SYNTHESIS OF ROBUST STABILIZING CONTROL FOR NONLINEAR SYSTEMS

I.E. Zuber

Department of Mathematics and Mechanics Saint Petersburg State University Russia

Abstract

Systems described by differential equations are considered for which only bounds of coefficients variation are known. For such systems a linear scalar control is formed which stabilizes the system. In the case when the system is controlled by a pulse modulator the lower bound of a sampling frequency is established for which the system retains stability.

Key words

Global asymptotical stability, nonlinear systems, pulse modulation.

1 Introduction

Consider a system

$$\dot{x} = A(x)x + b(x)u,\tag{1}$$

where $A \in \mathbb{R}^{m \times m}$, $b \in \mathbb{R}^{m \times 1}$, $u \in \mathbb{R}^1$. Suppose that the matrix A(x) and the vector b(x) have sufficiently smooth elements.

An exact feedback linearization method for synthesis of stabilizing control is known, see [Isidori, 1995; Miroshnik, Nikiforov and Fradkov, 2000; Zak, 2002; Khalil, 2002]. This method is based on construction of a transformation

$$y = \Phi(x), \tag{2}$$

which reduces the matrix A to the Frobenius form with a functional lower row and vector b to the last unit vector. With an appropriate control the considered system becomes a linear asymptotically stable system with constant coefficients. In [Isidori, 1995; Zak, 2002] the necessary and sufficient conditions for the existance of transformation (2) are proposed. These conditions set a rather A.Kh. Gelig

Department of Mathematics and Mechanics Saint Petersburg State University Russia a@ag1050.spb.edu

narrow class of systems. Moreover, the control formed with this method is not robust, because its design requires a full knowledge of equations coefficients (1).

In [Gelig, Zuber and Churilov, 2006] a robust stabilizing control for system (1) is constructed without a supposition about smoothness of coefficients (1) in the following cases:

1. Coefficients $\alpha_{ij}(x)$ of matrix A(x) and $\beta_i(x)$ of vector b(x) have the properties

$$\begin{aligned} \alpha_{i,i+1} &= 1 & (i = 1, \dots, m-1), \\ \alpha_{ij} &= 0 & (i = 1, \dots, m-1; \ j > i+1), \\ \beta_i &= 0 & (i = 1, \dots, m-1), \quad \beta_m = 1, \\ |\alpha_{ij}(x)| &< \text{const} \quad (i = 1, \dots, m; \ j < i+1). \end{aligned}$$

2.

$$\alpha_{i,i+1} = 1, \qquad \alpha_{ij} = 0,$$

(j < i - 1, j > i + 1, i = 1,..., m - 1),
 $|\beta_i(x)| < \text{const}, |\alpha_{m,i}| < \text{const} (i = 1,...,m).$

In this paper a robust stabilizing control for system (1) is constructed without supposition about equality to zero of the coefficients indicated above. Continuous and pulse-modulated systems are considered.

2 Continuous Systems

Consider a system

$$\dot{x} = A(\cdot)x + (e_m + b(\cdot))u, \tag{3}$$

where $A(\cdot) \in \mathbb{R}^{m \times m}$, $b(\cdot) \in \mathbb{R}^{m \times 1}$, $e_m^* = (0, \ldots, 0, 1)$. Suppose that coefficients of $A(\cdot)$ and of $b(\cdot)$ are arbitrary functionals. For example, $A(\cdot) = A(t, x(t), x(t - \tau), \psi(t))$, where $\psi(t)$ is an

external perturbation. For these coefficients only bounds of variations are known:

$$|\alpha_{ij}(\cdot)| < \alpha_0, \ |\beta_i(\cdot)| < \beta_0 \ (i, j = 1, \dots, m).$$
 (4)

Moreover, suppose that evaluation

$$|\alpha_{i,i+1}(\cdot)| > \alpha_* \quad (i = 1, \dots, m-1)$$
 (5)

is fulfilled.

