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Abstract. The paper discusses the peculiarities of the con-
trolled movement dynamics of flexible mechanical systems 
with time-varying number of freedom degrees. The strate-
gies sequence of such kind nonstationary objects control is 
stated. These strategies guarantee the high accuracy of the 
control and damping of the elastic oscillations. Block 
schemes of the control system are suggested that realize 
these control strategies at different stages of the object. 

 
I. INTRODUCTION AND STATEMENT OF A TASK1 

Many different types of moving mechanical objects that 
clearly exhibit the properties of flexible multi-frequency 
oscillating systems with discretely time-varying number of 
freedom degrees are well known. Typical examples of such 
mechanical systems (MS) are the orbit-assembled large 
space structures (LSS) [1]. Space and underwater robotic 
modules that change their structure during the operation and 
have long flexible manipulator links or flexible payloads can 
be considered as such kind objects. Similar dynamics exhibit 
exotic multistory buildings that are constructed on moving 
basement with active stability systems [2]. These objects are 
created in earthquake-prone zones. 

A principal feature of such MS is a rigid carrier body 
(main body) and attached to it throughout the assembly 
some flexible elements (carried bodies). 

Such construction makes it possible to solve the control 
problems of discretely evolving structure (DES) with the use 
of equations that are shaped as a sequence of model-physical 
models (MPM) [3] 
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where Σ ∈�x qϑ  is the controlled coordinate of the carrier 
body; x  is the coordinate of the transfer (rigid) motion; �x  
is the additional motion of the carrier body due to the influ-
ence of the flexible elements; ,i n inkω ��  are the fundamental 
frequencies and the excitability coefficients of the elastic 
modes; n is the number of the flexible carried elements at 
the n-th stage of the assembly; N is the total number of at-
tached elements; )(uM  is the control action; u is the control 
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law (the input signal of the orientation system actuator de-
vice); ( )n cI I n=  is the inertia moment of the construction at 
the n-th stage of the assembly, nM , ( 0,1,2,...,n N= ) defines 
MPM of the object at the n-th stage of its assembly in the 
orbit. Index 0n =  identifies the MPM of the carrier body: 

0 :M   0 0 0( ) , ( ) ( )x m u m u M u I= =�� .             (2) 
At this stage, carrier body is set up, oriented and stabi-

lized with the accuracy, which is need for the next assembly 
stages. With increasing the value of n, the model (1) be-
comes more complicated since the number of freedom de-
grees and the inertia moment also increase. According to the 
general Rayleigh’s theorem, an increment of the inertia 
moment leads to decreased frequencies iω� . They close with 
the frequency of the "rigid" controlled motion. It is well 
known that, as a result, a quality control becomes problem-
atic and motion instability may arise. This instability can be 
caused by the "capture" of the regulator by elastic oscilla-
tions. 

At n N=  equations (1) defines completely assembled 
construction. 

The above discussion suggests that, when designing the 
control system, the following three qualitatively different 
types of the controlled object condition should be distin-
guished. 
1. The initial type ( 0n = ) involves the carrier body orienta-
tion with respect to the required direction and its stabiliza-
tion with accuracy that is necessary for the further assembly. 
2. Once the first construction flexible element ( 1n = ) and 
some other flexible elements ( *n n≤ ) are attached to the 
assembled object that begins exhibit the properties of a 
flexible MS, which is characterized by the presence of one 
or several comparatively high-frequency (∼1÷10 Hz) vibra-
tion modes. 
3. As the number of the flexible elements increases 
( *n n N< ≤ ), the assembled construction turns into a hard-to-
control system. Such system is distinguished by a big inertia 
moment of the attached bodies and low elastic modes fre-
quencies (< 0,1 Hz). These frequencies close with the fun-
damental frequency of the "rigid" motion of the object. 
In the paper the following tasks are solved: 
– the transformation of dynamical properties of a discretely 
evolving structure that is being changed in accordance with 
prescribed construction assembly sequence; 
– determination of the transformation boundaries Between 
the boundaries the assembled construction retains the prop-
erties that correspond to one of three aforementioned types 
of the system condition: a) rigid body, b) flexible object 
with insignificantly affected system dynamics of the 
construction elastic oscillations, c) flexible multi-frequency 
construction that requires an extension of the observation 



