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Abstract
In this study one considers the tracking control prob-

lem of a class of nonsmooth fully actuated Lagrangian
systems subject to frictionless unilateral constraints.
The task under consideration consists of a succession
of free and constrained phases. The transition from a
constrained to a free phase is monitored via a Linear
Complementarity Problem (LCP). On the other hand
during the transition from a free to a constrained phase
the dynamics contains some impacts that hamper the
asymptotic stability. Nevertheless we have proved the
practical weak stabilityof the system with analmost
decreasingLyapunov function. One numerical exam-
ple illustrates the methodology described in the paper.
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1 Introduction
This paper focuses on the problem of tracking control

of complementary Lagrangian systems (Moreau, 1988)
subject to frictionless unilateral constraints whose dy-
namics may be expressed as:







M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = U + ∇F (X)λX

0 ≤ λX ⊥ F (X) ≥ 0,

Collision rule
(1)

whereX ∈ R
n is the vector of generalized coordinates,

M(X) = MT (X) ∈ R
n×n is the positive definite in-

ertia matrix,F (X) ∈ R represents the distance to the
constraints,C(X, Ẋ) is the matrix containing Corio-
lis and centripetal forces,G(X) contains conservative
forces,λX ∈ R is the Lagrangian multiplier associ-
ated to the constraint andU ∈ R

n is the vector of gen-
eralized torque inputs. For the sake of completeness
we precise that∇F (X) ∈ R

n represents the vector of
partial derivatives ofF with respect to the components
of X . We assume that the functionF is continuously

differentiable and that∇F (X(tℓ)) 6= 0 for all impact
timestℓ. For any functionf the limit to the right at the
instantt will be denoted byf(t+) and the limit to the
left will be denoted byf(t−).
The admissible domain associated to the system (1) is

the closed setΦ where the system can evolve and it is
described as:

Φ = {X | F (X) ≥ 0}

In order to have a well posed problem with a physical
meaning we consider thatΦ contains at least a closed
ball of positive radius. More precisely, the boundary
of Φ (denoted∂Φ) might be a wall or something like,
which restricts the evolution of the system in a precise
domain. The presence of∂Φ can induce some impacts
that must be included in the dynamics of the system.
The collision (or restitution) rule in (1), is a relation
between the post-impact velocity and the pre-impact
velocity. In this paper the collision rule is given by
the Newton’s law of impact:ẊN(t+ℓ ) = −enẊN (t−ℓ ),
whereẊN = ∇FT (X)Ẋ denotes the normal compo-
nent of the velocity anden ∈ [0, 1] is the restitution
coefficient. The kinetic energy loss at the impacttℓ
will be denoted byTL(tℓ).
The tracking control problem under consideration was

studied in (Brogliatoet al., 1997) mainly in the 1-
dof (degree-of-freedom) case and in (Bourgeot and
Brogliato, 2005) in then-dof case. Both of these pa-
pers consider the problem of tracking a desired path
without imposing from the beginning a desired veloc-
ity. Here we not only consider the case when the sys-
tems’ task must be accomplished in a given period
(see Section 4) but the results in Section 8 relax some
very hard to verify condition imposed in (Bourgeot and
Brogliato, 2005).

2 Stability analysis criteria
The system (1) is a complex nonsmooth dynamical

system which involves continuous and discrete time
phases. A stability criterion for this type of systems



has been proposed in (Brogliatoet al., 1997). This cri-
terion is an extension of the Lyapunov second method
adapted to closed-loop mechanical systems with unilat-
eral constraints. Next, let us clarify the framework and
introduce some definitions.
First of all we split the time axis into intervals

Ωk and Ik corresponding to specific phases of mo-
tion. Precisely,Ω2k corresponds to free-motion phases
(F (X) > 0) andΩ2k+1 corresponds to constrained-
motion phases (F (X) = 0). Therefore, during the
Ωk phases no impact can occur. Between a free phase
and a constrained phase the dynamical system always
passes into a transition phaseIk containing some im-
pacts. Since the dynamics of the system does not
change during the transition between a constrained and
a free-motion phase, in the time domain one gets the
following typical task representation (see (Brogliatoet
al., 1997)):

R
+ = Ω0∪I0∪Ω1∪Ω2∪I1∪. . .∪Ω2k∪Ik∪Ω2k+1∪. . .