The problem is to construct a stabilizing control

$$u = s^* x, \tag{6}$$

where s is a constant vector depending only on parameters α_0, β_0 and α_* . If one choose a Lyapunov function in the form

$$V(x) = x^* H x,$$

where H is positive definite constant matrix, the synthesis problem of stabilizing control $u = s^*x$ reduce to finding solution H, s for bilinear matrix inequalities

$$A^*(\cdot)H + HA(\cdot) + H(e_n + b(\cdot))s^* +$$
$$+s(e_n + b(\cdot))^*H < 0.$$
(7)

In this paper a class of uncertain systems is found for which as distinction from [Collins, Sadhukhan and Watson, 1999; Arzelier, Peaucelle and Salhi, 2002] the solution of (7) has an explicit form. To solve the problem we represent system (3) in the form

$$\dot{x} = (A_1(\cdot) + A_2(\cdot))x + (e_m + b(\cdot))u, \quad (8)$$

where coefficients $\alpha_{ij}^{(1)}(\cdot)$ and $\alpha_{ij}^{(2)}(\cdot)$ of matrices $A_1(\cdot)$ and $A_2(\cdot)$ have properties:

$$\alpha_{ij}^{(1)}(\cdot) = \begin{cases} \alpha_{ij}(\cdot) \ for \ j \le i+1, \\ i = 1, \dots, m, \\ 0 \ for \ j > i+1, \\ i = 1, \dots, m-2 \end{cases}$$

$$\alpha_{ij}^{(2)}(\cdot) = \begin{cases} \alpha_{ij}(\cdot) \ for \ j > i+1, \\ i = 1, \dots, m-2, \\ 0 \ for \ j \le i+1, \\ i = 1, \dots, m. \end{cases}$$

Consider a Lyapunov function

$$V = x^* H^{-1} x,$$

where *H* is a triple-band matrix with coefficients h_{ij} : $h_{ii} = h_i > 0$, $h_1 = 1$, $h_{i,i+1} = h_{i+1,i} = -\sqrt{h_i h_{i+1}}/2$ for $i = 1, \ldots, m-1$, $h_{ij} = 0$ for j > i+1 and j < i-1. This matrix is positive definite for any $h_i > 0$ $(i = 2, \ldots, m)$, see [Gantmaher and Krein, 1950]. The derivative \dot{V} along the solutions of system (8) has a form

$$\dot{V} = x^* \{ [A_1(\cdot) + A_2(\cdot)]^* H^{-1} + H^{-1} [A_1(\cdot) + A_2(\cdot)] + se_m^* H^{-1} + H^{-1} e_m s^* + sb^*(\cdot) H^{-1} + H^{-1} b(\cdot) s \} x.$$

Our aim is to receive evaluation

$$\dot{V} \le -\alpha x^* H^{-2} x,\tag{9}$$

which is equivalent to a matrix inequality

$$L(\cdot) + P(\cdot) + R(\cdot) < -\alpha I, \tag{10}$$

where

$$L(\cdot) = Q(\cdot) + Hse_m^* + e_m s^* H,$$

$$Q(\cdot) = HA_1^*(\cdot) + A_1(\cdot)H,$$

$$P(\cdot) = HA_2^*(\cdot) + A_2(\cdot)H,$$

$$R(\cdot) = Hsb^*(\cdot) + b(\cdot)s^*H.$$

Find H and s to satisfy the inequality

$$L(\cdot) < -3\alpha I. \tag{11}$$

Denote the main diagonal minors of $Q(\cdot)$ (beginning from above) by $\Delta_i(\cdot)$. It can be easily shown that

$$\Delta_1(\cdot) = 2(\alpha_{11}(\cdot)h_1 + \alpha_{12}(\cdot)h_{12}) + 3\alpha =$$

= $2\alpha_{11}(\cdot) - \alpha_{12}(\cdot)\sqrt{h_2} + 3\alpha.$ (12)