 

vector, so that the desired controlled dynamics can be 
achieved; 
– the control system design of discretely evolving flexible 
object with the use of the sequence of algorithms that corre-
spond to the object condition and implement a stable control 
of the main body with regards to elastic oscillations and 
provide a high accuracy on all stages of the assembly. 
 

II. TRANSFORMATION OF THE DES DYNAMICAL 
PROPERTIES 

 
For brevity as the control object it will be considered the 

construction of "umbrella" type [3] that is shown in Fig. 1. 
This construction is suitable for describing such objects as 

the big space radio-telescopes and space solar-reflectors 
[1,2]. As the MS it is the totality of rigid bodies one of them 
is the carrier body ( 0 0,m I ). Others (carried bodies, ,j jm I ) 
are the elements that are attached to the carrier body in one 
or another order. At the attaching points of the elements 
there are the springs that imitate the flexibility of the carried 
bodies and restrict their displacements. Further plane-
parallel motion of all bodies is considered.  

For definiteness the regular structure is considered (for 
example big compound reflector [1]). Radially (Fig. 1) K 
chains are attached to the carrier body at the points ko  
( 0, k

k kr oo=α , 1,k K= ). Each the k-th chain has ks  con-
nected in tandem rigid elements of a pivot type. The pa-
rameters of the elements are: k

jm , k
jI , k

jl , k
jr  (mass, mo-

ment of inertia, length and the distance from the point jko  to 

its center of mass, 1, 2,..., ,...,k kj j s= , is the number of the 
element in the k-th chain, k kj s≤  is the number of the last 
element when the chain is not completely assembled yet). 
Chain deformations is defined by the elasticity coefficients 

k
jb  of the aforementioned springs. 

1

K

k
k

N s
=

=∑  is the total 

number of the construction elements. 
Transformation of the dynamical properties of the DES 

intermediate structures can be reflected by the MPM (1) 
coefficients , , ( )i n in ck I nω �� , 1, ; 0,i n n N= = . Calculation of 
these coefficients at big values of the number n requires 
much time. For solving of the task that is defined the trans-
formation of the DES dynamical properties throughout the 
assembly it is convenient to use the package of programs [3] 
for computer derivation of the DES mathematical graph-
model. As the output product of this package, moreover of 
computer visualization the graph-model, we have two trian-
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In Fig. 2 it is shown the example of this package use for 
the "spiral" type of the object assembly (Fig. 3) with the 
parameters: K=12, 1, , ( 5)k k kj s s= = , 1,k K= , 20k

jm kg=  
2

0 0 0500 , 50 , 0,5 ;m kg I kg m r m= = ⋅ = , 2k
jl m= , 1,60n =  

(all elements are the same).  

Fig. 2a shows that the fundamental frequencies range of 
the elastic oscillations widen as the number n increases. At 
this the lowest frequency 1 1( ) nnω ω≡� �  decreases that leads 

 

Fig.1.Current structure of the DES. 
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Fig. 2. Changing of the MPM coefficients 
           throughout the object assembly.   
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to coming together the frequency 1nω�  with the frequency 

( ) nnω ω≡  of rigid motion. 

Summary coefficient of elastic oscillations excitability 

0( ) [( ( ) ) 1]сk n I n IΣ = −�  and the degree of excitability 

2

1
( )

n

i i
i

n kµ ω−
Σ

=

=∑ � ��  with at the increment of the number n in-

crease also. This fact indicates that disturbing influence of 
the elastic oscillations on the control quality grows, the con-
struction turns into the hard-to-control system and it is re-
quired to have more perfect control algorithm. 