(2)
Throughout the paper, the sequenceΩ2k ∪ Ik ∪ Ω2k+1

will be referred as the cyclek of the system evolution.
The central issues of the paper are the design of tran-
sition phases and the study of stability of the trajectory
evolving along (2)(i.e. an infinity of cycles). Although
the simplest way to stabilize the system on∂Φ is to im-
pose a tangential contact, this is not a good idea since a
bad estimation of the constraint position may result in
no stabilization at all. Therefore, the best strategy for
stabilization on∂Φ is to impose a closed-loop dynam-
ics (containing impacts) which mimics the bouncing-
ball dynamics (see e.g. (Brogliato, 1999)). In order to
simplify the discussion we introduce the following tra-
jectories (more details can be found in (Bourgeot and
Brogliato, 2005)):
1) Xnc(·) denotes the desired trajectory of the uncon-
strained system. We suppose thatF (Xnc(t)) < 0 for
somet (∈ Ω2k+1), otherwise the problem reduces to
the tracking control of a system with no constraints.
2) X∗

d (·) denotes the signal entering the control input
and plays the role of the desired trajectory during some
parts of the motion.
3) Xd(·) represents the signal entering the Lyapunov
function. This function is set on the boundary∂Φ after
the first impact of each cycle.
These signals may coincide on some time intervals as
we can see in figure 1.
Let us defineΩ as the complement ofI =

⋃

k≥0

Ik

and assume that the Lebesgue measure ofΩ, denoted
λ(Ω), equals infinity. Considerx(·) the state of the
closed-loop system in (1) with some feedback con-
troller U(X, Ẋ, X∗

d , Ẋ∗
d , Ẍ∗

d ).

Definition 1 (Weakly Stable System).The closed
loop system is called weakly stable if for
each ǫ > 0 there existsδ(ǫ) > 0 such that
||x(0)|| ≤ δ(ǫ) ⇒ ||x(t)|| ≤ ǫ for all t ≥ 0, t ∈ Ω.
The system is asymptotically weakly stable if it is

A

A’’

BA’

C

Φ

∂Φ

X∗
d(t) = Xd(t)

Xd(t)

X∗
d(t)

Xnc(t) = X∗
d(t) = Xd(t)

Xnc(t)

Figure 1. The closed-loop desired trajectory and control sig-
nals

weakly stable and lim
t∈Ω, t→∞

x(t) = 0. Finally,

the practical weak stability holds if there exists
0 < R < +∞ and t∗ < +∞ such that||x(t)|| < R

for all t > t∗, t ∈ Ω.

Throughout the paper we considerIk = [τk
0 , tkf ], where

τk
0 is chosen by the designer as the start of the transi-

tion phaseIk andtkf is the end ofIk. We note that all
superscripts(·)k will refer to cyclek of the system mo-
tion. We also use the following notations:
• tk0 is the first impact during the cyclek,
• tk∞ is the accumulation point of the sequence{tkℓ }ℓ≥0

of the impact instants during the cyclek (obviously
tkf ≥ tk∞),
ConsiderV (·) such that there exists strictly increas-
ing functionsα(·) and β(·) satisfying the conditions
α(0) = 0, β(0) = 0 and α(||x||) ≤ V (x, t) ≤
β(||x||).

Proposition 1 (Weak Stability). (Bourgeot and
Brogliato, 2005) Assume that the task admits the
representation (2) and that

a) λ[Ik] < +∞, ∀k ∈ N,
b) outside the impact accumulation phases[tk0 , tk∞]

one hasV̇ (x(t), t) ≤ −γV (x(t), t) for some con-
stantγ > 0,

c) V (t−ℓ+1) − V (t+ℓ ) ≤ 0, ∀ℓ ≥ 0,
d) the system is initialized onΩ0 with V (τ0

0 ) ≤ 1,

e)
∑

ℓ≥0

σV (tℓ) ≤ KV p(τk
0 )+ ǫ for somep ≥ 0, K ≥ 0

andǫ ≥ 0.

Then forp < 1 one hasV (τk
0 ) ≤ δ(γ), whereδ(γ) is a

function that can be made arbitrarily small by increas-
ing the value ofγ. The system is practically weakly
stable withR = α−1(δ(γ)).

SoV (x(·).·) is a kind of ”almost decreasing” Lyapunov
function as illustrated in the numerical example section
(see figure 5).
Proposition 1 is very useful because attaining asymp-

totic stability is not an easy task for the unilaterally
constrained systems described by (1) especially when
n ≥ 2 andM(q) is not a diagonal matrix (i.e. there are
inertial couplings, which is the general case).