We find h_2 from condition $\Delta_1(\cdot) < 0$. It is easy to check that representation

$$\Delta_k(\cdot) = \begin{vmatrix} Q_{k-1}(\cdot) & q_k(\cdot) \\ q_k^*(\cdot) & 2\alpha_{k,k+1}(\cdot)h_{k,k+1} + 3\alpha \end{vmatrix}$$

is valid, where column $q_k(\cdot)$ depends only on h_j and $\alpha_{ij}(\cdot)$ for $j \leq k, i \leq k$. By the Schur's lemma we arrive at a representation

$$\Delta_{k}(\cdot) = \Delta_{k-1}(\cdot)[-\alpha_{k,k+1}(\cdot)\sqrt{h_{k}h_{k+1}} + 3\alpha - q_{k}^{*}(\cdot)Q_{k-1}^{-1}(\cdot)q_{k}(\cdot)], \qquad (13)$$

where $q_k(\cdot)$ and $Q_{k-1}(\cdot)$ do not depend on h_{k+1} . Without lack of generality suppose that $\alpha_{k,k+1}(\cdot) > \alpha_*$ for $k = 1, \ldots, m-1$. (If it is not so, one can multiply the equation by -1 beginning from below, and replace corresponding x_i by $-x_i$.) The expression standing in square brackets (13) is negative for sufficiently large h_{k+1} . So we conclude that $\Delta_k(\cdot)\Delta_{k-1}(\cdot) < 0$ for $k \leq m-1$ and for sufficiently large h_2, \ldots, h_m , which can be selected monotonically increasing:

$$h_1 \le h_2 \le \dots \le h_m. \tag{14}$$

Let

$$s = \lambda H^{-1} e_m \tag{15}$$

and represent matrix $L(\cdot) + 3\alpha I$ in form

$$L(\cdot) + 3\alpha I = \begin{pmatrix} Q_{m-1}(\cdot) & q(\cdot) \\ q^*(\cdot) & 2\lambda + \varkappa(\cdot) \end{pmatrix}$$
(16)

where $Q_{m-1}(\cdot)$ and $q(\cdot)$ do not depend on λ , and $\varkappa(\cdot)$ has a form

$$\varkappa(\cdot) = 2[\alpha_{m-1,m}(\cdot)h_{m-1,m} + \alpha_{mm}(\cdot)h_m] + 3\alpha h_m.$$
(17)

By the Schur's lemma

$$\det(L + 3\alpha I) = \det Q_{m-1}(\cdot) \times \\ \times (\varkappa - q^*(\cdot)Q_{m-1}^{-1}(\cdot)q(\cdot)).$$

Choosing λ to meet the inequality

$$\lambda < -\sup[\alpha_{m-1,m}(\cdot)h_{m-1,m} + \alpha_{mm}(\cdot)h_m + \frac{3}{2}\alpha h_m - q^*(\cdot)Q_{m-1}^{-1}(\cdot)q(\cdot)]$$

one gets

$$\det(L(\cdot) + 3\alpha I)\det Q_{m-1}(\cdot) < 0$$

and hence (11).

Introduce the following notation. Let |A| be Euclidean norm of matrix A, $||A|| = \sqrt{\lambda_{max}(AA^*)}$ be spectral norm of matrix A. Evaluate $||P(\cdot)||$ to ensure the inequality

$$P(\cdot) < \alpha I. \tag{18}$$

Because of symmetry of matrices H and $A_2(\cdot)A_2^*(\cdot)$ inequality

$$\lambda_{max}[HA_2(\cdot)A_2^*(\cdot)H] \le \\ \le [\lambda_{max}(H)]^2 \lambda_{max}[A_2(\cdot)A_2^*(\cdot)]$$

is valid, see [Gantmaher, 1967]. Since matrix H is a normal Jacobi's symmetrical matrix,

$$\lambda_{max}(H) \le \max_{i} h_{i} + \frac{\pi}{m+1} \max_{i} \frac{1}{2} \sqrt{h_{i} h_{i+1}}$$

is valid, see [Gantmaher and Krein, 1950]. So (14) implies

$$\lambda_{max}(H) \le 2h_m.$$

Therefore the inequality

$$||HA_2^*(\cdot)|| \le 2h_m ||A_2(\cdot)||$$

is valid. In a similar way one comes to

$$|A_2(\cdot)H|| \le 2h_m ||A_2(\cdot)||.$$

So the evaluation

$$||P(\cdot)|| \le 4h_m ||A_2(\cdot)|| \tag{19}$$

is valid. According to the Euler's inequality the relationship (18) is valid if

$$\lambda_{max}(P(\cdot)) < \alpha. \tag{20}$$

Since matrix $P(\cdot)$ is symmetrical

$$\lambda_{max}(P(\alpha)) = \|P(\cdot)\|.$$

So (18) is valid if either inequality (20) is fulfilled, or $4h_m ||A_2(\cdot)|| < \alpha$. Since evaluation $||A_2(\cdot)|| \leq |A_2(\cdot)|$ is valid [Wilkinson, 1970], for inequality (18) to hold it suffices that

