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Abstract
Forced vibrations of fluid free surface in a cylindri-

cal tank under interaction with an excitation machine
of a limited power-supply (so-called ”limited excita-
tion” phenomena) are investigated in detail. For a com-
plex system - a tank with fluid and an excitation ma-
chine - the regions of parameters for three steady-state
regimes: stationary, periodic and chaotic are deter-
mined. Attention is concentrated mainly on the prop-
erties of chaotic attractors and energy transfer between
subsystems. Because the total power for every regime
is balanced by the rate of change of the total energy
of the whole system it is demonstrated how different is
the energy distribution between subsystems for every
of steady-state regimes. Changes of the coefficient of
the damping force of fluid oscillations may control the
chaotic regimes.
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1 Introduction
In view of its practical importance, the possible modes

of vibration of fluid free surface in a rigid container
have been studied intensively from different points
of view. The revolution in our understanding of the
physics of the phenomenon brought by the discovery
of chaotic types of motion in deterministic systems has
forced reevaluation of previous results, in particular,
the details of chaotic types of motion in certain phys-
ical systems. In addition, the discovery of chaos has
changed the methodology used to study these prob-
lems, it has broken down earlier stereotypes, and has
led to the rejection of certain unfounded assumptions,
such as the method of reduction, which states that the
behavior of a complicated system can be determined
by the properties of its component sub-systems. The
new point of view is that the dynamics of a compli-
cated system depends more on the coupling between

the sub-systems than on the sub-systems themselves.
For example, in cases where certain normal modes of
vibration of a distributed system are coupled and have
the same frequency (as in the case of excitation of de-
generate modes with equal eigenfrequencies), regular
steady-state vibrations of any of the modes will ”dete-
riorate” into chaotic motion because of the nonlinear
interaction between them. Another example of such
coupling is the interaction of a vibrating system with
an excitation mechanism. This interaction is always
present because of the law of conservation of energy.
When the vibrating system possesses damping (actu-
ally damping is present in all real systems), the dissi-
pation of the energy could introduce essential correc-
tions into the regimes of mechanism functioning. In
this way, the vibrating system influences the parameters
of the excitation force. This influence is considered sig-
nificant when the power of the excitation mechanism is
comparable to the power dissipated in the vibrating sys-
tem. In this case the vibrating system has a limited ex-
citation and the mechanism has a limited power-supply.
This situation is considered in the present study.
The coupling effect between an excitation machine

and vibrational loads was found by Sommerfeld [Som-
merfeld, 1902; Timoshenko, 1928] and is a univer-
sal phenomenon and a manifestation of the law of
conservation of energy. At first equations of motion
with explanation the phenomena observed in Som-
merfeld’s experiments were obtained by Blekhman
[Blekhman, 1953]. However, a rather complete study
of the Sommerfeld effect has been given in the works
of Kononenko [Kononenko, 1969], so that we call
these phenomena as Sommerfeld-Kononenko effect
[Krasnopolskaya, 2002]. As shown by Kononenko for
a linear oscillator with limited excitation the charac-
teristics of a nonlinear oscillator arise, such as the oc-
currence of instability regions. In view of this, in the
present study, the existence of new possible character-
istics is investigated for forced resonant vibrations of
the fluid in tanks, which result from the interaction of
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Figure 1. The system scheme

the vibrating system with the energy source - the elec-
tromotor (electric motor).

2 Formulation of the problem
Suppose that the electromotorD is connected by a

crank connecting-rod mechanism with a rigid cylin-
drical tank partly filled with a fluid (Figure 1). The
rotation of the electromotor shaft is described by the
law of the change of angleΘ(t). When the crank
a turns by the angleΘ , the tank is displaced in the
spaceu(t) = acosΘ(t) , which contains components
along the axesO∗x∗ andO∗z∗ of the absolute coor-
dinate system. These components are equal touz =
acosΘ∗

0cosΘ(t) and ux = asinΘ∗

0cosΘ(t), respec-
tively, whereΘ∗

0 is the three-dimensional angle formed
by the plane of tank platform motion and the horizontal
planey∗O∗z∗. The axis of the electromotor shaft is as-
sumed to be parallel to the axisO∗y∗ . For the descrip-
tion of the fluid free surface vibrations in the tank, we
introduce the cylindrical coordinate systemOxrθ, with
origin on the undisturbed surface of the fluid. Then the
equation of the fluid free surface may be written in the
form

x = η(r, θ, t) (1)