3 Controller design
In order to overcome some difficulties that can appear

in the controller definition, the dynamical system (1)
will be expressed in the generalized coordinates intro-
duced in (McClamroch and Wang, 1988). The new co-

ordinates will beq = Q(X) ∈ R
n, with q =

[

q1

q2

]

,

q1 ∈ R, such thatΦ = {q1(t) ≥ 0} and then
the set of complementary relations can be rewritten as
0 ≤ λ ⊥ Dq ≥ 0 with D = (1, 0, . . . , 0) ∈ R

1×n. The
controller used here consists of different low-level con-
trol laws for each phase of the system. More precisely,
the controller can be expressed as

T (q)U =







Unc for t ∈ Ω2k

Ut for t ∈ Ik

Uc for t ∈ Ω2k+1

(3)

whereT (q) =

(

T1(q)
T2(q)

)

∈ R
n×n.

The switching controller used in the following is
based on the fixed-parameter scheme presented in
(Slotine and Li, 1988) and the closed-loop stability
analysis of the system is based on Proposition 1. First,
let us introduce some notations:̃q = q − qd, q̄ =
q − q∗d, s = ˙̃q + γ2q̃, s̄ = ˙̄q + γ2q̄, q̇r = q̇d − γ2q̃

whereγ2 > 0 is a scalar gain andqd, q∗d will be ex-
plicitly defined in the next section. Using the above
notations the controller is given by























Unc = M(q)q̈r + C(q, q̇)q̇r + G(q) − γ1s

Ut = Unc before the first impact
Ut = M(q)q̈r + C(q, q̇)q̇r + G(q) − γ1s̄

after the first impact
Uc = Unc − Pd + Kf(Pq − Pd)

(4)

whereγ1 > 0 is a scalar gain,Kf > 0, Pq = DT λ

and Pd = DT λd is the desired contact force during
constraint motion.
In order to prove the stability of the closed-loop sys-

tem (1)- (4) we will use the following positive definite
function:

V (t, s, q̃) =
1

2
sT M(q)s + γ1γ2q̃

T q̃ (5)

4 Tracking control: two different formulations
In the sequel we also use the notations:
• t∗k is the time corresponding toq∗1d(t

∗k) = 0 (A′ on
figure 1),
• τk

1 is such thatq∗1d(τ
k
1 ) = −ϕV (τk

0 ) andq̇∗1d(τ
k
1 ) =

0, whereϕ > 0 is chosen by the designer in order to
impose a closed-loop dynamics with impacts during the
transient,
• tkd is the desired detachment instant, therefore
Ω2k+1 = [tkf , tkd] (tkd is such that(0, q2d(t

k
d)) is a point

of the unconstrained desired trajectoryqnc(·)).
The rationale behind the choice forq∗d(·) is to improve
the robustness of the impact phase by mimicking the

bouncing-ball dynamics. However, the presence of im-
pacts and velocity jumps hampers to obtain asymptotic
stability along a path like (2) for systems with inertial
couplings.
It is noteworthy thattk0 , tk∞, t k

d are state dependent
whereast∗k, τk

1 and τk
0 are exogenous and imposed

by the designer. The pointsA, A′′ andC in figure 1
correspond to the momentsτ0, tf andtd respectively.
Obviously during the free-motion phase the three tra-
jectories are the same and the discrepancy appears on
the transient and constraint-motion phases.
The main difficulties here, consist of
• stabilizing the system on∂Φ during the transition
phasesIk;
• deactivating the constraint at the moment when the
desired trajectory re-enters the admissible domain;
• maintaining a constraint movement between the mo-
ment when the system was stabilized on∂Φ and the
detachment moment.
Time-unconstrained case
In this case we want to solve the tracking control prob-

lem for the closed-loop dynamical system (1)-(4) with
the complete desired path constructed taking into ac-
count a priori the unilateral constraint. The desired
trajectory will be defined as a twice differentiable sig-
nal that coincides with the unconstrained trajectory in
the admissible domain and allows a smooth passage be-
tween the constraint-motion phase and the free-motion
phase.
Time-constrained case
This case might be motivated by some practical ap-

plication in which a desired path must be followed
in a given period. Additional difficulties related to
the motion-synchronization are introduced in the dy-
namics.Let us consider the motion of a virtual particle
perfectly following a given trajectory (represented by
Xnc(·) on figure 1) that leaves the admissible domain
Φ for a given period. Lettref,k

d be the instant when the
virtual particle re-enters the admissible domain (point
C of the orbit on figure 1). The time-constraint formu-
lation will refer to the tracking control strategy with a
desired trajectory constructed such that:
• on Ω2k it coincides with the trajectory of the vir-
tual particle (the desired path and velocity are defined
by the path and velocity of the virtual particle, respec-
tively),
• onΩ2k+1 its orbit coincides with the projection of the
outer part of the virtual particle’s orbit on the constraint
surface (Xd betweenA′′ andC in Figure 1),
• the desired detachment moment and the moment
when the virtual particle re-enters the admissible do-
main are synchronized.