$$|A_2(\cdot)| < \frac{\alpha}{4h_m}.\tag{21}$$

Evaluate now $||R(\cdot)||$ in such a way, that inequality

$$R(\cdot) < \alpha I \tag{22}$$

is valid. Reasoning in the same way as for deduction of (18) we receive

$$||R(\cdot)|| \le 4h_m ||b(\cdot)s^*||$$

So (22) is fulfilled if

$$|b(\cdot)s^*| < \frac{\alpha}{4h_m}.$$

Hence

$$|b(\cdot)| < \frac{\alpha}{4h_m|s|} \tag{23}$$

implies inequality (22). From (11), (18), (22) evaluation (9) follows, that guarantees global asymptotical stability of equilibrium for system (4). So the following result is received.

Theorem 1. If (4), (5), (21), (23) are fulfilled and control (6), (15) is chosen, the zero equilibrium x = 0 of system (3) is globally asymptotically stable.

3 Pulse-Modulated Systems

Consider a system

$$\dot{x} = A(\cdot)x + (e_m + b)\xi,$$

$$\xi = \mathcal{M}\zeta, \quad \zeta = \psi(\sigma), \quad \sigma = s^*x,$$
(24)

where the matrix $A(\cdot)$ is the same as in system (3), b is a constant m-dimensional vector, $\xi(t)$ is a signal at the output of pulse modulator, $\zeta(t)$ is a signal at its input, \mathcal{M} is an operator (G-modulator [Gelig, Zuber and Churilov, 2006]). It is required to find a function $\psi(\sigma)$ and a constant vector s such that system (24) is globally asymptotically stable.

The operator \mathcal{M} maps each function $\zeta(t)$ continuous on $[t_0, +\infty)$ to a sequence of numbers $t_0 < t_1 < t_2 < \ldots$ and to a function $\xi(t)$ with the following properties:

1. $\delta_0 T \leq t_{n+1} - t_n \leq T, \ n = 0, 1, 2, \ldots;$

- 2. $\xi(t)$ is piecewise-continuous in each interval $[t_n, t_{n+1})$ and does not change sign on it;
- 3. the operator \mathcal{M} is causal, i.e., t_n depends only on $\zeta(t)$ for $t \leq t_n$, $\xi(t)$ depends only on $\zeta(\tau)$ for $\tau \leq t$;
- 4. there exists a function ("an equivalent nonlinearity") $\varphi(\zeta) \in \mathbb{C}(-\infty, +\infty)$ such that for each n there is $\tilde{t}_n \in [t_n, t_{n+1})$ for which the average value of the *n*-th pulse

$$v_n = \frac{1}{t_{n+1} - t_n} \int_{t_n}^{t_{n+1}} \xi(t) dt$$

satisfies the equality

$$v_n = \varphi(\zeta(\tilde{t}_n)). \tag{25}$$

The majority of known forms of pulse modulation has properties 1–4 (pulse-amplitude modulation, pulse-frequency modulation, pulse-width modulation, combined pulse modulation and others [Tsypkin and Popkov, 1973; Gelig and Churilov, 1998]). It is supposed that function $\varphi(\sigma)$ is continuous and is increasing monotonically on $(-\infty, +\infty)$, $\varphi(0) =$ $0, \varphi(\pm\infty) = \pm\infty$.

