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Abstract— Multiple subsystems are required to behave syn-
chronously or cooperatively in many areas. For example,
synchronous behaviors are common in networks of (eletro-
)mechanical systems, cell biology, coupled neurons, and cooper-
ating robots. This paper presents an observer-based nonlinear
feedback scheme for synchronization among Hindmarsh-Rose
models which have polynomial vector fields. To this end, first we
show that the problem is equivalent to finding an asymptotically
stabilizing control for error dynamics which is also a polynomial
system. On the basis of the previous result which uses full
state information of the other model, we propose a certainty-
equivalence control for the error dynamics. In other words,
it is shown that the observer error linearization method can
be applied to the error dynamics and that the error variable
converges to zero due to the stable observer error dynamics
and the globally asymptotically stable error dynamics.

I. INTRODUCTION

Synchronization is the asymptotic coincidence of the state
vectors of two (or more) systems [5]. Recently, synchroniza-
tion phenomena among multiple subsystems have received
much attention in various research fields. For example, neu-
roscience [21], [29], [16], biology [28], physics [17], [33],
[8], [4], coordinated motion and consensus problems [10],
[20], control and dynamical systems theory [18], [5], [22],
[19], and mechanical engineering [25], [23]. In these areas,
synchronous behavior among subsystems plays an important
role. For details of synchronization in particular fields, see
these papers and the references therein.

To investigate synchronization in various research areas,
mostly, five models are popularly used: Hodgkin-Huxley
[13], [34], Kuramoto [1], [6], [28], Lorenz [15], [32], [11],
Fitzhugh-Nagumo [16], [27], and Hindmarsh-Rose [21], [7]
model. Note that the first two models are not in polynomial
form and the others in polynomial form. In our previous
result, a synthesis problem for synchronization is concerned
for coupled oscillators modelled in polynomial systems [12].
In particular, a nonlinear feedback synchronization scheme
for coupled Hindmarsh-Rose models is proposed. To do that,
it is assumed that the full state information is exchanged
between models. This means the full state information
must be exchanged between models in order to employ the
scheme. However, this is not desirable if the synchronization
method is intended to be applied to the multiple models
case ultimately. Therefore, it is necessary to develop a
feedback synchronization scheme which allows less informa-
tion exchange between models. The objective of this paper
is to propose an observer-based feedback synchronization
scheme for Hindmarsh-Rose model based on the previously

proposed state feedback scheme. In our result using state
feedback, it turned out that the error dynamic stabilization is
the most important step in designing coupling function for
synchronization. So this paper presents an observer-based
stabilization method for the error dynamics.

In the previous results, there are several common proper-
ties. Firstly, the resulting feedback laws are of the form of
linear feedback or linear feedback with variable gain [32],
[15], [11], [8], [17], [33], [2], [4]. Secondly, the feedback
interaction is unidirectional [30], [31] in the sense that a
reference model without input is employed for synchroniza-
tion. Thirdly, many papers handle synchronization between
two models or assume a particular interconnection structure
[16], [32], [15], [11]. Lastly, no efficient computational tools
are employed for designing the feedback law.

Unlike these, the proposed scheme can improve the previ-
ous approaches. Namely, the resulting feedback is nonlinear,
bidirectional and devised using efficient computational tools:
SOS and SDP. Most of all, the presented scheme allows less
information exchange.

II. PROBLEM SETUP AND PRELIMINARY

Before proceeding further, problem setup and some pre-
liminaries are presented in this section.

A. Problem Setup

Let us consider two Hindmarsh-Rose models

ẋ1 = ax2 + bx2
1 − cx3

1 − dx3 + I + u1 (1)
ẋ2 = e − fx2

1 − x2 + gx4

ẋ3 = µ[−x3 + S(x1 + h)]

ẋ4 = ν[−kx4 + r(x2 + l)]

and

ẏ1 = ay2 + by2
1 − cy3

1 − dy3 + I + u2 (2)
ẏ2 = e − fy2

1 − y2 + gy4

ẏ3 = µ[−y3 + S(y1 + h)]

ẏ4 = ν[−ky4 + r(y2 + l)]

where a, b, c, I, d, e, f, g, µ, ν, S, r, l, h and k are
parameters. See Appendix for the details of the parameters.