5 Desired trajectory on phasesIk

In both of the previous two cases on[τk
0 , tk0) we im-

pose thatq∗d(·) is twice differentiable andq∗1d(t) de-
creases towards−ϕV (τk

0 ) on [τk
0 , τk

1 ]. For the sake of
simplicity, in order to satisfy the previous requirements



we define on[τk
0 , τk

1 ] the signalq∗1d(·) as a degree 3
polynomial function with limit conditions (tini = τk

0

andtend = τk
1 ).

The procedure presented above allows two different
situations. The first one is given bytk0 > τk

1 , which
means that all the jumps of the Lyapunov function are
negative. In this case the system is said strongly sta-
ble (for further details on this notion of stability see
(Bourgeot and Brogliato, 2005; Brogliatoet al., 1997)).
The second situation was pointed out in (Bourgeot and
Brogliato, 2005) and is given bytk0 < τk

1 . In this sit-
uation there exist positive jumps in the variation of the
Lyapunov function, therefore the system can be only
weakly stable.
In order to have a better control of the stabilization

process the signalq∗2d(t) is frozen during the transition
phase:

q∗2d(t) = q∗2d, q̇∗2d(t) = 0 on [τk
0 , tk∞],

q∗2d(t) is defined such thaṫq∗2d(t
∗k) = 0.

On (tk0 , tkf ] we setqd andq∗d as follows:

qd =

(

0
q∗2d

)

, q∗d =

(

−ϕV (τk
0 )

q∗2d

)

, (6)

and on[tkf , tkd] we set

qd =

(

0
qnc
2 (t)

)

, q∗d = qd. (7)

Assuming a finite accumulation period, the impact pro-
cess can be considered in some way equivalent to a
plastic impact. Therefore,q1d and q̇1d are set to zero
at tk+

0 .

6 Design of the desired contact force during con-
straint phases

The contact forcePd in (4) has to be sufficiently large
at the beginning ofΩ2k+1 and then to continuously de-
crease in order to assure a smooth passage to the un-
constrained phase at the end ofΩ2k+1. Otherwise, a
detachment is not possible and the system will remain
on∂Φ. On the other hand, if the desired force decreases
too much a detachment can take place before the end of
the constraint phase. This can generate other impacts.
Therefore we need a lower bound of the desired force
which assures the contact during the constraint phases.
Dropping the time argument, the dynamics of the sys-

tem onΩ2k+1 can be written as

{

M(q)q̈ + F (q, q̇) = Uc + DT λ

0 ≤ q1 ⊥ λ ≥ 0
(8)

whereF (q, q̇) = C(q, q̇)q̇ + G(q). On [tkf , tkd) the sys-
tem is permanently constrained which impliesq1(·) =
0 andq̇1(·) = 0. In order to assure these conditions it is
sufficient to haveλ > 0. In the following let us denote

M−1(q) =

(

[M−1(q)]11 [M−1(q)]12
[M−1(q)]21 [M−1(q)]22

)

and

C(q, q̇) =

(

C(q, q̇)11 C(q, q̇)12
C(q, q̇)21 C(q, q̇)22

)

.

Proposition 2. OnΩ2k+1 the constraint motion of the
closed-loop system (8)-(4) is assured if the desired
force is defined by

λd =
[

−
(

[M−1(q)]11C12(q, q̇) + γ1[M
−1(q)]12

+[M−1(q)]12C22(q, q̇)
)

s2 − β
]

M̄11(q)
1+Kf

(9)

whereM̄11(q) =
(

[M−1(q)]11
)−1

andβ > 0.

