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Abstract
This paper addresses the problem of controlling the

attitude and the airspeed of a fixed wing Unmanned
Aerial Vehicle (UAV). The design of this controllers
are based on Adaptive Super Twisting Control Algo-
rithm (ASTA). In order to implement such controllers,
estimation of some unmeasurable variables of the UAV
are provided by a Robust Differentiator. Furthermore,
this control scheme increase robustness since it is not
necessary to know the bound of perturbation thanks to
adaption gains. Simulation results illustrate the perfor-
mance of the proposed control scheme, under modeling
uncertainties and external perturbations.
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1 Introduction
An Unmanned Aerial Vehicle (UAV) is defined as a

vehicle without human crew, where the flight control
is performed by an automatic pilot. UAVs have been
shown benefits in a lot of civil applications as traffic
assistance, surveillance, mapping, inspection of power
lines, oil pipelines, etc [Valavanis, 2007]. Considering
a fixed wing UAV, during flight the performance of this
aircraft is affected by aerodynamic parameters as well
as physical external conditions like altitude, wind, de-
sign, payload variation and limited resources [Austin,
2010].
A fixed wing UAV mathematical model is necessary

for representing motion of the aircraft. Then, from the
kinematic and dynamical models combining with the
aerodynamic parameters, a full 6 degree of freedom
(DOF) model is obtained. Furthermore, the fixed wing
UAV dynamical model is nonlinear and strongly cou-
pled, becoming a challenge to design attitude and air-
speed controllers. Then, the control strategies must be
robust under model uncertainties and external perturba-
tions.

In order to tackle the flight control problem, several
approaches have been proposed. For instance, based on
linear approximations, a linearization in an equilibrium
point has been proposed for trajectory tracking [Etkin,
1996; Stengel, 2004]. However, this methodology
lacks of robustness as the exact cancellation of non-
linearities is not ensured. Recently, several nonlinear
control techniques have been proposed for flight con-
trol. For instance, those based on feedback lineariza-
tion techniques, nonlinear dynamic inversion [Enns,
1994], techniques based on invariant manifolds [Kara-
giannis, 2010], where an energy function is used to de-
sign a controller which is robust in presence of aerody-
namic moments with unknown coefficients. However,
this energy function is not easily established. Addition-
ally, this controller needs exact measurements, which
limits its implementation. A robust approach, where
only few information of the model is required, is the
Active Disturbances Rejection Control (ADRC) tech-
nique. This methodology, based on the extended state
observer (ESO) [Han, 2008], estimate and compensates
the effects of the unknown dynamics and disturbances.
In [Hua, 2011], ADRC approach with nonlinear feed-
back is used to design an attitude and airspeed control
under wind turbulence conditions. Nonetheless, the ex-
tended state can add significant noise in each cycle,
and furthermore control tuning becomes a difficult task.
Regarding the stability properties of the closed-loop
system, the methods above can only ensure asymptoti-
cally stability properties.
On the other hand, robust control laws insensitive to
uncertainties can be designed by means of the slid-
ing mode approach, guaranteeing its stability in closed
loop in finite time. A control design based on sliding
mode technique is the Adaptive Super-Twisting Con-
trol Algorithm (ASTA), [Shtessel, 2012]. The ASTA
adaptive gain increase robustness and guarantee not
overestimating the gain. In order to implement a con-
troller, it is necessary to known all the components of
the vector state. However, in practice it is not always
possible measure it. Then, an alternative is the use of a



Figure 1. Referential frames.

robust differentiator [Levant, 1998] to estimate the vec-
tor state.
In the present work, using sliding mode techniques, a
robust differentiator to estimate inertial attitude and air-
speed are combined with an Adaptive Super-Twisting
Controller to design a controller to track a desired atti-
tude and airspeed. Furthermore, the proposed scheme
shows robustness against coupled dynamics and exter-
nal perturbation under noisy environment.
This paper is organized as follows: In section 2, the
fixed wing UAV modeling is considered. A robust dif-
ferentiator design and the adaptive super twisting con-
trol algorithm are introduced in section 3. Attitude and
airspeed controllers are designed in section 4. Simula-
tion results are given in section 5. Finally, some con-
clusions are drawn.

