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Abstract 
The stochastic Double-Well Duffing-van der Pol (SDVP for short) system with bounded random parameter is first 

transformed into an equivalent deterministic system by the Chebyshev polynomial approximation method, and then the 
stochastic chaos and its control by noise are investigated. Therefore the problem of controlling stochastic chaos in the 
SDVP system can be reduced into the problem of controlling deterministic chaos in the equivalent system. The 
numerical simulations show that the chaos behavior in the SDVP system is by and large similar to that in the equivalent 
deterministic Duffing-Van der Pol (DVP for short) system. The chaos behavior can be controlled to the steady states by 
noise, and with the effect of the random parameter and its intensity, there are still some features. 
Key words: Chebyshev orthogonal polynomial, stochastic Double-Well Duffing-Van der Pol system, stochastic chaos, 

chaos control, white noise 
 
1. Introduction 
The DVP system is a famous nonlinear dynamical system as follow 

tfxxxxx ωβαµ cos)1( 32 =+−−− &&&                                  (1) 

which widely exists in the fields of physics, engineering and biology [1, 2]. And the deterministic DVP systems or the 
deterministic DVP system under random excitations have already been studied deeply. There are plenty of dynamical 
behaviors have been found, such as symmetry breaking bifurcation, period-doubling bifurcation, Neimark bifurcation, 
chaos and so on [3, 4]. However, most of the results are come from the DVP system with deterministic parameters only. 
The aim of this paper is to explore the stochastic chaos phenomena and its control of SDVP system with random 
parameter, comparing with the correlative phenomena in deterministic DVP system. 
To investigate the stochastic structural dynamical system, there are three basic numerical methods: Monte Carlo method, 
stochastic perturbation method and orthogonal polynomial approximation method. The third method, which is a useful 
analytic method [5-7], was introduced in [8, 9] and further developed by Li [10]. Recently, stochastic bifurcation and 
chaos in some typical dynamic systems are successfully analyzed by using the Chebyshev orthogonal polynomial 
approximation method [11-13]. In this work, the same strategy is used to explore the SDVP system. 
For the stochastic chaos control of SDVP system here, the noise-aided control method [14] has been used, which is a 
very important control strategy and has already been applied to many fields, such as the social systems, the economical 
systems, and neural network systems.  
 
2. Chebyshev polynomial approximation for SDVP system 
2.1 Chebyshev orthogonal polynomial 
If the random parameter follows arch-like distribution [9], the expression of its probability density function (PDF) is 
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In the orthogonal polynomial approximation method, choosing the orthogonal polynomial basis depends on the kinds of 
PDF of the random parameter. As the orthogonal polynomial basis for the arch-like PDF, the only choice is the second 
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Chebyshev orthogonal polynomials which can be put as  

∑
=

−

−
−

−=
]2/[

0

2)2(
)!2(!

)!()1()(
n

k

knk
n knk

knH ξξ                               (3) 

The recurrent formula for the second Chebyshev orthogonal polynomials is 
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The orthogonality of the second Chebyshev orthogonal polynomials can be expressed as 
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Owing to the orthogonality of Chebyshev orthogonal polynomials, any measurable function 2)( Lf ⊂ξ can be expanded 
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=  is merely an approximation with a minimum mean square residual [15]. 

 
2.2 Chebyshev orthogonal polynomial approximation for SDVP system 
Consider the DVP system (1) with a random parameterµ , σξµµ += . Whereµ andσ are the mean value and the 
standard deviation ofµ ,ξ is taken as a random variable on [−1, 1] with an arch-like PDF, so the SDVP system with 

bounded random parameter can be expressed as follows 
tfxxxxx ωβασξµ cos)1)(( 32 =+−−+− &&&                             (8) 

where βα , are constants, the response of system (8) is a function of time t  and random variable ξ , 
namely ),( ξtxx = which can be expressed by the following series according to the orthogonal polynomial approximation 

method 
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where the subscript i  runs for the ordinal number of Chebyshev orthogonal polynomials, N represents the largest 