For stabilization of system (24) let $\psi = \varphi^{-1}$, where φ^{-1} is reciprocal function for φ . Then we have equality

$$v_n = \sigma(\tilde{t}_n). \tag{26}$$

To use the method of averaging [Gelig and Churilov, 1998] we introduce functions $v(t) = v_n$ for $t_n \leq t < t_{n+1}$ (n = 0, 1, 2, ...) and

$$w(t) = \int_{t_0}^t [\xi(\tau) - v(\tau)] d\tau.$$

Changing in (24) variables

$$y = x - (e_m + b)w(t),$$

we come to system

$$\dot{y} = B(\cdot)y + f(\cdot),$$

$$\sigma = s^*y + \varkappa w, \quad \varkappa = s^*(e_m + b),$$
(27)

where

$$B(\cdot) = A(\cdot) + (e_m + b)s^*,$$

$$f(\cdot) = A(\cdot)(e_m + b)w + (e_m + b)(v - s^*y).$$

Obviously an equation (27) is different from (3) only by member $f(\cdot)$. So choosing $V = y^* H^{-1}y$ and s by formula (15) we come to the following evaluation for derivative \dot{V} in respect to system (27):

$$\dot{V} < -\alpha y^* H^{-2} y + p(\cdot), \qquad (28)$$

where $p(\cdot)=f^*(\cdot)H^{-1}y+y^*H^{-1}f(\cdot).$ An evaluation

$$|p(\cdot)| \le 2|H^{-1}y| \cdot |f(\cdot)| \le \\ \le \mu |f(\cdot)|^2 + \frac{1}{\mu} |H^{-1}y|^2$$
(29)

is obvious, where μ – positive parameter, which will be constructed later.

By traditional for method of averaging arguments [Gelig and Churilov, 1998], based on evaluation $|w| \leq T|v|$ and Wirtinger inequality

$$\int\limits_{a}^{b}\sigma(t)^{2}dt\leq \frac{4(b-a)^{2}}{\pi^{2}}\int\limits_{a}^{b}\Big[\frac{d\sigma}{dt}\Big]^{2}dt,$$

 $(\sigma(c)=0,\,a\leq c\leq b,\,\frac{d\sigma}{dt}\in L_2[a,b])$ we make sure of validity of evaluation

$$\int_{t_n}^t |f|^2 dt \le \gamma_1 T^2 \int_{t_n}^t |y|^2 dt$$
 (30)

for

$$T < \gamma_2. \tag{31}$$

Here and later γ_i depend only on numbers m, α_0 , α_* , β_0 . From (28), (29), (30) relation

$$\dot{V} \le [(\frac{1}{\mu} - \alpha)|H^{-1}|^2 + \gamma_3 T^2 \mu]|y|^2$$
 (32)

follows. It is easy to find such an evaluation

$$T < \gamma_4. \tag{33}$$

That if (33) is fulfilled, such $\mu > 0$ exists, for which inequality (32) has a form

$$\dot{V} \le -\gamma_5 |y|^2.$$

There follows

$$V(y(t_{n+1})) < V(y(t_n)) - \gamma_5 \int_{t_n}^{t_{n+1}} |y|^2 dt$$

(n = 0, 1, 2, ...).

Summing these inequalities by n we receive an evaluation

$$V(y(t_N)) + \gamma_5 \int_{t_0}^{t_N} |y|^2 dt < V(y(t_0)).$$

From here in respect to arbitrariness of N relation $|y| \in L_2[t_0, +\infty)$ follows. Further by way of stan-

dard arguments following properties are proved sequentially:

$$\begin{aligned} v \in L_2[t_0, +\infty), \quad & w \in L_2[t_0, +\infty), \\ |\dot{y}| \in L_2[t_0, +\infty), \quad & \lim_{t \to +\infty} |y(t)| = 0, \\ & \lim_{t \to +\infty} w(t) = 0, \quad & \lim_{t \to +\infty} |x(t)| = 0, \\ & \sup_{t \ge t_0} |x(t)| \to 0 \quad \text{for } |x(t_0)| \to 0. \end{aligned}$$

Thus the following result was received:

Theorem 2. Let suppositions of theorem 1 are fulfilled, b — constant vector, $\psi = \varphi^{-1}$ and vector s is set by formula (15). If evaluations (31), (33) are fulfilled state of equilibrium x = 0 of pulsemodulated system (24) is globally stable.

