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Abstract
Systems described by differential equations are
considered for which only bounds of coefficients
variation are known. For such systems a linear
scalar control is formed which stabilizes the sys-
tem. In the case when the system is controlled by
a pulse modulator the lower bound of a sampling
frequency is established for which the system re-
tains stability.
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1 Introduction
Consider a system

ẋ = A(x)x+ b(x)u, (1)

where A ∈ Rm×m, b ∈ Rm×1, u ∈ R1. Suppose
that the matrix A(x) and the vector b(x) have suf-
ficiently smooth elements.
An exact feedback linearization method for syn-
thesis of stabilizing control is known, see [Isidori,
1995; Miroshnik, Nikiforov and Fradkov, 2000;
Zak, 2002; Khalil, 2002]. This method is based
on construction of a transformation

y = Φ(x), (2)

which reduces the matrix A to the Frobenius form
with a functional lower row and vector b to the
last unit vector. With an appropriate control
the considered system becomes a linear asymptot-
ically stable system with constant coefficients. In
[Isidori, 1995; Zak, 2002] the necessary and suffi-
cient conditions for the existance of transformation
(2) are proposed. These conditions set a rather

narrow class of systems. Moreover, the control
formed with this method is not robust, because
its design requires a full knowledge of equations
coefficients (1).
In [Gelig, Zuber and Churilov, 2006] a robust sta-
bilizing control for system (1) is constructed with-
out a supposition about smoothness of coefficients
(1) in the following cases:

1. Coefficients αij(x) of matrix A(x) and βi(x) of
vector b(x) have the properties

αi,i+1 = 1 (i = 1, . . . ,m− 1),

αij = 0 (i = 1, . . . ,m− 1; j > i+ 1),

βi = 0 (i = 1, . . . ,m− 1), βm = 1,

|αij(x)| < const (i = 1, . . . ,m; j < i+ 1).

2.
αi,i+1 = 1, αij = 0,

(j < i− 1, j > i+ 1, i = 1, . . . ,m− 1),

|βi(x)| < const, |αm,i| < const (i = 1, . . . ,m).

In this paper a robust stabilizing control for sys-
tem (1) is constructed without supposition about
equality to zero of the coefficients indicated above.
Continuous and pulse-modulated systems are con-
sidered.

2 Continuous Systems
Consider a system

ẋ = A(·)x+ (em + b(·))u, (3)

where A(·) ∈ Rm×m, b(·) ∈ Rm×1, e∗m =
(0, . . . , 0, 1). Suppose that coefficients of A(·) and
of b(·) are arbitrary functionals. For example,
A(·) = A(t, x(t), x(t − τ), ψ(t)), where ψ(t) is an



external perturbation. For these coefficients only
bounds of variations are known:

|αij(·)| < α0, |βi(·)| < β0 (i, j = 1, . . . ,m). (4)

Moreover, suppose that evaluation

|αi,i+1(·)| > α∗ (i = 1, . . . ,m− 1) (5)

is fulfilled.
The problem is to construct a stabilizing control

u = s∗x, (6)

where s is a constant vector depending only on pa-
rameters α0, β0 and α∗. If one choose a Lyapunov
function in the form

V (x) = x∗Hx,

where H is positive definite constant matrix, the
synthesis problem of stabilizing control u = s∗x
reduce to finding solution H, s for bilinear matrix
inequalities

A∗(·)H +HA(·) +H(en + b(·))s∗ +

+s(en + b(·))∗H < 0. (7)

In this paper a class of uncertain systems is found
for which as distinction from [Collins, Sadhukhan
and Watson, 1999; Arzelier, Peaucelle and Salhi,
2002] the solution of (7) has an explicit form. To
solve the problem we represent system (3) in the
form

ẋ = (A1(·) +A2(·))x+ (em + b(·))u, (8)

where coefficients α(1)
ij (·) and α

(2)
ij (·) of matrices

A1(·) and A2(·) have properties:

α
(1)
ij (·) =


αij(·) for j ≤ i+ 1,

i = 1, . . . ,m,
0 for j > i+ 1,

i = 1, . . . ,m− 2,

α
(2)
ij (·) =


αij(·) for j > i+ 1,

i = 1, . . . ,m− 2,
0 for j ≤ i+ 1,

i = 1, . . . ,m.

