s1 = l1, γ′s2 = l2. In that case there exists a
pair of points ŝ1, 2 ∈ En (”virtual” switching points)
and real constantsτ1, 2, τi > τ such as

ŝ1 = eAτs1 +
∫ τ

0

eA(τ−s)cm2 ds,

s2 = eA(τ1−τ)ŝ1 +
∫ τ1−τ

0

eA(τ1−τ−s)cm1 ds,

ŝ2 = eAτs2 +
∫ τ

0

eA(τ−s)cm1 ds,

s1 = eA(τ2−τ)ŝ2 +
∫ τ2−τ

0

eA(τ2−τ−s)cm2 ds.

Note that hereafter ”swithing points” are only points
lying on switching hyperplane, but in fact switching of
control action occurs in virtual switching points.

Let us generalize one of the results cited
in [S.V. Zubov].

Theorem 1.Let

γ′ (As1 + cm2) 6= 0, γ′ (As2 + cm1) 6= 0.

Denote

A1 =
(

E − (As2 + cm1) γ′

γ′ (As2 + cm1)

)
eAτ1 ,

A2 =
(

E − (As1 + cm2) γ′

γ′ (As1 + cm2)

)
eAτ2 .

If

A = ‖A2 A1‖ < 1,

then concerned periodic mode of system (1), (2) is
asymptotically orbitally stable.

Proof. Since

s2 = eAτ1s1 +
∫ τ

0

eA(τ1−s)cm2 ds+

+
∫ τ1

τ

eA(τ1−s)cm1 ds,

s1 = eAτ2s2 +
∫ τ

0

eA(τ2−s)cm1 ds+

+
∫ τ2

τ

eA(τ2−s)cm2 ds,

then

∂s1

∂s2
= eAτ2 ,

∂s1

∂τ2
= As1 + cm2,

∂s2

∂s1
= eAτ1 ,

∂s2

∂τ1
= As2 + cm1.

So, as

d (γ′ s1(s2, τ2)) = 0, (γ′ s2(s1, τ1)) = 0,

then

dτ2 = − (γ′ (As1 + cm2))
−1

γ′eAτ2 ds2,

dτ1 = − (γ′ (As2 + cm1))
−1

γ′eAτ1 ds1.

Hence

ds1 = eAτ2ds2 − (As1 + cm2) γ′eAτ2

γ′ (As1 + cm2)
ds2 =

= A2 ds2,

ds2 = eAτ1ds1 − (As2 + cm1) γ′eAτ1

γ′ (As2 + cm1)
ds1 =

= A1 ds1,

and

ds
(i+1)
1 = A2 A1 ds

(i)
1 , i = 0, 1, 2, . . .

Application of the principle of fixed point completes
the proof. ¥
Let us pass onto the system (1), (3). Denote

Âi = A− αicγ
′, ĉi = αiσ0, ic, i = 1, 2.

Lemma 2. If Reλ < 0, for any eigenvalueλ of matri-
cesÂ1, 2, and

−γ′Â−1
1 ĉ1 > l2, −γ′Â−1

2 ĉ2 < l1,



then system (1), (3) has at least one non-trivial periodic
solution.

Suppose that exists the periodic solution of sys-
tem (1), (3) having two switchig pointss1, 2 ∈ En such
asγ′s1 = l1, γ′s2 = l2. In that case there exists a
pair of virtual switching pointŝs1, 2 ∈ En and real con-
stantsτ1, 2, τi > τ such as

ŝ1 = eÂ2τs1 +
∫ τ

0

eÂ2(τ−s)ĉ2 ds,

s2 = eÂ1(τ1−τ)ŝ1 +
∫ τ1−τ

0

eÂ1(τ1−τ−s)ĉ1 ds,

ŝ2 = eÂ1τs2 +
∫ τ

0

eÂ1(τ−s)ĉ1 ds,

s1 = eÂ2(τ2−τ)ŝ2 +
∫ τ2−τ

0

eÂ2(τ2−τ−s)ĉ2 ds.

Theorem 2.Let

γ′
(
Â1s2 + ĉ1

)
6= 0, γ′

(
Â2s1 + ĉ2

)
6= 0.

Denote

A1 =


E −

(
Â1s2 + ĉ1

)
γ′

γ′
(
Â1s2 + ĉ1

)

 eÂ1τ1+(Â2−Â1)τ ,

A2 =


E −

(
Â2s1 + ĉ2

)
γ′

γ′
(
Â2s1 + ĉ2

)

 eÂ2τ2+(Â1−Â2)τ .

If

A = ‖A2 A1‖ < 1,

then concerned periodic mode of system (1), (3) is
asymptotically orbitally stable.