4 Example

Consider the problem of synthesis of robust stabilizing control for system

$$\dot{x}_{1} = a_{11}(\cdot)x_{1} + a_{12}(\cdot)x_{2} + a_{13}(\cdot)x_{3} = \beta_{1}(\cdot)u,$$

$$\dot{x}_{2} = a_{21}(\cdot)x_{1} + a_{22}(\cdot)x_{2} + a_{23}(\cdot)x_{3} = \beta_{2}(\cdot)u,$$

$$\dot{x}_{3} = a_{31}(\cdot)x_{1} + a_{32}(\cdot)x_{2} + a_{33}(\cdot)x_{3} = (1 + \beta_{3}(\cdot))u,$$

(34)

where

$$|a_{ij}(\cdot)| \le \alpha_0, \ |\beta_i(\cdot)| \le \beta_0, \ a_{12}(\cdot) > \alpha_*, \ a_{23}(\cdot) > \alpha_*.$$
(35)

For constructing the control u(x) we will use theorem 1. It is evident that for system (34) the matrices $A_1(\cdot)$ and $A_2(\cdot)$ have the forms

$$A_{1}(\cdot) = \begin{pmatrix} a_{11}(\cdot) \ a_{12}(\cdot) \ 0 \\ a_{21}(\cdot) \ a_{22}(\cdot) \ a_{23}(\cdot) \\ a_{31}(\cdot) \ a_{32}(\cdot) \ a_{33}(\cdot) \end{pmatrix},$$

$$A_2(\cdot) = \begin{pmatrix} 0 & 0 & a_{13}(\cdot) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

As a matrix H we consider

$$H = \begin{pmatrix} 1 & -\frac{\sqrt{h_2}}{2} & 0\\ -\frac{\sqrt{h_2}}{2} & h_2 & -\frac{\sqrt{h_2h_3}}{2}\\ 0 & -\frac{\sqrt{h_2h_3}}{2} & h_3 \end{pmatrix}.$$

It is evident

$$\Delta_1(\cdot) = 2(a_{11}(\cdot) - \frac{\sqrt{h_2}}{2}a_{12}(\cdot)) + 3\alpha.$$

It is easily to prove that respect to (35) we have

$$\Delta_1(\cdot) \le -1,\tag{36}$$

if

$$\sqrt{h_2} > \frac{2\alpha_0 + 3\alpha + 1}{\alpha_*}.$$

 $\operatorname{Consider}$

$$h_2 = \max\left\{1, \ \frac{(2\alpha_0 + 3\alpha + 1)^2}{\alpha_*^2}\right\}.$$
 (37)

Then (36) is fulfilled. Besides an evaluation

$$|\Delta_1(\cdot)| \le \alpha_0 (2 + \sqrt{h_2}) + 3\alpha \stackrel{\Delta}{=} \Delta_1^+ \tag{38}$$

is evident. Find h_3 from condition

$$\Delta_2(\cdot) \ge 1. \tag{39}$$

By Schur's lemma

$$\Delta_2(\cdot) = \Delta_1(\cdot)[-a_{23}(\cdot)\sqrt{h_2h_3} + 3\alpha - \mu^2(\cdot)\Delta_1^{-1}(\cdot)],$$

where

$$\mu = a_{12}(\cdot)h_2 + a_{21}(\cdot) + 0, 5(a_{11}(\cdot) + a_{22}(\cdot))\sqrt{h_2}.$$

In respect to (36) for fulfillment (39) it is sufficiently that an expression in square brackets were less or equal to -1. For this is sufficiently of fulfillment of inequality

$$a_{23}(\cdot)\sqrt{h_2h_3} \ge 3\alpha + \mu^2(\cdot) + 1.$$
 (40)

As $\mu^2(\cdot) \leq \alpha_0^2 (1 + h_2 + \sqrt{h_2})^2$ then an evaluation (40) is fulfilled by

$$h_3 = \max\left\{h_2, \ \frac{[3\alpha + 1 + \alpha_0^2(1 + h_2 + h_2^2)^2]^2}{\alpha_*^2 h_2}\right\}.$$
(41)

It is easy to receive an evaluation

$$\begin{aligned} |\Delta_2(\cdot)| &\leq \Delta_1^+(0, 5\alpha_0\sqrt{h_2h_3} + 3\alpha) + \\ &+ \alpha_0^2(1 + \sqrt{h_2} + h_2^2) \stackrel{\Delta}{=} \Delta_2^+. \end{aligned}$$
(42)