Consider a Lyapunov function

V = x∗H−1x,

where H is a triple-band matrix with coefficients
hij : hii = hi > 0, h1 = 1, hi,i+1 = hi+1,i =
−
√
hihi+1/2 for i = 1, . . . ,m− 1, hij = 0 for j >

i+ 1 and j < i− 1. This matrix is positive definite
for any hi > 0 (i = 2, . . . ,m), see [Gantmaher and
Krein, 1950]. The derivative V̇ along the solutions
of system (8) has a form

V̇= x∗{[A1(·)+A2(·)]∗H−1+H−1[A1(·)+A2(·)]+
+se∗mH

−1 +H−1ems
∗ + sb∗(·)H−1 +H−1b(·)s}x.

Our aim is to receive evaluation

V̇ ≤ −αx∗H−2x, (9)

which is equivalent to a matrix inequality

L(·) + P (·) +R(·) < −αI, (10)

where

L(·) = Q(·) +Hse∗m + ems
∗H,

Q(·) = HA∗1(·) +A1(·)H,
P (·) = HA∗2(·) +A2(·)H,
R(·) = Hsb∗(·) + b(·)s∗H.

Find H and s to satisfy the inequality

L(·) < −3αI. (11)

Denote the main diagonal minors of Q(·) (begin-
ning from above) by ∆i(·). It cam be easily shown
that

∆1(·) = 2(α11(·)h1 + α12(·)h12) + 3α =

= 2α11(·)− α12(·)
√
h2 + 3α. (12)

We find h2 from condition ∆1(·) < 0. It is easy to
check that representation

∆k(·) =

∣∣∣∣∣Qk−1(·) qk(·)
q∗k(·) 2αk,k+1(·)hk,k+1 + 3α

∣∣∣∣∣
is valid, where column qk(·) depends only on hj
and αij(·) for j ≤ k, i ≤ k. By the Schur’s lemma
we arrive at a representation

∆k(·) = ∆k−1(·)[−αk,k+1(·)
√
hkhk+1 + 3α−

−q∗k(·)Q−1
k−1(·)qk(·)], (13)



where qk(·) and Qk−1(·) do not depend on
hk+1. Without lack of generality suppose that
αk,k+1(·) > α∗ for k = 1, . . . ,m − 1. (If it is not
so, one can multiply the equation by −1 beginning
from below, and replace corresponding xi by −xi.)
The expression standing in square brackets (13)
is negative for sufficiently large hk+1. So we con-
clude that ∆k(·)∆k−1(·) < 0 for k ≤ m− 1 and for
sufficiently large h2, . . . , hm, which can be selected
monotonically increasing:

h1 ≤ h2 ≤ . . . ≤ hm. (14)

Let

s = λH−1em (15)

and represent matrix L(·) + 3αI in form

L(·) + 3αI =

(
Qm−1(·) q(·)

q∗(·) 2λ+ κ(·)

)
(16)

where Qm−1(·) and q(·) do not depend on λ, and
κ(·) has a form

κ(·) = 2[αm−1,m(·)hm−1,m +

+ αmm(·)hm] + 3αhm. (17)

By the Schur’s lemma

det(L+ 3αI) = detQm−1(·)×
×(κ − q∗(·)Q−1

m−1(·)q(·)).

Choosing λ to meet the inequality

λ < − sup[αm−1,m(·)hm−1,m+

+αmm(·)hm + 3
2αhm − q

∗(·)Q−1
m−1(·)q(·)]

one gets

det(L(·) + 3αI)detQm−1(·) < 0

and hence (11).
Introduce the following notation. Let |A| be Eu-
clidean norm of matrix A, ‖A‖ =

√
λmax(AA∗)

be spectral norm of matrix A. Evaluate ‖P (·)‖ to
ensure the inequality

P (·) < αI. (18)

Because of symmetry of matrices H and A2(·)A∗2(·)
inequality

λmax[HA2(·)A∗2(·)H] ≤
≤ [λmax(H)]2λmax[A2(·)A∗2(·)]

is valid, see [Gantmaher, 1967]. Since matrix H is
a normal Jacobi’s symmetrical matrix,

λmax(H) ≤ max
i
hi+

+2 cos
π

m+ 1
max
i

1
2

√
hihi+1

is valid, see [Gantmaher and Krein, 1950]. So (14)
implies

λmax(H) ≤ 2hm.