2 Mathematical Model of UAV
Attitude of a rigid body moving in space is expressed

in Euler angles (roll-pitch-yaw), based on a body axes
convention, as in the Figure 1. The control of a fixed
wing UAV is represented by three control surfaces:
aileron, elevator and rudders; and the thrust generated
by an engine. Thus, the variables describing the state of
the system are position, velocity, Euler angles and an-
gular rate (for complete derivation see [Stengel, 2004]
and [Stevens, 2003]). Now, using Newton-Euler for-
mulation, a full 6 degree of freedom, the fixed wing
UAV model is given by

ḋ = R(Θ)v (1)
Θ̇ = W−1ω (2)

f + T = m(v̇ + ω × v)−mRT (Θ)g (3)
n = Iω̇ + ω × Iω (4)

where, d = [x, y, z]T is position, Θ = [ϕ, θ, ψ]T ∈
(−π, π) are Euler angles, represented in the inertial
frame; v = [u, v, w]T is the linear velocity, ω =
[p, q, r]T the angular rate in the body axis frame. Then,
for a set of roll-pitch-yaw angles, the Rotation matrix
that transform body axis velocities to inertial velocities,

is given by

R(Θ) =

 cψcθ −sψsϕ + cψsθsϕ sψsϕ + cψsθcϕ
sψcθ cψcϕ + sψsθsϕ −cψsϕ + sψsθcϕ
−sθ cθsϕ cθcϕ


Additionally, an operator that transform relative to
body angular velocity to inertial angular velocity is de-
fined as

W =

1 0 −sψ
0 cψ cθsψ
0 −sθ cθcψ


where sx and cy stand for the sin(x) and cos(y) func-
tions with their corresponding arguments. Fixed-wing
UAV dynamics are represented by force vector f =
[FX , FY , FZ ]

T , the thrust T = [Tx, 0, 0]
T (along x

body axis), moment vector n = [FL, FM , FN ]T , the
vector g = [0, 0, gz]

T expressing the direction of grav-
ity acceleration and the inertia tensor I ∈ IR3×3 (with
x-z plane of symmetry)

I =

 Ixx 0 Ixz
0 Iyy 0
Izx 0 Izz

 ,
2.1 Aerodynamics
The aerodynamics forces and moments in (3)-(4) can

be calculated by means of aerodynamic coefficients
[Stevens, 2003] where,

f = T +
[
q̄S[χ(α, β)]−1[−CD, CY ,−CL]T

]
n = q̄S[bCl(·), c̄CM (·), bCn(·)]T .

Moreover, α = arctan(wu ) is the angle of attack and
the sideslip angle β = arcsin( uV ) expresses the sideslip
motion. The transformation matrix χ(α, β) ∈ SO(3)
maps any vector in the body frame Σ1 to an wind axes
frame Σw, defined along the relative velocity of the air-
craft, this matrix is given by [Stevens, 2003]:

χ(α, β) =

 CαCβ Sβ SαCβ
−CαSβ Cβ −SαSβ
−Sα 0 Cα


The terms L = q̄ S CL(·) and D = q̄ S CD(·) are
the Lift and Drag forces acting along the airplane.
The dynamic pressure is q̄ = 1

2ρV
2, where V =√

u2 + v2 + w2 is the relative airspeed magnitude. Be-
sides, wing surface area S, the wingspan b, the mean
aerodynamic cord c̄ and the air density ρ are considered
as constant parameters. The dimensionless coefficients



in the force/moment expressions can be decomposed in
the following set of equations [Stevens, 2003].

CL = cL0 + CLαα+ cLδeδe+
c̄

2V
(cLα̇α̇+ cLqq)

CD = cD0 +
(cL − cL0)

2

πeAR
+ cDδeδe+ cDδaδa

+ cDδrδr

CY = cyββ + (cypp+ Cyrr)
b

2V
+ cyδaδa+ cyδrδr

Cl = clββ + (clpp+ clrr)
b

2V
+ clδaδa+ clδrδr

CM = cm0 + cmαα+ cmδeδe+ (cmqq + cmα̇α̇)
c̄

2V

Cn = cnββ + (cnpp+ cnrr)
b

2V
+ cnδaδa+ cnδrδr

(5)

where, δe, δa and δr represent the moving surfaces:
elevator, ailerons and rudder respectively. The above
expressions use also the dimensionless numbers: Os-
walds efficient number e, the Mach number M (due
to velocity range of a scale airplane, this factor is ne-
glected for this UAV), and the aspect ratioAR = b2/S.
Tornado software (see [Melin, 2000] for more details)
has been used to identify the coefficients using the vor-
tex lattice method.