We will find λ from condition

$$\det(L(\cdot) + 3\alpha I) < 0. \tag{43}$$

So the next formula is valid

$$\det(L(\cdot) + 3\alpha I) = \Delta_3(\cdot) + 2\lambda \Delta_2(\cdot), \qquad (44)$$

where

$$\Delta_3(\cdot) = \begin{vmatrix} Q_2(\cdot) & q(\cdot) \\ q^*(\cdot) & \varkappa(\cdot) \end{vmatrix}, \quad q = \begin{pmatrix} \varkappa_1(\cdot) \\ \varkappa_2(\cdot) \end{pmatrix},$$

$$\begin{split} \varkappa(\cdot) &= -a_{23}(\cdot)\sqrt{h_2h_3} + 2a_{33}(\cdot)h_3 + 3\alpha h_3, \\ \varkappa_1(\cdot) &= a_{31}(\cdot) - 0, 5(a_{32}(\cdot)\sqrt{h_2} + a_{12}(\cdot)\sqrt{h_2h_3}), \\ \varkappa_2(\cdot) &= -0, 5a_{31}(\cdot) + h_2a_{32}(\cdot) - \\ &\quad -0, 5(a_{33}(\cdot) + a_{22}(\cdot))\sqrt{h_2h_3} + a_{23}(\cdot)h_3, \end{split}$$

$$Q_2(\cdot) = \begin{pmatrix} \mu_1(\cdot) \ \mu_2(\cdot) \\ \mu_2(\cdot) \ \mu_3(\cdot) \end{pmatrix},$$

$$\begin{split} \mu_1(\cdot) &= 2a_{11}(\cdot) - a_{12}(\cdot)\sqrt{h_2} + 3\alpha, \\ \mu_2(\cdot) &= -(a_{11}(\cdot) + a_{22}(\cdot))\sqrt{h_2} + a_{12}(\cdot)h_2 + a_{21}(\cdot), \\ \mu_3(\cdot) &= -a_{21}(\cdot)\sqrt{h_2} + 2a_{22}(\cdot)h_2 - a_{23}(\cdot)\sqrt{h_2h_3} + 3\alpha. \end{split}$$

It is evident the validness of formula

$$Q_2^{-1}(\cdot) = \frac{1}{\Delta_2(\cdot)} M(\cdot),$$

where

$$M(\cdot) = \begin{pmatrix} \mu_3(\cdot) & -\mu_2(\cdot) \\ -\mu_2(\cdot) & \mu_1(\cdot) \end{pmatrix}.$$

By Schur's lemma

$$\Delta_3(\cdot) = \Delta_2(\cdot)[\varkappa(\cdot) - q^*(\cdot)Q_2^{-1}(\cdot)q(\cdot)].$$

Here in respect to (42) next evaluation follows

$$\begin{aligned} |\Delta_{3}(\cdot)| &\leq |\Delta_{2}(\cdot)| \, |\varkappa(\cdot)| + \|q(\cdot)\|^{2} \|M(\cdot)\| \leq \\ &\leq \Delta_{2}^{+} |\varkappa(\cdot)| + (\varkappa_{1}^{2}(\cdot) + \varkappa_{2}^{2}(\cdot)) \sqrt{\mu_{1}^{2}(\cdot) + \mu_{3}^{2}(\cdot) + 2\mu_{2}^{2}(\cdot)}. \end{aligned}$$

$$\begin{aligned} |\varkappa(\cdot)| &\leq \alpha_0(\sqrt{h_2h_3} + 2h_3) + 3\alpha h_3 \stackrel{\Delta}{=} \varkappa^+, \\ |\varkappa_1(\cdot)| &\leq \alpha_0 + 0, 5\alpha_0(\sqrt{h_2} + \sqrt{h_2h_3}) \stackrel{\Delta}{=} \varkappa_1^+, \\ |\varkappa_2(\cdot)| &\leq \alpha_0(0, 5\sqrt{h_2} + h_2 + \sqrt{h_2h_3} + h_3) \stackrel{\Delta}{=} \varkappa_2^+, \end{aligned}$$