7 Strategy for take-off at the end of constraint
phasesΩ2k+1

Now, we are interested in finding the conditions on
the control signalUc that assures the take-off at the end
of constraint phasesΩ2k+1. As we have already seen
before, the phaseΩ2k+1 can be expressed as the time
interval [tkf , tkd). The dynamics on[tkf , tkd) is given by
(8) and the system is permanently constrained which
meansq1(·) = 0 andq̇1(·) = 0. Thus, the detachment
takes place attkd if q̈(tk+

d ) > 0 which impliesλ(tk−d ) =
0.

Remark 1. In (Bourgeot and Brogliato, 2005) the nec-
essary conditions for detachment are stated from the
complementarity relation in (8). However a precise
definition of the desired signalsq1d andλd that guar-
antee a smooth detachment is not given.

To simplify the notation we drop the time argument
in many equations of this paragraph. Straightforward
computation leads to the following result:

Proposition 3. For the closed-loop system (8)(4) the
passage from the constraint-motion phase to the free-
motion phase can take place if

b(q, q̇, Unc, λd)
∆
=

DM
−1(q)[Unc − F (q, q̇) − D

T (1 + Kf )λd] ≥ 0

Proposition 4. The closed-loop system (8)(4) is per-
manently constrained on[tkf , tkd) and a smooth detach-
ment is guaranteed on[tkd, tkd + ǫ) (ǫ is a small positive
real number chosen by the designer) if

(i) λd is defined on[tkf , tkd) by (9) whereβ is replaced
by a time dependent function that decreases to 0
as the timet approachestkd (we can choose a lin-
ear function asβ(tkd − t) whereβ is a real strictly
positive number).

(ii) On [tkd, tkd + ǫ)

qd(t) =

(

q∗1d(t)
qnc
2 (t)

)

,

whereq∗1d(t) is a twice differentiable function such
that



q∗1d(t
k
d) = 0, q∗1d(t

k
d + ǫ) = qnc

1 (tkd + ǫ),
q̇∗1d(t

k
d) = 0, q̇∗1d(t

k
d + ǫ) = q̇nc

1 (tkd + ǫ)
(10)

andq̈∗1d(t
k
d) = a with

a > max
(

0, −[M−1(q)]11(1 + Kf )λd(t
k−
d )
)

.

Proof: For the sake of brevity and due to the space con-
straint we give here only the idea to prove Propositions
2, 3 and 4. All these results are based on the solution
of the LCP derived by combining (8) and (4), which is:

0 ≤ DM−1(q)
[

− F (q, q̇) + Unc − (1 + Kf )DT λd

]

+(1 + Kf)DM−1(q)DT λ ⊥ λ ≥ 0. (11)

8 Closed-loop stability analysis
To simplify the notationV (t, s(t), q̃(t)) is denoted as

V (t).

Assumption 1. The controllerUt in (4) assures that
the sequence{tkℓ}ℓ≥0 of the impact times possesses a
finite accumulation pointtk∞ i.e. lim

ℓ→∞
tkℓ = tk∞ <

+∞, ∀k ≥ 0.

Theorem 1. Let Assumption 1 hold,en ∈ [0, 1) and
q∗1d be defined as in Section 5. The closed-loop sys-
tem (1)(4) initialized onΩ0 with V (τ0

0 ) ≤ 1 is prac-
tically weakly stable with the closed loop statex(·) =
[s(·), q̃(·)].

Proof idea: Without entering into details one can show
that the functionV satisfies all the conditions in Propo-
sition 1 withp = 3

4 . This Theorem extends the results
presented in (Bourgeot and Brogliato, 2005) as fol-
lows. On one hand it generalizes Claim 7 of (Bourgeot
and Brogliato, 2005) dropping the unnecessary and
very hard to verify condition||q̃2(tℓ+1)|| ≤ ||q̃2(tℓ)||
for all tℓ on [t0, t∞). On the other hand, it extends
Claim 9 of (Bourgeot and Brogliato, 2005) from plastic
to non-elastic impacts.

The closed-loop stability analysis of the system in
the time-constrained case is assured by Theorem 1 re-
placing Assumption 1 with a stronger condition and
changing the desired trajectory on the transition and
constrained motion phases. In order to be more pre-
cise, Assumption 1 is replaced witht0f < t

ref,0
d

which meanstkf < t
ref,k
d , ∀k ≥ 0 sinceV (τk+1

0 ) ≤

V (τk
0 ), ∀k ≥ 0 (in other words we suppose that the

transition phase is short enough to allow the motion
synchronization presented in Section 4).
Since on the transientq2d was frozen we have to re-

duce the length ofΩ2k+1 defining on[tkf , t
ref,k
d ] a de-

sired trajectoryqd =

(

0
q2d

)

such that

q2d(t
k+
f ) = q∗2d, q2d(t

ref,k−
d ) = qnc

2 (tref,k
d ),

q̇2d(t
k+
f ) = 0, q̇2d(t

ref,k−
d ) = q̇nc

2 (tref,k
d ).