Definition 1: The synchronization problem is to design
each coupling function ui so as to satisfy the following two
conditions.
C1. The differences between states of the subsystems con-

verge to zero, i.e., x(t) − y(t) → 0 as t → ∞.



C2. The whole states are bounded (‖x(t)‖ < ∞ and
‖y(t)‖ < ∞) for t ≥ 0. �

Later, for notational simplicity, we denote the system in
(1) by

ẋ = f(x) + Gu1

where G = [1, 0, 0, 0]T . Although the two models are
identical, the trajectories are different from each other when
u1 = u2 = 0 because of the different initial conditions. In
order to solve the synchronization problem, we want to force
the states of the two HR models in (1) and (2) to converge
to each other by designing the coupling functions u1 and u2.
To do this, we consider the error dynamics

ė1 = ae2 + bt1e1 − ct2e1 − de3 + u12 (3)
ė2 = −ft1e1 − e2 + ge4

ė3 = µ(−e3 + Se1)

ė4 = ν(−ke4 + re2)

where ei = xi − yi, e = [e1, · · · , e4], t1 = y1 + x1, t2 =
y2
1 + y1x1 + x2

1, and u12 = u1 − u2. Again, for notational
simplicity, the error dynamics is written in a vector form

ė = A(t1, t2)e + Gk(e, t1, t2). (4)

where

A(t1, t2) =









bt1 − ct22 a −d 0
−ft1 −1 0 0
µS 0 −µ 0
0 rν 0 −kν









.

Now, the synchronization problem boils down to designing
a stabilizing feedback law for the error dynamics in (3).
In other words, the task for the synchronization problem is
to find a feedback law u = k(e, t1, t2) that is a globally
asymptotically stabilizing control for the error dynamics.
Note that since the HR model is a polynomial model, so
is error dynamics (4).

B. Stabilization of Polynomial Systems

In view of the previous result, it turned out that the
most important part in designing a coupling function for
synchronization is to devise a stabilizing input for the error
dynamics.

Since the resulting error dynamics are polynomial systems,
it is nice to consider a tailored stabilization method for
polynomial systems. To this end, a brief overview is given
on stabilization method for polynomial systems.

Consider the following system

ẋ = f(x) + G(x)u (5)

where x ∈ R
n is the state, u ∈ R

m the control input, and f

and G sufficiently smooth polynomial functions. A globally
asymptotically stabilizing control is designed for the system
in (5) using a dissipation inequality and SOS in [7] with
a state feedback of the form u = K(x)x. To do that, the
system in (5) is rewritten as a linear-like system as

ẋ = A(x)x + G(x)u. (6)

Note that the matrix A(x) is not unique, i.e. there are
different matrices A(x) to write f(x) = A(x)x. As a control
Lyapunov function candidate, a Krasovskii-like Lyapunov
function of the form

V (x) = w(x)T Pw(x) (7)

is assumed, where P is a positive definite matrix and w(·)
is defined later. To design a stabilizing feedback control, we
want to determine the function K(x) such that it satisfies

V̇ (x) = ∇V (x)[A(x)x + G(x)K(x)x] < 0.

Note that this is a bilinear dissipation inequality and just the
derivative of the Lyapunov function candidate V with respect
to the trajectories of (6) with u = K(x)x. To solve this
bilinear problem, it is assumed that w(x) = W (x)x, where
W = (wij) is a prespecified quadratic, lower triangular, and
polynomial matrix with all its diagonal elements being 1:

W (x) =













1 0 · · · 0

w11(x) 1
...

... 0
wn1(x) wn2(x) · · · 1













. (8)

Note that the inverse of W (x) is polynomial thanks to
det(W (x)) = 1. The next theorem provides a solution to
this problem.