order of the polynomials we have taken. It is worth noting again that only if ∞→N , )()(
0
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equivalent to the responses of the SDVP system. In this paper we take 4=N , and then the expression (10) is the 
approximate solution with a minimal mean square residual error. Substituting expression (10) into (8), and using both of 
the recurrent formula and the orthogonal relationship of Chebyshev orthogonal polynomials, we finally get the 
equivalent nonlinear deterministic DVP system (13) of SDVP system [5]. The ensemble mean response of the stochastic 
DVP system can be obtained as (14); When 0≡ξ or 0=σ , system (13) is the mean parameter system and its response 

can be expressed as (15); and SDVP system (8) is simplified as a deterministic DVP system as (16). 
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tfxxxxx ωβαµ cos)1( 32 =+−−− &&&                                   (16) 

 
We will note the responses of deterministic system (16) )(tx as DR; response of the mean parameter system (15) )0,(tx as 
ER; the ensemble mean response of the equivalent deterministic system (13) )],([ ξtxE as EMR. In later chapters we 

will illustrate the effectiveness of the Chebyshev orthogonal polynomial approximation method by the similarity of DR 
and ER; research basic nonlinear phenomena of SDVP system through EMR and discuss characters of the SDVP by 
comparing DR and EMR. 
 
3. Stochastic chaos in SDVP system 
In this section, we analyze the chaos motion of the equivalent deterministic system (13) comparing with the 
deterministic system (16), take parameters as 76.0,5.3,1.0,0.5 ===== ωµβα f in system (13) and (16). 

When 0.0=σ the phase trajectories and the Poincaré sections of DR, ER and EMR are shown in Fig3.1, from which we 
can see that three kinds of responses are all chaotic and resemble each other. This phenomenon indicates that the 
Chebyshev orthogonal polynomial approximation method works very well for the SDVP system. The largest Lyapunov 
exponent of deterministic system (16) is 0.0916, while the one of the equivalent deterministic system (13) is 0.0671. 
 

   

(a)                            (b)                           (c)      

   

(d)                            (e)                           (f) 

Fig3.1 When 0.0=σ , (a) phase trajectories of DR; (b) phase trajectories of ER; (c) phase trajectories of EMR; (d) Poincaré sections 

of DR; (e) Poincaré sections of ER; (f) Poincaré sections of EMR. 

 

    

(a)                      (b) 

Fig3.2 When 01.0=σ (a) phase trajectories of ER; (b) phase trajectories of EMR. 



4 
 

When 0.0≠σ , take 01.0=σ for example, the phase trajectories of ER and EMR are shown in Fig3.2. Comparing with 
the phase trajectories of DR in Fig3.1 (a), it is obviously that the topological properties of ER nearly keep in step with 
DR, which shows that the orthogonal polynomial approximation method still works well in this situation. And the 
effectiveness of orthogonal polynomial approximation method is demonstrated in further steps. In Fig3.2 (b), it is 
clearly that EMR differs from DR to a certain extent, but the state is still chaotic, and the largest Lyapunov exponent of 
SDVP system is 0.0714. Thus, SDVP system has its own characteristics under the influence of random factor. 
Meanwhile, the phenomena of SDVP system still keep the main character of DVP system at the same conditions. 
 
4. Control of stochastic chaos in SDVP system 
From the chapter 2 ,we know that system (13) is the equivalent deterministic system of the SDVP system(8), so it is 
reasonable to reduce the control of stochastic chaos in SDVP system into the control of deterministic chaos in system 
(13), thus stochastic chaos of the original SDVP system can be controlled. Adding the control term )(tQη to the first 
equation of system (13), whereQ is the intensity of noise, )(tη is white Gauss noise which is independent of the random 
parameterµ , besides, )()()(,0)( τδτηηη =+= ttEtE , where )(τδ is the Dirac-Delta function. Then we get the controlled 

system as follow 
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4.1 Stochastic chaos control for 01.0=σ  
In this section, we investigate stochastic chaos control of SDVP system when the intensity of random parameter is 
invariant. Take 01.0=σ for example, choose parameters of the controlled system (17) as the same as parameters in 
section 3. When 0.0=Q , EMR is chaotic and the largest Lyapunov exponent of system (17) is 0.13. Increasing the value 
ofQ , from the largest Lyapunov exponents diagram Fig.4.1, we can see that the original stochastic chaos is controlled 
by the increasing of noise intensity. Furthermore, with the different noise intensitiesQ , it can be controlled to different 

steady states as shown in Fig4.2. 
From the research above, we can say that control of stochastic chaos in SDVP system is realistic, and the system can be 
controlled to different steady states with some different noise intensities during the control process. 