For the sake of simplicity we consider again thatq2d(t)
is given by a polynomial function of degree 3 (i.e. the
minimum degree that allows to satisfy all the condi-
tions).
Finally, in order to assure the smoothness of the de-

sired trajectory before the first impact one has to reduce
the velocityq̇∗2d(·) before freezingq∗2d(·). Therefore, on
[τk

0 , τk
0 + δ] we define

q∗2d(t) = qnc
2

(

τk
0 +

(t − τk
0 − δ)2(t − τk

0 )

δ2

)

.

9 Two-link Manipulator
Let us test the control scheme (4) in simulation on

a two-link planar manipulator moving in theXOY

plane. We consider the following notations (see figure
2): θi represents the joint angle of the jointi, mi is the
mass of linki, Ii denotes the moment of inertia of link
i about the axis that passes through the center of mass
and is parallel to theZ axis, li is the length of linki,
andg denotes the gravitational acceleration.
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Figure 2. Two-link planar manipulator

Let us consider the tracking control problem of the
trajectory described by the end point of the manip-
ulator’s second link with the constraint given by the
ground (i.e. y = 0). Obviously the associated ad-
missible domain isΦ = {(x, y) | y ≥ 0}. One in-

troduces the generalized coordinatesq =

[

y

x

]

, y ≥ 0

where(x, y) are the Cartesian coordinates of the end
point. One assumes that the system must accomplish a
cyclic task consisting of tracking a circle that violates
the constraint. In order to track the trajectory the ma-
nipulator must follow the ground line from the point
where the circle leaves the admissible domain to the
point where the circle re-enters in it. Thus, the task
has a time representation given by (2). Here we con-
sider only the situation of the time-constrained case and
we use the Moreau’s time-stepping simulation algo-
rithm of the SICONOS software platform (Acary and
Pérignon, 2007). The choice of a time-stepping algo-
rithm was mainly dictated by the presence of accumu-
lations of impacts which render the use of event-driven
methods difficult. The numerical values used for the
dynamical model arel1 = l2 = 0.5m, I1 = I2 =



1kg.m2 andm1 = m2 = 1kg. The restitution coeffi-
cient is set toen = 0.7 and the gainsγ1 = 35, γ2 = 20
(see (4)). In figure 3 is plotted the trajectory of the sys-
tem when the period of each cycle is set to 5 seconds
and the final simulation time is 300 seconds. Obviously
the trajectory is a little bit deformed with respect to the
half circle since the desired trajectory on the transition
between the free-motion and constraint-motion phases
is changed.

Figure 3. Left: The trajectory of the end point in the Oxy-
plane forγ1 = 35, γ2 = 20 and the period of each cycle fixed
atT = 5 seconds; Right: Zoom on the transition phases.

The variation of the generalized coordinatesq1 andq2

during 6 cycles is depicted in figure 4. On this figure
one can see that during the transition phasesIk the sys-
tem mimics the bouncing ball motion.

Figure 4. The variation ofq1(t) (left) and q2(t) (right) for
γ1 = 35, γ2 = 20 and the period of each cycle fixed atT = 5

seconds.

As we can see in figure 5 the tracking error rapidly
decreases and remains close to 0. In other words the
practical weak stability is guaranteed. Due to the im-
pacts during each cycle the asymptotic stability is im-
possible to obtain. On the zoom made in figure 5 one
can also observe the stabilization of the system on∂Φ
during the transition phases.

10 Conclusions
In this paper we have proposed a methodology to

study the tracking control of fully actuated Lagrangian
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Figure 5. Variation of the Lyapunov function; Zoom: Varia-
tion of the Lyapunov function during the phaseI1

systems subject to frictionless unilateral constraints.
The main contribution of the work is threefold: first,
it extends the stability analysis results obtained in
(Bourgeot and Brogliato, 2005), second, it presents an
explicit expression of the desired contact force that as-
sures both the constrained motion onΩ2k+1 and the
take-off at the end ofΩ2k+1, and third, it consid-
ers the case of tracking control in presence of some
time-constraints. A numerical example validates the
methodology. A study regarding the robustness with
respect to the joint flexibilities is in preparation.
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