Therefore the inequality

‖HA∗2(·)‖ ≤ 2hm‖A2(·)‖

is valid. In a similar way one comes to

‖A2(·)H‖ ≤ 2hm‖A2(·)‖.

So the evaluation

‖P (·)‖ ≤ 4hm‖A2(·)‖ (19)

is valid. According to the Euler’s inequality the
relationship (18) is valid if

λmax(P (·)) < α. (20)

Since matrix P (·) is symmetrical

λmax(P (α)) = ‖P (·)‖.

So (18) is valid if either inequality (20) is ful-
filled, or 4hm‖A2(·)‖ < α . Since evaluation
‖A2(·)‖ ≤ |A2(·)| is valid [Wilkinson, 1970], for
inequality (18) to hold it suffices that

|A2(·)| < α

4hm
. (21)

Evaluate now ‖R(·)‖ in such a way, that inequality

R(·) < αI (22)



is valid. Reasoning in the same way as for deduc-
tion of (18) we receive

‖R(·)‖ ≤ 4hm‖b(·)s∗‖.

So (22) is fulfilled if

|b(·)s∗| < α

4hm
.

Hence

|b(·)| < α

4hm|s|
(23)

implies inequality (22). From (11), (18), (22) eval-
uation (9) follows, that guarantees global asymp-
totical stability of equilibrium for system (4). So
the following result is received.

Theorem 1. If (4), (5), (21), (23) are fulfilled and
control (6), (15) is chosen, the zero equilibrium x =
0 of system (3) is globally asymptotically stable.

3 Pulse-Modulated Systems
Consider a system

ẋ = A(·)x+ (em + b)ξ,

ξ =Mζ, ζ = ψ(σ), σ = s∗x,
(24)

where the matrix A(·) is the same as in system
(3), b is a constant m-dimensional vector, ξ(t) is a
signal at the output of pulse modulator, ζ(t) is a
signal at its input,M is an operator (G-modulator
[Gelig, Zuber and Churilov, 2006]). It is required
to find a function ψ(σ) and a constant vector s such
that system (24) is globally asymptotically stable.
The operator M maps each function ζ(t) con-
tinuous on [t0,+∞) to a sequence of numbers
t0 < t1 < t2 < . . . and to a function ξ(t) with
the following properties:

1. δ0T ≤ tn+1 − tn ≤ T , n = 0, 1, 2, . . .;
2. ξ(t) is piecewise-continuous in each interval

[tn, tn+1) and does not change sign on it;
3. the operatorM is causal, i.e., tn depends only

on ζ(t) for t ≤ tn, ξ(t) depends only on ζ(τ)
for τ ≤ t;

4. there exists a function (“an equivalent nonlin-
earity”) ϕ(ζ) ∈ C(−∞,+∞) such that for each
n there is t̃n ∈ [tn, tn+1) for which the average
value of the n-th pulse

vn =
1

tn+1 − tn

tn+1∫
tn

ξ(t)dt

satisfies the equality

vn = ϕ(ζ(t̃n)). (25)

The majority of known forms of pulse modulation
has properties 1–4 (pulse-amplitude modulation,
pulse-frequency modulation, pulse-width modula-
tion, combined pulse modulation and others [Tsyp-
kin and Popkov, 1973; Gelig and Churilov, 1998]).
It is supposed that function ϕ(σ) is continuous and
is increasing monotonically on (−∞,+∞), ϕ(0) =
0, ϕ(±∞) = ±∞.
For stabilization of system (24) let ψ = ϕ−1,
where ϕ−1 is reciprocal function for ϕ. Then we
have equality

vn = σ(t̃n). (26)

To use the method of averaging [Gelig and
Churilov, 1998] we introduce functions v(t) = vn
for tn ≤ t < tn+1 (n = 0, 1, 2, . . .) and

w(t) =

t∫
t0

[ξ(τ)− v(τ)]dτ.

Changing in (24) variables

y = x− (em + b)w(t),

we come to system

ẏ = B(·)y + f(·),
σ = s∗y + κw, κ = s∗(em + b),

(27)

where

B(·) = A(·) + (em + b)s∗,

f(·) = A(·)(em + b)w + (em + b)(v − s∗y).