3 The Lagrangian
For description of the fluid surface we use a represen-

tation in the form of the sum of eigenmodes,

η(r, θ, t) = ηn(t)ψn(r, θ), (2)

where the summation is carried out for values with
identical indices, andηn are the generalized coordi-
nates;

ψn = ψc,s
n = N−1

ij Ji(kijr)(cosiθ, siniθ)

J ′

i(kijR) = 0;N2
ij =

1

2
(1+δ0i)[1−(i/kijR)2]J2

i (kijR),

(3)
whereJi are Bessel functions. Then LagrangianL can
be written in the form

L =
1

2
IΘ̇2 +

1

2
m0a

2Θ̇2sinΘ(t)+

ρS[
1

2
amnη̇mη̇n −

1

2
(g + üy)ηnηn − üxQnηc

n], (4)

whereI is the moment of inertia of the electromotor
shaft,m0 is the mass of the tank filled with fluid,ρ is
the density of the fluid,S is the cross-sectional area of
the circular cylindrical tank,amn are nonlinear func-
tions ofηn , Qn = 1

SNij

∫ ∫
rcosθψc

nrdrdθ , g is the
acceleration of gravity,̈ux and üz are the vertical and
horizontal acceleration, respectively, of the tank. The
first two terms in (4) denote the kinetic energy of the
electromotor shaft and of the tank with fluid as a whole.
Since the power of the electromotor which excites

three-dimensional vibrations of the tank is comparable
to the power dissipated in the fluid at vibrations with
internal damping, the change of fluid vibratory regime
has a reverse influence on the process of formation of
the excitation force. For these reasons, the rotation
speed of the electromotor shaftΘ̇(t) should not be con-
sidered as a prescribed value, it depends on the charac-
teristics of the electromotor, but also on the vibration
of the fluid.
Introducing expressions for accelerationsüy and üx

into L, we obtain

L =
1

2
IΘ̇2 +

1

2
m0a

2Θ̇2sin2Θ(t) +
ρS

2
amnη̇mη̇n+

aρScosΘ∗

0(Θ̇
2cosΘ + Θ̈sinΘ)Qnηc

n+

a

2
ρSsinΘ∗

0(Θ̇
2cosΘ+Θ̈sinΘ)ηnηn−

ρS

2
gηnηn. (5)

On the basis of (5) we can easily construct the equa-
tions of Lagrange for the generalized coordinates of the
electromotor, i.e., for the angleΘ(t)

IΘ̈ = −m0a
2Θ̇2sinΘcosΘ − m0a

2Θ̈sin2Θ+

aρScosΘ∗

0(Θ̇
2sinΘ − Θ̈cosΘ)Qnηc

n−

2aρScosΘ∗

0(Θ̇cosΘ)Qnη̇c
n



+aρSsinΘ∗

0(Θ̇
2sinΘ − Θ̈cosΘ)ηnηn−

2aρSsinΘ∗

0(Θ̇cosΘ) + Φ(Θ̇) − H(Θ̇) (6)

Last two summations in the right-hand side of (6) are
the driving torque and the torque of resistive forces of
the electromotor [Kononenko, 1969]. The remaining
terms in the right-hand side are torque of the reverse
influence forces of vibrations of the fluid-filled tank
and of the fluid free surface. The equation of Lagrange
for ηn may be obtained also from (5). In this case the
problem is reduced to the analysis of infinite number
of nonlinear mutually related equations relative toηn.
This system has to be completed with the equation of
energy source (6).
In the following the resonant forcing of the electro-

motor on free surface vibrations will be considered.
We analyze the forced resonant vibrations of the fluid
free surface. We assumeΘ∗

0 = 0 , which means that
tank vibrations occur in the horizontal plane along the
axis o∗z∗ . Moreover we assume that, the angular
speed of the electromotor shaftΘ̇(t) in the stationary
regime is close to the eigenfrequencyω1 of the vi-
brations of the free surface of the first antisymmetric
modesηn(t)ψn(r, θ) (n = 1, 2).
We introduce a small positive parameter

ǫ = (aQ1k11)
(1/3) (7)

In this case the detuning of frequenciesΘ̇ andω1 will
be taken as a small value, proportional toǫ2, in the form