3 Control scheme
In this section, the control scheme for controlling

attitude and airspeed of a fixed wing UAV is pre-
sented. This control approach consist of an adaptive
super twisting controller to track desired trajectories in
presence of modeling uncertainties and external distur-
bances. Furthermore, in order to implement these con-
trollers and taking into account the difficulties for mea-
suring some variables of the fixed wing UAV, a robust
differentiator is implemented. Thus, the controller-
observer scheme is designed.

3.1 Adaptive Super-twisting algorithm
Let us, introduce the adaptive super twisting control

algorithm design [Shtessel, 2012] which will be con-
sidered to attitude and airspeed control of a fixed wing
UAV. Consider super-twisting control algorithm (STA),
presented by [Levant, 1996], whose equation are given
by

Φ = −K1|s|1/2sign(s) + v

v̇ = −K2

2
sign(s) (6)

where, K1 and K2 are gains. The goal of adaptive
super-twisting control algorithm is to define the gains
as

K1(t, s, ṡ), K2(t, s, ṡ) (7)

For instance, consider the uncertain nonlinear system

ẋ = f(x, t) + g(x, t)u (8)

where x ∈ IRn is the state, u ∈ IR the control input,
f(x, t) ∈ IRn is a continuous function.
Now, let us introduce the following assumptions
Assumption A1. Exists a sliding manifold s =
s(x, t) ∈ IR such that, desired dynamics of system (8)
are reached into sliding mode s = s(x, t) = 0.
Assumption A2. The relative grade is 1 of aforemen-
tioned system with respect to control variable u. Then,
input-output can be written as

ṡ = a(x, t) + b(x, t)u. (9)

where a(x, t) = ∂s
∂t +

∂s
∂xf(x, t), b(x, t) =

∂s
∂xg(x).

Assumption A3. The function b(x, t) ∈ IR is unknown
and different to zero ∀x and t ∈ [0,∞). Furthermore,
b(x, t) = b0(x, t)+∆b(x, t), where b0(x, t) is the nom-
inal part of b(x, t) which is known, and there exists δ1
an unknown positive constant such that ∆b(x, t) satis-
fies ∣∣∣∣∆b(x, t)b0(x, t)

∣∣∣∣ ≤ δ1.

Assumption A4. There exists δ2 an unknown positive
constant such that the derivative of function a(x, t) is
bounded

|ȧ(x, t)| ≤ δ2. (10)

The objective of the ASTA approach is to design a con-
trol without overestimating the gain, to drive the sliding
variable s and its derivative ṡ to zero in finite time, un-
der boundary disturbances of type additives and multi-
plicatives with unknown bounds δ1 and δ2.
Then, the closed loop system (9) becomes

ṡ = a(x, t)−K1b(x, t)|s|1/2sign(s) + b(x, t)υ,

υ̇ = −K2sign(s), (11)

Furthermore, consider the following change of variable

ς = (ς1, ς2)
T = (|s|1/2 sign(s), b(x, t)υ + a(x, t))T .

(12)
Then, the system (9) can be written as

ς̇ = Ã(ς1)ς + g̃(ς1)ϱ(x, t) (13)

where,

Ã(ς1) =
1

2 |ς1|

[
−b(x, t)K1 1
−2b(x, t)K2 0

]
, g̃(ς1) =

(
0
1

)
.



where ϱ(x, t) = ḃ(x, t)υ + ȧ(x, t) = 2ϱ(x, t) ς1|ς1| . To
prove the closed loop stability of the system, consider-
ing the following.
Assumption A5. ḃ(x, t)υ is bounded with unknown
boundary δ3 i.e. | ḃ(x, t)υ |< δ3. Then, system (13)
can be rewritten as follows