Obviously an equation (27) is different from (3)
only by member f(·). So choosing V = y∗H−1y
and s by formula (15) we come to the following
evaluation for derivative V̇ in respect to system
(27):

V̇ < −αy∗H−2y + p(·), (28)

where p(·) = f∗(·)H−1y + y∗H−1f(·). An evalua-
tion

|p(·)| ≤ 2|H−1y| · |f(·)| ≤

≤ µ|f(·)|2 +
1
µ
|H−1y|2 (29)



is obvious, where µ — positive parameter, which
will be constructed later.
By traditional for method of averaging arguments
[Gelig and Churilov, 1998], based on evaluation
|w| ≤ T |v| and Wirtinger inequality

b∫
a

σ(t)2dt ≤ 4(b− a)2

π2

b∫
a

[dσ
dt

]2
dt,

(σ(c) = 0, a ≤ c ≤ b, dσdt ∈ L2[a, b]) we make sure
of validity of evaluation

t∫
tn

|f |2dt ≤ γ1T
2

t∫
tn

|y|2dt (30)

for

T < γ2. (31)

Here and later γi depend only on numbers m, α0,
α∗, β0. From (28), (29), (30) relation

V̇ ≤ [(
1
µ
− α)|H−1|2 + γ3T

2µ]|y|2 (32)

follows. It is easy to find such an evaluation

T < γ4. (33)

That if (33) is fulfilled, such µ > 0 exists, for which
inequality (32) has a form

V̇ ≤ −γ5|y|2.

There follows

V (y(tn+1)) < V (y(tn))− γ5

tn+1∫
tn

|y|2dt

(n = 0, 1, 2, . . .).

Summing these inequalities by n we receive an eval-
uation

V (y(tN )) + γ5

tN∫
t0

|y|2dt < V (y(t0)).

From here in respect to arbitrariness of N relation
|y| ∈ L2[t0,+∞) follows. Further by way of stan-

dard arguments following properties are proved se-
quentially:

v ∈ L2[t0,+∞), w ∈ L2[t0,+∞),

|ẏ| ∈ L2[t0,+∞), lim
t→+∞

|y(t)| = 0,

lim
t→+∞

w(t) = 0, lim
t→+∞

|x(t)| = 0,

sup
t≥t0
|x(t)| → 0 for |x(t0)| → 0.

Thus the following result was received:

Theorem 2. Let suppositions of theorem 1 are ful-
filled, b — constant vector, ψ = ϕ−1 and vector
s is set by formula (15). If evaluations (31), (33)
are fulfilled state of equilibrium x = 0 of pulse-
modulated system (24) is globally stable.

4 Example
Consider the problem of synthesis of robust sta-
bilizing control for system

ẋ1 = a11(·)x1 + a12(·)x2 + a13(·)x3 = β1(·)u,
ẋ2 = a21(·)x1 + a22(·)x2 + a23(·)x3 = β2(·)u,
ẋ3 = a31(·)x1 + a32(·)x2 + a33(·)x3 = (1 + β3(·))u,

(34)
where

|aij(·)| ≤ α0, |βi(·)| ≤ β0, a12(·) > α∗, a23(·) > α∗.
(35)

For constructing the control u(x) we will use the-
orem 1. It is evident that for system (34) the ma-
trices A1(·) and A2(·) have the forms

A1(·) =

a11(·) a12(·) 0

a21(·) a22(·) a23(·)
a31(·) a32(·) a33(·)

 ,

A2(·) =

 0 0 a13(·)
0 0 0

0 0 0

 .

As a matrix H we consider

H =


1 −

√
h2

2
0

−
√
h2

2
h2 −

√
h2h3

2

0 −
√
h2h3

2
h3

 .



It is evident

∆1(·) = 2(a11(·)−
√
h2

2
a12(·)) + 3α.

It is easily to prove that respect to (35) we have

∆1(·) ≤ −1, (36)

if

√
h2 >

2α0 + 3α+ 1
α∗

.

Consider

h2 = max
{

1,
(2α0 + 3α+ 1)2

α2
∗

}
. (37)

Then (36) is fulfilled. Besides an evaluation

|∆1(·)| ≤ α0(2 +
√
h2) + 3α ∆= ∆+

1 (38)

is evident. Find h3 from condition

∆2(·) ≥ 1. (39)

By Schur’s lemma

∆2(·) = ∆1(·)[−a23(·)
√
h2h3 + 3α− µ2(·)∆−1

1 (·)],

where

µ = a12(·)h2 + a21(·) + 0, 5(a11(·) + a22(·))
√
h2.