Let us consider the process of coming together of the 
lowest frequency 1nω�  and the frequency of the rigid motion 

nω  (rigid object with the moment of inertia ( )сI n ) at PD 
control algorithm.  

In this case 1
1 2( ) ( ) ( ) ( )n cm u M u I n k x k x−= = − + � . The 

frequency nω  is defined by characteristic equation 
2

1 2( )( ) 0сp I n k k p+ + = , p jω= . Obtained with the help of 
computer the graph 1( ) ( ) ( )n n nω ω ω∆ = −�  of coming to-

gether the frequencies 1nω�  and nω  is shown in Fig. 4.  
It is obvious that at the assembly of the first row elements 

( 1,12 , 1kk j= = ) the frequencies 1nω�  and nω  come together 
slowly ( ( ) 1,2nω∆ ≈ ). This is explained by small increment of 
the summary moment of inertia. At the attaching the first 
element of the second row ( 13n = ) the moment of inertia 

13I  increases significantly (proportionally to square of the 
distance of the attached mass from the center of inertia of 

the system). This leads to step-wise coming together fre-
quencies 1nω�  and nω  ( 0, 4ω∆ ≈ ).  

This coming together of aforementioned frequencies oc-
curs also for more general case of PD control of multi-
frequency objects. In Fig. 5 it is shown the example of com-
puter constructed of the trajectory hodograph of the charac-
teristic equation roots in the space of three dimensions 
( , ,j nα ω ). Along the third axis that completes the plane of 
complex variable to orthogonal trihedron the number of at-
tached element n is put aside. Such approach to the analysis 

of the system dynamical properties makes it possible to con-
nect the configuration of the roots distribution with the cur-
rent value of the number n. 

Fig. 5 illustrates the general example of the trajectory be-
havior of the system (1) characteristic equation roots 

( ) n nn jλ α ω= ±  and roots 1 1( ) n nn jλ α ω= ±� �  with linear PD 

control algorithm at 1,60n = .  
The big distance between of the trajectory initial points of 

the roots min( )nλ   and min( )nλ�  along the axis jω  shows 
unessential influence of the dominant mode )(~

1 tx  on the 
rigid body movement ( )x t . At increasing of the number n 
aforementioned property is remained valid only at low n. At 
passage from one row of the assembly to the next row it is 
occurred jump-like character of the coming together the 
frequencies 1nω�  and nω . The distance ω∆  decreases and 

from an value of the number *n  (in our example * 36n = ) 
the distance between the roots becomes too little ( ω ωε∆ ≤ ) 
in order to guarantee desired dynamics of the controlled 
DES and it is necessary to use more complicated control 
algorithm. 
 

III. CONTROL STRATEGY TRANSFORMATION 
THROUGHOUT THE DES ASSEMBLY 

Above it was determined the presence of three types of the 
controlled object condition throughout its assembly: rigid 
body → elastic MS → essentially flexible MS. For each 
type of the object condition it is required particular approach 
to the control algorithm design. 

Fig. 3.  The "spiral" type of the object assem

 Fig. 4. The graph of frequencies 1 nω�   
            and nω  coming together.         
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A. The strategy of the DES control in the initial stage of its 
condition 

For realization of the required quality of the object con-
trol first of all the base control algorithm 0 ( , , )u x x t�  is syn-
thesized. At least this algorithm must guarantee desired dy-
namics during the first phase of the DES existence as the 
rigid body. Mathematical model of the rigid object corre-
sponds to equation (2). For the concreteness of the investi-
gation and taking into account that almost all control sys-
tems use the on-board computer discrete analog of PD algo-
rithm is chosen as base one 

,...2,1,0)],(ˆ)(ˆ[)( 210 =∆+−= ktxktxkktu kkk , .    (3) 
The use of this discrete algorithm leads very often to the 

excitation of the construction elastic oscillations. In (3) 
ˆ( )kx t  the estimation of the measured coordinate. For the 

process of estimation it is used s values of the coordinate 
( ), 1,x t t s= , during the discreteness period 0T . The value 
ˆ( )kx t∆  is calculated as the first difference of the coordinate 

ˆ( )kx t . As the system is discrete the control action )(um  is 
discontinuous and it is constant during the discreteness pe-
riod 0T . 