Theorem 1: [7] Let W (x) be of the form as defined in
(8). If there exist a polynomial matrix function M : R

n →
R

n×m and a positive definite constant matrix Q such that

θT ∂w

∂x
[A(x)W (x)−1Q + G(x)M(x)]θ < 0 (9)

for all nonzero x and θ, then u = K(x)x with K(x) =
M(x)Q−1W (x) is a globally asymptotically stabilizing state
feedback for the system in (6). �

It seems to be difficult to choose W appropriately. However,
sometimes we can do that easily by combining analytical
reasoning with efficient computation as shown in [7]. Note
that inequality (9) is a bilinear inequality. As mentioned
previously, semidefinite programming and SOS tools can
effectively solve this inequality [7], [24].

C. integral Input-to-State Stability (iISS)

In order to develop an observer-based synchronization
scheme, the following stability concept is useful.

Definition 2: ([26]) Consider the system ẋ = f(x, w)
where x ∈ R

n is the state and w ∈ R
m the external input.

The system is said to be integral-input-to-state stable (iISS)
if there exist a class K∞ function α(·), a class KL function
β(·, ·), and a class K function γ(·) such that the solution
x(t) of the system satisfies

α(‖x(t)‖) ≤ β(‖x(0)‖, t) +

∫ t

s=t0

γ(‖w(s)‖)ds (10)

where ‖ · ‖ denotes the standard Euclidean norm.
Similar to Lyapunov stability, Lyapunov function charac-

terization for iISS is also possible.



Theorem 2: The system ẋ = f(x, w) is iISS if and only
if there exists an iISS Lyapunov function V : R

n → R≥0

such that for class K∞ functions ᾱ1, ᾱ2, γ and a positive
definite function ρ, V satisfies

ᾱ1(‖x‖) ≤ V (x) ≤ ᾱ2(‖x‖) (11)

and
V̇ (x(t)) ≤ −ρ(‖x‖) + γ(‖w‖). (12)

The next lemma plays an important role in deriving the main
result.

Lemma 1: ([26]) If the system ẋ = f(x, w) is iISS and
the external input satisfies

∫ ∞

0

γ(‖w(s)‖)ds < ∞,

then, the state converges to the origin.

III. NONLINEAR SYNCHRONIZATION BASED ON
COMPLETE STATE INFORMATION

Before presenting the proposed observer-based synchro-
nization, a nonlinear synchronization scheme is introduced
in this section under the assumption that the full state
information of a model is exchanged between models [12].

If the feedback design presented in Theorem 1 is applied
to error dynamics (4), we obtain the following design dissi-
pation inequality

θT [A(t1, t2)Q + GM(t1, t2)]θ < 0

where the stabilizing input is

u12 = k(e, t1, t2) = M(t1, t2)Q
−1e.

Note that in this case a quadratic Lyapunov function is used
with W = I . Finally, solving this inequality using semidef-
inite programming and SOS tools leads to the following
stabilizing input for the error dynamics.

u12 = [−0.0197+1.738t12]e2+[0.969−0.04t12]e3. (13)

Note that this feedback law is nonlinear and goes to zero as
synchronization is achieved. To design coupling functions u1

and u2 using stabilizing input u12 , we revisit the definition
of u12. We recall that if u1 and u2 are designed to satisfy

u1 − u2 = u12 (14)
= [−0.0197+1.738t12]e2+[0.969−0.04t12]e3,

condition C1 is fulfilled. Here, the coupling functions u1

and u2 are unknowns and u12 is known. Therefore, we can
think of equation (14) as an underdetermined equation since
there are two variables (u1 and u2) and one equation. As a
result, we can see that if the coupling functions u1 and u2

are determined such that they satisfy the relation in (14) and
go to zero as the error does, then C1 is fulfilled. To meet
these two conditions, we distribute the feedback u12 to the
two coupling functions as follows:

u1 =
1

2
u12, u2 = −

1

2
u12. (15)

In fact, by designing the coupling functions like this, we
can be sure that the state x and y converge to each other.
However, it is also possible for both states to diverge to
infinity simultaneously. This is why the second condition C2
has to be fulfilled in addition. See [12] for the proof of C2.