Proof. Since

s1 = eÂ2(τ2−τ)+Â1τs2 + eÂ2(τ2−τ)×

×
∫ τ

0

eÂ1(τ2−s)ĉ1 ds +
∫ τ2

τ

eA(τ2−s)cm2 ds,

s2 = eÂ1(τ1−τ)+Â2τs1 + eÂ1(τ1−τ)×

×
∫ τ

0

eÂ2(τ1−s)ĉ2 ds +
∫ τ1

τ

eA(τ1−s)cm1 ds,

then

∂s1

∂s2
= eÂ2τ2+(Â1−Â2)τ ,

∂s1

∂τ2
= Â2s1 + ĉ2,

∂s2

∂s1
= eÂ1τ1+(Â2−Â1)τ ,

∂s2

∂τ1
= Â1s2 + ĉ1.

So, as

d (γ′ s1(s2, τ2)) = 0, d (γ′ s2(s1, τ1)) = 0,

then

ds2 =

(
E −

(
γ′

∂s2

∂τ1

)−1
∂s2

∂τ1
γ′

)
∂s2

∂s1
ds1 =

= A1ds1.

Similarly, ds1 = A2ds2, and

ds
(i+1)
1 = A2 A1 ds

(i)
1 , i = 0, 1, 2, . . .

Application of the principle of fixed point completes
the proof. ¥
Now let us turn to the system (1), (4). Denote

Â = A + κ c γ′; ĉi = −κ li c, i = 1, 2.

Lemma 3. If Reλ < 0, for any eigenvalueλ of matri-
cesA, Â, and

−γ ′A−1cm1 >
m1

κ
+ l2, −γ ′Â−1ĉ2 >

m2

κ
+ l2,

−γ ′A−1cm2 <
m2

κ
+ l1, −γ ′Â−1ĉ1 <

m1

κ
+ l1,

then system (1), (4) has at least one non-trivial periodic
solution.

Suppose that exists the periodic solution of sys-
tem (1), (4) having four switchig pointss1, 2, 3, 4 ∈ En

such as

γ ′s1 = l1 + m2/κ, γ ′s2 = l1 + m1/κ,

γ ′s3 = l2 + m1/κ, γ ′s4 = l2 + m2/κ.

In that case there exists virtual switching points
ŝ1, 2, 3, 4 ∈ En and real constantsτ1, 2, 3, 4, τi > τ such



as

ŝ1 = eAτs1 +
∫ τ

0

eA(τ−s)cm2 ds,

s2 = eÂ(τ1−τ)ŝ1 +
∫ τ1−τ

0

eÂ(τ1−τ−s)ĉ1 ds,

ŝ2 = eÂτs2 +
∫ τ

0

eÂ(τ−s)ĉ1 ds,

s3 = eA(τ2−τ)ŝ2 +
∫ τ2−τ

0

eA(τ2−τ−s)cm1 ds.

ŝ3 = eAτs3 +
∫ τ

0

eA(τ−s)cm1 ds,

s4 = eÂ(τ3−τ)ŝ3 +
∫ τ3−τ

0

eÂ(τ3−τ−s)ĉ2 ds,

ŝ4 = eÂτs4 +
∫ τ

0

eÂ(τ−s)ĉ2 ds,

s1 = eA(τ4−τ)ŝ4 +
∫ τ4−τ

0

eA(τ4−τ−s)cm2 ds.

Theorem 3.Let

γ ′
(
Âs2 + ĉ1

)
6= 0, γ ′ (As3 + cm1) 6= 0,

γ ′
(
Âs4 + ĉ2

)
6= 0, γ ′ (As1 + cm2) 6= 0.

Denote

A1 = E −

(
Âs2 + ĉ1

)
γ ′

γ ′
(
Âs2 + ĉ1

) eÂτ1+(A−Â)τ ,

A2 = E − (As3 + cm1) γ ′

γ ′ (As3 + cm1)
eAτ2+(Â−A)τ ,

A3 = E −

(
Âs4 + ĉ2

)
γ ′

γ ′
(
Âs4 + ĉ2

) eÂτ3+(A−Â)τ ,

A4 = E − (As1 + cm2) γ ′

γ ′ (As1 + cm2)
eAτ4+(Â−A)τ .

If

A = ‖A4 A3 A2 A1‖ < 1,

then concerned periodic mode of system (1), (4) is
asymptotically orbitally stable.

Proof. Since

s1 = eA(τ4−τ)+Âτs4 +
∫ τ

0

eA(τ4−τ)+Â(τ−s)ĉ2 ds+

+
∫ τ4−τ

0

eA(τ4−τ−s)cm2 ds,

then

∂s1

∂s4
= eAτ4+(Â−A)τ ,

∂s1

∂τ4
= As1 + cm2;

and

ds1 =

(
E −

(
γ′

∂s1

∂τ4

)−1
∂s1

∂τ4
γ′

)
∂s1

∂s4
ds4 =

= A4ds4.

Similarly,

dsi+1 = Aidsi, i = 1, 2, 3,

and

ds
(i+1)
1 = A4 A3 A2 A1 ds

(i)
1 , i = 0, 1, 2, . . .

Applying the principle of fixed point, the proof reachs
the end. ¥
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