ς̇ =
1

2|ς1|
Aς, A(ς1) =

[
−b(x, t)K1 1

−2b(x, t)K2 + 2ϱ(x, t) 0

]
(14)

with |ς1| = |s|1/2, it is appealing to consider the
quadratic function

V0 = ςT P̃ ς (15)

where P̃ is a constant, symmetric and positive ma-
trix, as a strict Lyapunov candidate function for (6)-
(7). Taking its derivative along the trajectories of (6)
we have

V0 = −|s|1/2ςT Q̃ς (16)

nearly everywhere, where P̃ and Q̃ are related by the
Algebraic Lyapunov Equation

A
T
P̃ + P̃A = −Q̃ (17)

Since, A is Hurwitz for b(x, t)K1 > 0, 2b(x, t)K2 +
2ϱ > 0, for every Q̃ = Q̃T > 0 there exist a unique
solution P̃ = P̃T > 0 of (17), so that V0 is a strict
Lyapunov function.

Remark 1. The stability of the equilibrium ς = 0 of
(13) is completely determined by the stability of ma-
trix A. However, classical versions of Lyapunov’s the-
orem [Filipov, 1988] cannot be used as they require
a continuously differentiable, or at least locally Lips-
chitz continuous Lyapunov function, though V0 (15) is
continuous but not locally Lipschitz. Nonetheless, as
it is explained in Theorem 1 in [Moreno, 2012], it is
possible to show the convergence properties by means
of Zubov’s theorem, that requires only continuous Lya-
punov functions. This argument is valid in proof of the
present paper, so that no further discussion of these is-
sues will be required.

From Assumption A4 and A5, it follows that

0 < ϱ(x, t) < δ2 + δ3 = δ4.

Notice that, while ς1 and ς2 converge to 0 in finite time,
it follows that s and ṡ converge to 0 in finite time, too.
The control design based on ASTA approach is formu-
lated in the following theorem.

Theorem 1. [Shtessel, 2012] Considering system (9)
satisfying assumptions A3, A4 and A5 for unknown

gains δ1, δ2 > 0. Then, for any initial conditions x(0),
and s(0), there exists a finite time 0 < tF and a param-
eter µ, as soon as the condition

K1 >
δ1

(
λ+ 4ϵ2∗

)
+ ϵ∗

λ
+

[
2ϵ∗δ1 − λ− 4ϵ2∗

]2
4ϵ∗λ

,

holds, if |s(0)| > µ, so that a sliding mode, i.e. |s| ≤ η1
and |ṡ| ≤ η2, is established ∀t ≥ tF , under the action
of ASTA control (6) with the adaptive gains

K̇1 =

ω1

√
γ1
2
sign(|s| − µ), if K1 > K∗,

K∗, if K1 ≤ K∗,
K2 = 2ϵ∗K1,

(18)
where ϵ∗, λ, γ1, ω1, µ are arbitrary positive constants,
and η1 ≥ µ, η2 > 0. ⋄

Notice that, according to second order systems, the
sliding surface for the control (6)-(7) is defined as

s = (ẋ− ẋd(t)) + λ (x− xd(t)) (19)

where xd(t)) is desired angular trajectory.

3.2 Robust differentiator Design
A robust differentiator via high order sliding mode for

a class of non linear systems is proposed to estimate
inertial states, this differentiator compute the real time
derivative of output function with finite time conver-
gence, which is exact in absent of nosy and robust in
presence. Let f(t) be a function defined in [0,∞), con-
sisting of a bounded Lebesgue-measurable noise with
unknown features and f0(t) an unknown basic signal,
whose k − th derivative has a known Lipschitz con-
stant L > 0. Then, the problem of finding real-time
robust estimations of f i0, for i = 0, ..., k; being exact
in the absence of measurement noises, is known to be
solved by the robust exact differentiator (See [Levant,
2003; Levant, 1998] for more details). Then, a robust
differentiator of arbitrary order is given by

ż0 = −λ0|z0 − f(t)|n/(n+1)sign(z0 − f(t)) + z1

ż1 = −λ1|z1 − v0|(n−1)/nsign(z1 − v0) + z2
...