Remark 1: The coupling functions in (15) are nonlinear
and go to zero as the error e does. In order to implement
the coupling function, x model has to know three pieces
of information y1, y2, y3 of y model. The objective of this
paper is to devise a nonlinear synchronization method which
uses only the partial state information of the other model.
Considering the ultimate objective in which synchronization
problem for multiple models is considered, it is beneficial to
develop a synchronization method to use only partial state
information.

IV. NONLINEAR OBSERVER-BASED SYNCHRONIZATION

As mentioned in the previous section, it is important to
design the stabilizing input to the error dynamics. Therefore,
the observer-based synchronization between two subsystems
boils down to designing an observer-based stabilizing output
feedback control for the error dynamics defined in (4). In
case the full state information is available, it is shown
that the state feedback law u12 is a globally asymptotically
stabilizing control for the error dynamics. Hereafter, it is dis-
cussed how to design certainty-equivalence type feedback for
stabilization of the error dynamics using the state feedback
law u12. For this purpose, a nonlinear observer is designed
using a structural property of the error dynamics at first.
Then, a robustness property of the feedback in (13) against
the estimation error is proved to derive a nonlinear separation
principle. The error dynamics in (4) can be rewritten as

ė = Ae + φ(e1, t1, t2) + Gû12 (16)
z = [1 0 0 0]e =: Ce (17)

where z is the output and A, φ(e1, t1, t2), and û12 are

A =









0 a −d 0
0 −1 0 g

µS 0 −µ 0
0 νr 0 −νk









,

φ(e1, t1, t2) =









bt1e1 − ct2e1

−ft1e1

0
0









,

û12 = [−0.0197+1.738t1]ê2 + [0.969−0.04t2]ê3,

with (C, A) being observable when the parameter values in
the appendix are used, and the term φ(e1, t1, t2) is measur-
able since x1 and y1 are. This means that all nonlinearities
are measurable. It is well-known that the observer error
linearization method ([9], [14]) can be applied to such a
nonlinear system in order to design an observer, and that the
resulting estimation error exponentially goes to zero. For the
error dynamics in (16)-(17), we can design an observer as



follows

˙̂e = Aê+φ(e1, t1, t2)+Gû12+L(ẑ − z) (18)
ẑ = Cê (19)

where the observer gain L is determined such that A + LC

is Hurwitz. The estimation error dynamics1 becomes

ėo = (A + LC)eo

where eo = ê − e. This means that the estimation error
resulting from the observer exponentially converges to the
origin.

Unlike the linear system case in which the separation
principle holds, designing such a convergent observer is not
the end of the design for output feedback stabilization since
the system is nonlinear. In other words, the combination
of the stabilizing control and the convergent observer may
not result in a stable closed-loop. To deal with this, it is
required to either prove that the resulting closed-loop system
is robust against the estimation error or to redesign a robust
control against the estimation error. A popular approach
to accomplish this in the literature is to prove that the
closed-loop consisting of the observer and the certainty-
equivalence type control is ISS (Input-to-State Stable [3]) or
iISS (integral-ISS [26]) with respect to the estimation error.
Then due to ISS or iISS of the closed-loop, the exponentially
stable estimation error, and the definition of the estimation
error, convergence of the state to the origin is proved. The
next lemma is instrumental in deriving the main result.

Lemma 2: Suppose that the unforced system ẋ = f(x)
is globally asymptotically stable. Then, the perturbed system

ẋ = f(x) + σ1(w) (20)

is iISS from the external disturbance w to the state x

where w ∈ R
m is an external input and the function

σ1(·) : R
m → R

n satisfies ‖σ1(w)‖ ≤ σ(‖w‖) with
σ(·) ∈ K.