$$\begin{aligned} |\mu_1(\cdot)| &\leq \alpha_0 (2 + \sqrt{h_2}) + 3\alpha \stackrel{\Delta}{=} \mu_1^+, \\ |\mu_2(\cdot)| &\leq \alpha_0 (2 + \sqrt{h_2} + h_2) \stackrel{\Delta}{=} \mu_2^+, \\ |\mu_3(\cdot)| &\leq \alpha_0 (\sqrt{h_2} + 2h_2 + \sqrt{h_2h_3}) \stackrel{\Delta}{=} \mu_3^+ \end{aligned}$$

are valid. So

$$\begin{aligned} |\Delta_3(\cdot)| &\leq \Delta_2^+ \varkappa^+ + ((\varkappa_1^+)^2 + (\varkappa_2^+)^2) \times \\ &\times \sqrt{(\mu_1^+)^2 + (\mu_3^+)^2 + 2(\mu_2^+)^2} \stackrel{\Delta}{=} \Delta_3^+. \end{aligned}$$

From this evaluation and (44), (39) it is follows that for validness (43) it is sufficiently to choise

$$\lambda < -\Delta_3^+. \tag{45}$$

So evaluations (21) and (23) received a form

$$|a_{13}(\cdot)| \le \frac{\alpha}{4h_3}, \beta_1^2(\cdot) + \beta_2^2(\cdot) + \beta_3^2(\cdot) \le \frac{\alpha^2}{16h_3 \|s\|}.$$
(46)

In this way by theorem 1 the system (34) is globally stable if $u = s^*x$, where s is set by formula (15) and coefficients $a_{ij}(\cdot)$ and $\beta_i(\cdot)$ comply with evaluations (35), (46).

5 Conclusion

We considered the stabilization problem of such nonlinear continuous and impulse-modulator systems for which only the bound of variation of its coefficients were known. The linear scalar control is constructed which provides global stability of closed-loop system.

Acknowledgements

This work was partly supported by grant of the President of Russian Federation NS 2387.2008.1 and by the Programme \mathbb{N} 22 of the Presidium of RAS.

References

- Arzelier, D., Peaucelle, D. and Salhi, S. (2002). Robust static output feedback stabilization for polytopic uncertain systems: Improving the guaranteed performance bound. In 5th IFAC Symposium on Robust Control Design. Toulouse, France, July 5-7.
- Collins, E. G., Sadhukhan, D. and Watson, L. T. (1999). Robust controller synthesis via nonlinear matrix inequality. Int. J. of Control, 72(11), pp. 971-980.
- Gantmaher, F. R. and Krein, M. G. (1950). Oscillating Matrices and Kernels, and Small Oscillations of Mechanical Systems. Gos. Izd. Tex.-Teor. Lit. Moscow. (In Russian).
- Gantmaher, F. R. (1967). The Theory of Matrices. Nauka. Moscow. (In Russian).
- Gelig, A. Kh. and Churilov, A. N. (1998). Stability and Oscillation of Nonlinear Pulse-Modulated Systems. Birkhäuser. Boston.
- Gelig, A. Kh., Zuber, I. E. and Churilov, A. N. (2006). Stability and Stabilization of Nonlinear Systems. Izd. St. Petersb. Univ. S.-Petersburg. (In Russian).
- Isidori, A. (1995). Nonlinear Control Systems. Springer. Berlin.
- Khalil, N. K. (2002). Nonlinear Systems. Prentice Hall. New York.
- Miroshnik, I. V., Nikiforov, V. O. and Fradkov, A. L. (2000). Nonlinear and Adaptive Control for Compound Dynamic Systems. Nauka. Moscow. (In Russian).
- Tsypkin, Ya. Z. and Popkov, Iu. S. (1973). The Theory of Nonlinear Impulse Systems. Nauka. Moscow. (In Russian).
- Wilkinson, Dj. X. (1970). The Algebraic Problem of Eigenvalues. Nauka. Moscow. (In Russian).
- Żak, S. H. (2002). Systems and Control. Oxford Univ. Press. Oxford.