żn−1 = −λn−1|zn−1 − vn−2|1/2sign(zn−1 − vn−2)

+ zn

żn = −λnsign(zn − vn−1) (20)

where, z estimates the n-th derivatives of f(t). Thus,
estimations of angular position [ϕ, θ, ψ]T and velocities
[ϕ̇, θ̇, ψ̇]T , are provided by robust differentiators.



4 Attitude and airspeed controllers
In this section, attitude and airspeed controllers used

to drive the fixed wing UAV flight are presented. The
physical elements to control the UAV are the control
surfaces. The elevator produces an angle δe which in
turns generates a pitching motion, rudder produces an
angle δr which in turns generates a heading motion;
and ailerons produces an angle δa which in turns gen-
erates a rolling motion. Furthermore, thrust produces
an acceleration in the fixed wing UAV along x-axis.

4.1 Attitude controller
Now, the problem of designing a controller to track a

desired attitude of the fixed wing UAV is presented. In
order to decompose the complete model (1)-(4) in two
systems of relative degree 2, the singular perturbation
theory is applied [Kokotovic, 1986]. Then, a slow dy-
namic subsystem (translation) and a fast dynamic sub-
system (rotation) is obtained. Thus, we introduce the
dynamical inertial attitude motion described in state-
space representation by

ξ̇1 = ξ2

ξ̇2 = (IW )−1
[
(Wθ̇ × IW θ̇)− IN(·)− q̄S[C(a)]

]
+ (IW )−1 [C(Γ)u] (21)

where, ξ = Θ = [ϕ, θ, ψ]T , aerodynamics coef-
ficients are [C(a)] = [bCl, cCm, bCc]

T , [C(Γ)] =
diag[bClδa, cCmδe, bCnδr], the operator

N(·) = dW

dt
Θ̇ =

 −Cθ θ̇ψ̇
−Sθϕ̇ψ̇ + CϕCθϕ̇ψ̇ − SϕSθ θ̇ψ̇

−Cθϕ̇ψ̇ − SϕCθϕ̇ψ̇ + CϕSθ θ̇ψ̇


and u = [δa, δe, δr]T = [Φϕ,Φθ,Φψ]

T is the control
input. The goal of the controller design is to force the
sliding mode on manifold

s =

 sϕsθ
sψ

 =


ϕ̇− ϕ̇d(t) + λϕ (ϕ− ϕd(t))

θ̇ − θ̇d(t) + λθ (θ − θd(t))

ψ̇ − ψ̇d(t) + λψ (ψ − ψd(t))


(22)

Then, adaptive super twisting control algorithm param-
eters for roll, pitch and yaw controllers (6)-(18) are
defined as ω1ϕ = 0.1, ω1θ = 0.2, ω1ψ = 0.01,
λϕ = λθ = λψ = 1, µϕ = µθ = µψ = 0.01, γ1ϕ =
γθ = γψ = 0.01, and ϵ∗ϕ = ϵ∗θ = ϵ∗ψ = 1. More-
over, differentiator parameters are defined as λ0ϕ = 3,
λ1ϕ = 1, λ0θ = 4, λ1θ = 0.1, λ0ψ = 4, λ1ψ = 4.

4.1.1 Actuator model Let us consider an actuator
Futaba model S148, usually used as attitude actuator
on fixed wing UAV. A second order model, is given by

w2
n

s2 + 2wnζs+ w2
n

(23)

where, natural frequency wn = 30rad/s and damp-
ing ζ = 0.7 are actuator parameters. Furthermore,
the range of applied voltage is [4.8 volts, 6 volts].
Moreover, the physic limits considered for elevator are
±7deg, for ailerons ±13deg and ±20deg for rudders.

4.2 Airspeed Controller
An airspeed controller is designed to command the

aircraft velocity V by means of trust Tx. From equa-
tion (3) using a hybrid system of coordinates wind axes
frame and body axes, it is possible to express airspeed
as [Stengel, 2004]:

V̇ =
D

m
− gsin(θ − α)− cos(α)cos(β)

m
u (24)

where, V is the airspeed, D drag, α the angle of at-
tack, β sideslip angle, m aircraft mass, g gravity, and
u = Tx is the input control. Then, the sliding surface is
designed as s = V − Vd, where the parameters to air-
speed adaptive super-twisting controller are chosen as
ω1V = 1, λV = 1, µV = 0.01, γ1V = 0.1, ϵ∗V = 0.1
and λ0V = 1 for the robust differentiator.