Proof. In view of Theorem 2, to prove the lemma, it is
sufficient to show that there exists an iISS Lyapunov function
to satisfy the inequalities in (11) and (12). From the converse
Lyapunov theorem, there exists a global Lyapunov function
U : R

n → R
+ such that

α1(‖x‖) ≤ U(x) ≤ α2(‖x‖)

U̇ = ∂U
∂x

f(x) ≤ −α3(‖x‖), ‖∂U
∂x

‖ ≤ α4(‖x‖)

for some class K∞ functions αi (i = 1, · · · , 4). The
derivative of this Lyapunov function along ẋ = f(x)+σ1(w)

1In this paper, there are two kinds of error variables. Error or error
dynamics denote the synchronization error (ei = xi − yi). On the other
hand, estimation error implies observer error between the error dynamics
and its observer (eo = ê − e).

has the following upper bound

U̇ =
∂U

∂x
· f(x) +

∂U

∂x
σ1(w)

≤ −α3(‖x‖) + ‖
∂U

∂x
‖‖σ1(w)‖

≤ −α3(‖x‖) + α4(‖x‖)σ(‖w‖).

As an attempt to find an iISS Lyapunov function of system
(20), consider a weighted function

V (r) = (π ◦ U)(r), π(r) =

∫ r

0

ds

1 + χ(s)
(21)

and χ(r) = (α4 ◦ α−1

1 )(r). Then, the upper bound of the
derivative of the weighted function is

V̇ =
∂U
∂x

(f(x) + σ1(w))

1 + χ(U(x))
≤

−α3(‖x‖)

1 + χ(U(x))
+

α4(‖x‖)σ(‖w‖)

1 + χ(U(x))

≤
−α3(‖x‖)

1 + α4(α
−1

1 (α1(‖x‖)))
+

α4(‖x‖)σ(‖w‖)

1 + α4(‖x‖)

≤ −ρ(‖x‖) + σ(‖w‖). (22)

Due to the monotone property of the function π, it is easy to
see that the function V is upper- and lower-bounded by some
class K∞ functions like in (11). Therefore, the inequality in
(22) implies that the function V in (21) is an iISS Lyapunov
function. This completes the proof. �

The main theorem of this section is as follows.
Theorem 3: The state of the closed-loop system consist-

ing of the error dynamics for synchronization in (16)-(17),
the observer in (18)-(19), and the feedback law û12 converges
to the origin as t → ∞.
Proof: From Lemma 2, the closed-loop system

˙̂e = Aê + φ(e1, t1, t2) + Gû12 + LCeo

is iISS with respect to LCeo. In other words, we have

‖ê(t)‖ ≤ β(‖ê(0)‖, t) +

∫ t

t0

γ(‖LCeo(s)‖)ds

where β ∈ KL and γ ∈ K∞. Moreover, the estimation error
exponentially converges to the origin and therefore satisfies

∫ ∞

t0

‖eo(s)‖ds < ∞.

Thanks to this and Lemma 1, the observer state ê goes to
zero as the observer error e does. The convergence of the
error e to the origin follows from the relation e = ê − eo.
This completes the proof. �

This theorem implies that the certainty-equivalence type
control û12 is a globally asymptotically stabilizing control
for the error dynamics and goes to zero as e does. Therefore,
u1 = 1

2
û12 and u2 = − 1

2
û12 solve the synchronization

problem between two HR models with only the first state
information of the HR model.



V. CONCLUSION

In this paper, we proposed a nonlinear feedback syn-
chronization scheme for Hindmarsh-Rose models using sta-
bilization techniques for polynomial systems; dissipation
inequalities for those systems and SOS tools. Based on the
previous result in which the full state information has to be
exchanged between models, we develop an observer-based
scheme which uses only the output information.

In view of the previous result, it is very important to
design a stabilizing input to the error dynamics to develop
a synchronization scheme. To do that, we designed a non-
linear observer using the fact that all nonlinearities in the
error dynamics are measurable. Due to this property, stable
error dynamics are obtained after applying observer error
linearization. Finally, we proved a nonlinear separation prin-
ciple which implies that the proposed certainty-equivalence
control is a stabilizing input to the error dynamics. Finally,
the coupling function for synchronization is derived using
the observer-based stabilizing input for the error dynamics.
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