Throughout regime of the object stabilization that is the 
main one dead zones and hysteresis in the actuator device 
characteristics lead to the auto-oscillations. Today there arte 
many well-known algorithms that guarantee desired dynam-
ics of the stabilization processes (

maxx x≤ , *a Γχ=τ τ ≤χ , 

aτ  is the part of the stable limit cycle period τ  when 
( ) 0m u ≠ , Γτ  is the one when ( ) 0m u = , *χ  is the admissible 

value of the coefficient of the limit cycle quality). The 
movement that corresponds to this limit cycle can be con-
sidered as the reference one. Since it is required that the 
influence of the elastic oscillations on the system dynamics 
will be negligible 

xx x x= − ≤ ε� ,                                 (4) 
all transient processes throughout the object assembly must 
tend to the reference movement. 

B. The strategy of the DES control in the stage of the elastic 
MS 

Once the first flexible element ( 1n = ) and some other 
ones ( 1n ≥ ) are attached to the carrier body the object turns 
into elastic MS. Usually at this case discrete base control 
excites elastic oscillations of the construction that deform 
the stable limit cycle and, as the result, condition (4) is bro-
ken. The control accuracy decreases. Without transforma-
tion of the control strategy the high amplitude of the elastic 
oscillations can be as a course of the system instability [5]. 
The other problem for the elastic MS control is increase of 
the DES inertia moment (Fig. 2, c) that leads to decrease of 
the control action effectiveness and to increase of the dy-
namic errors. At last the main problem in the control algo-
rithm synthesis for this stage of the object condition is in-
creasing throughout the assembly dimension of model (1), 
jump-like changing all its coefficients and decrease of the 

1nω� . 

Inaccuracy of the DES mechanical parameters calculation 
in the system designing (and consequently of model (1) co-
efficients) and the same for the initial values of the new 
elastic modes that occur at each next stage of the object as-
sembly require not only transformation of the control strat-
egy but the use of adaptive control. 

At the small values of the number n the fundamental fre-
quencies of the elastic oscillations are comparatively high 
and far away from the frequency of the "rigid" motion (Fig. 
5). In this case it is convenient to apply as a control strategy 
the approach with the use of intelligent diagnostic [6]. This 
approach intends the tuning of the base algorithm that guar-
antees both the "rigid" motion stabilization and the elastic 
oscillations damping. 

The essence of this approach is following. It is well-
known [5] that the excitation of the elastic oscillations oc-
curs at each switching of the discrete control action. Inten-
sity of the oscillations ( ) ( )t x tρ = � , when it exceeds some 
critical level crρ , leads to instability of the control system 
(mainly at the expense of the dominant mode dx�  increas-
ing). Consequently, the value ( )tρ  and the inequality 

cr( )tρ ρ<  can be used both for diagnostics of the system 
condition and as the control signal cr( ( ))au f tρ ρ= −  in the 
loop of the base algorithm 0( , , , )u x x t λ�  parameter λ tuning 
(adaptation). At this the base algorithm influence on the 
oscillating component d i i d

x x x
≠

= +∑� � �  of the model (1) 
can be estimated by quasienvelope ( , ) Env[ ( ( , ), )]t x u tρ λ λ=� � i  
in an interval that is equal to several periods of the limit 
cycle. This quasienvelope after two-stage approximation can 
be presented by exponential curve 

( , ) Env[ ( ( , ), )]t x u tρ λ λ=� � i . The value of exponential curve 
index ( )ν λ  defines the rate of the dominant mode ampli-
tude changing. The sign ( )ν λ  defines the character of this 
changing. At sign 1ν = −  the dominant mode converges, at 
sign 1ν = +  it diverges. 