In respect to (36) for fulfillment (39) it is suffi-
ciently that an expression in square brackets were
less or equal to −1. For this is sufficiently of ful-
fillment of inequality

a23(·)
√
h2h3 ≥ 3α+ µ2(·) + 1. (40)

As µ2(·) ≤ α2
0(1 + h2 +

√
h2)2 then an evaluation

(40) is fulfilled by

h3 = max
{
h2,

[3α+ 1 + α2
0(1 + h2 + h2

2)2]2

α2
∗h2

}
.

(41)
It is easy to receive an evaluation

|∆2(·)| ≤ ∆+
1 (0, 5α0

√
h2h3 + 3α) +

+ α2
0(1 +

√
h2 + h2

2) ∆= ∆+
2 . (42)

We will find λ from condition

det(L(·) + 3αI) < 0. (43)

So the next formula is valid

det(L(·) + 3αI) = ∆3(·) + 2λ∆2(·), (44)

where

∆3(·) =

∣∣∣∣∣Q2(·) q(·)
q∗(·) κ(·)

∣∣∣∣∣ , q =

(
κ1(·)
κ2(·)

)
,

κ(·) = − a23(·)
√
h2h3 + 2a33(·)h3 + 3αh3,

κ1(·) = a31(·)− 0, 5(a32(·)
√
h2 + a12(·)

√
h2h3),

κ2(·) = − 0, 5a31(·) + h2a32(·)−
− 0, 5(a33(·) + a22(·))

√
h2h3 + a23(·)h3,

Q2(·) =

(
µ1(·) µ2(·)
µ2(·) µ3(·)

)
,

µ1(·) = 2a11(·)− a12(·)
√
h2 + 3α,

µ2(·)=−(a11(·) + a22(·))
√
h2 + a12(·)h2 + a21(·),

µ3(·)=−a21(·)
√
h2+2a22(·)h2−a23(·)

√
h2h3+3α.

It is evident the validness of formula

Q−1
2 (·) =

1
∆2(·)

M(·),

where

M(·) =

(
µ3(·) −µ2(·)
−µ2(·) µ1(·)

)
.

By Schur’s lemma

∆3(·) = ∆2(·)[κ(·)− q∗(·)Q−1
2 (·)q(·)].

Here in respect to (42) next evaluation follows

|∆3(·)| ≤ |∆2(·)| |κ(·)|+ ‖q(·)‖2‖M(·)‖ ≤

≤ ∆+
2 |κ(·)|+(κ2

1(·)+κ2
2(·))

√
µ2

1(·)+µ2
3(·)+2µ2

2(·).



It is evidently that evaluations

|κ(·)| ≤ α0(
√
h2h3 + 2h3) + 3αh3

∆= κ+,

|κ1(·)| ≤ α0 + 0, 5α0(
√
h2 +

√
h2h3) ∆= κ+

1 ,

|κ2(·)| ≤ α0(0, 5
√
h2 + h2 +

√
h2h3 + h3) ∆= κ+

2 ,

|µ1(·)| ≤ α0(2 +
√
h2) + 3α ∆= µ+

1 ,

|µ2(·)| ≤ α0(2 +
√
h2 + h2) ∆= µ+

2 ,

|µ3(·)| ≤ α0(
√
h2 + 2h2 +

√
h2h3) ∆= µ+

3

are valid. So

|∆3(·)| ≤ ∆+
2 κ+ + ((κ+

1 )2 + (κ+
2 )2)×

×
√

(µ+
1 )2 + (µ+

3 )2 + 2(µ+
2 )2 ∆= ∆+

3 .

From this evaluation and (44), (39) it is follows
that for validness (43) it is sufficiently to choise

λ < −∆+
3 . (45)

So evaluations (21) and (23) received a form

|a13(·)| ≤ α

4h3
,

β2
1(·) + β2

2(·) + β2
3(·) ≤ α2

16h3‖s‖
.

(46)

In this way by theorem 1 the system (34) is globally
stable if u = s∗x, where s is set by formula (15) and
coefficients aij(·) and βi(·) comply with evaluations
(35), (46).

5 Conclusion
We considered the stabilization problem of such
nonlinear continuous and impulse-modulator sys-
tems for which only the bound of variation of its
coefficients were known. The linear scalar control
is constructed which provides global stability of
closed-loop system.
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