 
Fig 4.1 The largest Lyapunov exponents diagram of the controlled system (17), when ]3.0,0.0[,01.0 ∈= Qσ . 
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               (a)                       (b)                       (c)                       (d) 
Fig4.2 Phase portraits of EMR of the controlled system (17) (a) period-2 for 092.0=Q ; (b) period-1 for 15.0=Q ; (c) period-2 

for 40.0=Q ; (d) period-1 for 70.0=Q . 

 
4.2 The influences of the change ofσ on the effectiveness of stochastic chaos control of SDVP system 
In section 4.1 we discussed chaos control by the white noise when 01.0=σ . Obviously, the intensity of random 
parameterσ is variable; therefore, it is necessary to analyze the features of stochastic chaos control with various values 
ofσ except for the certain intensity.  

      

                                   (a)                               (b) 
Fig4.3 The largest Lyapunov exponent diagrams of the controlled system (17) (a) ]3.0,0[∈Q ;(b) ]11.0,06.0[∈Q . 

   

                      (a)                           (b)                          (c) 
Fig4.4 When 087.0=Q , EMR of the controlled system (17), (a) 001.0=σ ; (b) 005.0=σ ; (c) 01.0=σ . 

      

                                    (a)                                (b) 
Fig4.5 The phase portraits of the controlled system (17): (a) period-1 for 20.0=Q ; (b) period-2 for 40.0=Q . 

 

Take 001.0=σ , 005.0=σ and 01.0=σ for example, by analyzing the variety of the largest Lyapunov exponent in these 
three situations under the control of white noise, as shown in Fig4.3 (a), we can know the influence of random 
parameter more clearly. Under the influence of white noise, for differentσ , the chaotic movements are all controlled, 
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and the Lyapunov exponent reaches a plateau under the control when 15.0>Q . This phenomenon illustrates that the 

noise-aided control method works well when the intensity is variable too. From Fig. 4.3 (a), we see that the controlled 
behavior has some recognizable feature in the light of differentσ . Fig4.3 (b) is the zoom in figure of Fig4.3 (a), from 
which we can see that, in order to control the chaotic motion, the noise intensity must be larger and larger with the 
growingσ . In other words, the threshold valueQchanges withσ . In Fig4.4, it shows different states with diverse σ  
when the noise intensity fixed. Then take small values ofσ , such as 001.0=σ and 005.0=σ , the system can be 
controlled into period-1 state while let 1.0=σ , the system is still chaotic. Phase portrait and time history diagrams of the 
system with certain noise intensity are shown in Fig4.5, It is clear that by the same value ofQ , with diverse intensities 

of random parameter, the system (17) will be controlled to similar periodic states. 
 

5. Conclusion 
In this paper, the stochastic chaos of SDVP system with bounded random parameter and its control by noise-aided 
control method are investigated. First of all, the SDVP system is reduced into its equivalent deterministic system by 
using the Chebyshev orthogonal polynomial approximation method, so that the problem of controlling stochastic chaos 
is reduced to the problem of controlling deterministic chaos of the equivalent system. Therefore, the Lyapunov exponent 
can be used to explore chaos behavior and its control of the equivalent deterministic system. Numerical results show 
that chaotic behavior of SDVP system is by and large similar to that of the deterministic DVP system, which attest 
to that the orthogonal polynomial approximation method is effective. Meanwhile, SDVP system has its own features 
under the effect of random parameter. Furthermore, chaos of equivalent deterministic system with different intensities 
of random parameter is controlled by noise-aided control method, and numerical results confirm the validity of this 
control method. Namely, stochastic chaos of the original SDVP system has been controlled. Furthermore, we also find 
that the threshold value of the intensity of white noise increases following the increment of the intensity of the 
random parameter.  
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