Thus, for any fixed value 
min max[ , ]λ λ λ∗ ∈ , (

min max[ , ]λ λ  is 

admissible range of the parameter λ  tuning) the regulator 
influence on the elastic component ( )x t�  can be defined by 
the single number ( )ν ν λ∗ ∗= . Changing the value λ and 
calculating the index ( )ν λ  we obtain "model" function 

( )d dν ν λ=  can be obtained. This function estimates the base 
algorithm influence on the object of the elastic oscillations. 
Totality of the "model" functions { ( )}d dν λϒ = , ( 1,d j= ; 

*j n≤ ), each of that has some local extremis (including 
global minimum), is used as an informational software for 
the intelligent diagnostics subsystem of the oscillation com-
ponent ( )x t�  current condition and for tuning of the base 
algorithm parameter λ. In [6] it was shown that for design-
ing of the DES control system at each stage of the object 
assembly it is necessary to solve the next two tasks: 1) to 
define the number d of the dominant mode using the identi-
fied value of its frequency dω� ; 2) to choose from the total-
ity { ( )}d dν λϒ = , that is kept in the computer as the knowl-



 

edge base, the corresponding to number d "model" function 
( )dν λ  and to choose new value of the parameter 

1 min max[ , ]λ λ λ∈  that guarantees the fulfillment of two condi-
tions 

1sign[ ( )] 1ν λ = −  and 1 min( )ν λ ν= . At this case the new 

control action 1 1[ ( , )]m u λi  remains good quality of the con-
trol of the object rigid movement and at the same time real-
izes maximal rate of the dominant mode dx�  damping. 

Block scheme of the stabilization system of the DES as 
the flexible MS that has additional loop of the oscillating 
component diagnostics and adaptive correction of the base 
algorithm is shown in Fig. 6.      

Here the amplification coefficient m ( )K n  of the control 
device is tuning according to the value of the inertia moment 

( )cI n  that is calculated in advance. This tuning realizes 
constancy of the control action effectiveness 

( ) const 0,um n n N= ∀ ∈  throughout all stages of the ob-
ject's assembly. Aforementioned procedure of the quasien-
velope ( )( ) tt aeν λρ ≈�  estimation is realized in the informa-
tion module of the subsystem of the base algorithm tuning. 
This module has identification device of the dominant mode 
frequency and the device of the index ( , )tν λ  calculation. As 
the input signal it is used the date base mZ  that consists of 
the base data [ ]mz l  (amplitudes of the rectified signal 

,z l k∈ ) and the date base { [ ]}mmT t l= . In the regime of the 
dominant mode the differences [ ] { [ ] [ 1]} 0,5m m m jdt l t l t l τ∆ = − − ≈ �  
of the adjacent elements of the base data { [ ]}mmT t l=  coin-
cide with the semiperiod 0,5 j d�τ  of the oscillation compo-
nent that has maximal amplitude. After the average opera-

tion 
1

1

2 [ ]
1

L

d m
j

t l
L

τ
−

=

= ∆
− ∑� , ( dim mL T= )  the dominant mode 

frequency 12d dω πτ −= �  can be calculated. For the determina-
tion of  the dominant mode number d the differences 

( 1, )j j d j n
ω ω ω

=
∆ = −  are analyzed and it is assumed d j=  

for minj j d j
ω ω ω∆ = − = . 

Corrected control action 1 1[ ( , )]m u λ•  damps dominant 
mode by optimal way. At the same time other elastic modes 
can be increased and one of them will be as new dominant 

mode. Then the process of the parameter λ tuning is re-
peated. 

Described processes of sequential damping of the domi-
nant modes take place throughout the object assembly and 
do not require additional consumption energy for control.  