Proposition 1. Consider system (21)-(24) in closed
loop with an adaptive super twisting controller (6)-(7)
using the state estimates obtained by the robust differ-
entiator (20). Furthermore, consider that Assumptions
A1-A5 are satisfied. Then, attitude ξ(t) and airspeed
V (t) track desired references (ξd(t), Vd(t)) in finite
time, under parametric uncertainties and external dis-
turbances.

Remark 2. Since the robust differentiator converges in
finite-time, the control law and the differentiator can
be designed separately, i.e., the separation principle
is satisfied. Thus, if the controller is known to stabi-
lize the process then the stabilization of the system in
closed-loop is assured whenever the differentiator dy-
namics are fast enough to provide an exact evaluation
of inertial angles and its derivatives.

5 Simulation Results
In this section, we present results of applying the pro-

posed control scheme to a full 6 degree of freedom
model (1)-(4). A mathematical model of fixed wing
UAV Mitchell B − 25 has been derived from geo-
metric specifications (see Table 1) and implemented
in Matlab Simulink enviroment. Besides, disturbances
represented by wind external currents with magnitude
x = 4m/s at t = 30s, y = 4m/s at 70s and z = −1m/s
at t = 105s have been applied in order to prove ro-
bustness of the proposed methodology. Furthermore, a
white noise signal have been added to output. A sam-
pling time of 0.01s has been used as integration fixed-
step in simulation with Runge-Kutta solver. Addition-
ally, Active Disturbance Rejection Control (see [Han,
2008] for more details) was also tested in order to com-
pare the performance.



Parameter Value Unit

Weight 8 Kg

Span 2.05 m

Wing surface 0.55 m2

Mean aerodynamic chord 0.28 m

Length 1.6 m

Inertia moment Ixx 0.5528 Kgm2

Inertia moment Iyy 0.6335 Kgm2

Inertia moment Izz 1.0783 Kgm2

Inertia moment Ixz 0.0015 Kgm2

Table 1. Geometric parameters UAV B-25 Mitchell.
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Figure 3. Attitude.

Now, the desired trajectory is depicted in Figure 2.
Attitude responses are presented in Figure 3, where
it is observed good tracking of all variables. Control
signals can be seen in Figure 4. As disturbance ap-
pears, an increasing level in control responses is appre-
ciated. These responses represent physical deflection
of control surfaces. Tracking error is illustrated in Fig-
ure 5, where can be seen that ASTA is more accurate.
Adaptive gains are shown in Figure 6. Note that, there
are gains increments when disturbances and deviations
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Figure 4. Attitude control.
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Figure 5. Tracking error.
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from trajectory are present, depending on sliding sur-
face dynamics. Airspeed results are illustrated in Fig-
ure 7, in top-subgraphic it is possible to see airspeed
convergence to desired signal. The trust generated by
the propeller can be seen at middle-subgraphic. It is
assumed that there is a proportion between thrust and
voltage applied to motors by means a constant Kf of
the propeller. It can be appreciated that disturbances
are neglected, it is clear that ASTA control has better
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performance due to ADRC demands excessive thrust.
Finally, adaptive gain of airspeed controller is given.

6 Conclusion
An adaptive super twisting control algorithm for atti-

tude and airspeed tracking control of a fixed wing Un-
manned Aerial Vehicle has been presented. With the
aim of implementing the proposed controller, a robust
differentiator has been designed to estimate unmea-
sured states. Adaption of the controller gains has been
shown, increasing their values as disturbances appear
and holding minimal values otherwise. Furthermore,
the proposed scheme has been compared with an Ac-
tive Disturbance Rejection Control scheme, illustrat-
ing its advantages when tracking a desired trajectory,
under conditions of noisy measurements, uncertainties
and external disturbance. Simulation results displays
the robustness and performance of the proposed con-
trol scheme.
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