C. The strategy of the DES control in the stage of the essen-
tially flexible MS 

The main deficiency of the previous strategy of control in 
this stage of the object's presence is impossibility to estimate 
the quesienvelope ( )tρ�  during the observation interval surT  
that is acceptable for control. This is the result of coming 
together the lowest frequency of the elastic oscillations with 

the frequency of the "rigid" movement (Fig. 5). At 
this case resonance processes can occur and the 
system becomes unstable. 

As the base of the strategy of control for the es-
sentially flexible MS can be used the one that was 
suggested in [7]. In this type of control it is used 
the estimations of the dominant mode phases β  in 
the instants jt  of the control action switching. The 

time-delay βτ  for control action switching is intro-

duced until the instant *
j jt t βτ= +  when the afore-

mentioned phase will be as optimal. This time-
delay can be introduced only in a part of switching points. 

Optimal phase jβ  is the phase at which the dominant 
mode's amplitude after the switching will be the smallest 
from all possible ones. It depends on the direction of the 
control action switching. The optimal phase jβ  is defined as 
follows [7]: 

2   sign 1,

(2 1)  sign 1, 0,1,2,...
j

j
j

k m

k m k

π
β

π

∀ = +=  + ∀ = − =

�

�
        (5)               

For example the minimum value of the time-delay βτ  in 
the switching point that is characterized by the condition 

0( ( ))u x t ε= , 0sign ( ) 1m t =−�  (ε  is the dead zone of the relay 
function) will be as follows: 

1
0 0

1
0 0

[ ( )] 0 ,

[3 ( )] 2 ,
d d d

d d d

t

tβ

π β ω β π
τ

π β ω π β π

−

−

 − ∀ ≤ ≤= 
− ∀ < ≤

�
�

                (6)       

where 0 0( )d d tβ β=  is the dominant mode phase at the in-
stant when 0( )x t ε= . 

In [7] it was shown that for the system movement stability 
optimal phase of switching must be at least at the one-half of 
the switching points that occur at each period of the limit 
cycle. Block scheme of such type control system is shown in 
Fig. 7.  The main loop of the control system is depicted by a 
dot line. This loop includes an additional link with two tun-
ing parameters ,mK τ . The first parameter mK  is the tuning 
amplification coefficient that is needed for the maintenance 
of the constant level of the control action 1( )u u m cm M K I n−=  
with the variable mass-inertia properties of the assembled 
object. 
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The second tuning coefficient τ  implements the control 
by the time-delay of the relay control action, which switches 
with respect to the base algorithm requirements. The estima-
tion of current phase of the dominant mode is obtained with 
the help of Kalman filter [8]. 

The example of computer simulation of the suggested 
system for one stage of the object assembly is shown in Fig. 
8. As the object corresponding to equations (1) at 6n =  it 
was chosen the large space structure with the inertia moment 

4 2( 6) 10cI n kg m= = ⋅ . Other parameters are given in the table. 

As the dominant mode at the initial stage of the control 
was 1x� . This mode is subjected to the control action influ-

ence the most strongly because its degree of excitability 
(1) 2
1 1 1 0,88kµ ω−= =� �  in the most high. 
At initial interval of the simulation ( 1 220t t c≤ = ) the 

loop of time-delay of the control action switching was not 
operated. In this case the control action 0( )m u  causes the 
increase of the elastic mode amplitude to the value 

31,2 10dA rad−≈ ⋅�  that is close to the critical one. 

In order to prevent the capture of the regulator by elastic 
oscillations and instability of the system movement at 

1 220t c=  the algorithm of phase control [ ( , , )]tm u tβ•  was 
applied. The intervals of the time-delay of the control action 
switching are shaded (see oscillogram 2). As the result the 
dominant mode amplitude was decreased very quickly. 

IV. CONCLUSION 

Suggested approaches that realize adaptive correction of 
the base algorithm with using the elements of intelligent 
diagnostics and the method of phase control guarantee 
damping of elastic oscillations without increasing consump-
tion of the energy for control. 
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