Θ̇(t) − ω1 =
1

2
ǫ2ω1β(t), (8)

hereω1 = (gk11tanhk11d)1/2, d is the depth of the
fluid in the tank;β is tuning parameter, which measures
the offset of frequencẏΘ andω1. The vibrations of
the free surface are approximated by dominant forms
of vibrationsη1ψ

c
1 andη2ψ

s
2 as well as by secondary

modes containing the harmonicscos2θ, sin2θ, cos0 ≡

1 [Miles, 1984]. We assume

ηn = ǫλ[pn(τ)cosΘ(t)+qn(τ)sinΘ(t)], n = 1, 2
(9)

for dominant modes and

ηn = ǫλ[An(τ)cos2Θ(t) + Bn(τ)sin2Θ(t) + Cn(τ)]
(10)

n 6= 1, 2

for secondary modes, whereλ = k−1
11 tanh(k11d),

τ =
1

2
ǫ2Θ(t) (11)

is slow time; and the variables
pn(τ), qn(τ), An(τ), Bn(τ), Cn(τ) are slowly varying
dimensionless amplitudes of the dominant and the
secondary modes.
Upon introducing (8)-(10) into (5) and averagingL

over the fast timeΘ(t), an expression may be obtained
for the averaged Lagrangian< L >. After determi-
nation ofAn , Bn andCn and their introducing into
< L > we finally find

< L >=

1

2
IΘ̇2+

1

4
m0a

2Θ̇2+
1

2
ǫ4gλ2ρS[

1

2
(
dpn

dτ
qn−pn

dqn

dτ
)+

p1 +
Θ̈

ω2
1

q1 + β(τ)E +
1

2
AE2 +

1

2
BM2], (12)

where A,B - constant coefficients used in [Miles,
1984];

E = E1+E2; En =
1

2
(p2

n+q2
n); M = p1q2−p2q1.

E andM are the energy and the angular momentum
respectively of the vibrations of the fluid in the funda-
mental modes.

4 EVOLUTION EQUATIONS
We write the equations of Hamilton which follow

from (12). We take into account of the forces of vis-
cous dampingǫ2δη̇n

dp1

dτ
= −αp1 − (β + AE)q1 + BMp2;

dq1

dτ
= −αq1 + (β + AE)p1 + BMq2 + 1;

dp2

dτ
= −αp2 − (β + AE)q2 − BMp1; (13)

dq2

dτ
= −αq2 + (β + AE)p2 − BMq1,

whereα = δ/ω1.
In problems of an ideal excitation of vibrations of the

fluid free surface (when the power of excitation mech-
anism is infinite and the feedback of the vibrating sys-
tem on this mechanism may be neglected) the system of



equations (13) would have been a four -parametric one.
However in the formulation of the problem considered
in this paper, when the excitation unit - electromotor is
”sensitive” to the level of energy dissipation by the vi-
brating system, we must considerβ(τ) (8) not as a con-
stant coefficient, but as an additional unknown. Since
the valueΘ(t) depends on vibrations of the liquid, the
value of frequencies differenceβ(τ) will be determined
by the whole history of interaction between the rotation
of an electromotor shaft and the vibrations of the fluid
free surface.
In order to close the system (13) we need an equation

for β. We proceed in the following manner: we in-
troduce a change of variables, as usual in problems of
limited excitation

Θ̇(t) = Ω(τ) (14)

Then from (9) and (10) by averaging over the fast time
Θ(t) we can write the equation (6) in the following
form (Θ∗

0 = 0)

dΩ

dt
= ǫ4[M1(Ω)−α1λΩ2q1−α1λ

dΩ

dt
p1]+ǫ5... (15)

Here

ǫ4M1(Ω) =
Φ(Ω) − H(Ω)

I + 0.5m0a2
; ǫ3α1 =

aQ1ρS

2I + m0a2
.

In the slow time we have

dΩ

dτ
= ǫ2M2(Ω) − ǫ2µq1, (16)

when

ǫ2M2(Ω) =
2ǫ2

ω1
M1; µ = 2λα1ω1.

As we are interesting in the steady-state response,
the static characteristic ofΦ(Ω) of the electromotor
[Kononenko, 1969] will be used. Accordingly, we as-
sumeǫ2M2(Ω) = ǫ2(N0 − N1Ω);N0, N1 are con-
stants.
Moreover, we transform (16) into equation forβ(τ)

dβ

dτ
= N3 − N1β − µ1q1, (17)

where

N3 =
2

ω1
(N0 − N1ω1); µ1 =

2µ

ω1
.

Consequently, we conclude that the process of inter-
action between vibrations of the fluid free surface in

dominant resonant modes and the shaft rotation of the
electromotor with limited power-supply is described by
a system of five evolution equations

dp1

dτ
= −αp1 − (β + AE)q1 + BMp2;

dq1

dτ
= −αq1 + (β + AE)p1 + BMq2 + 1;

dp2

dτ
= −αp2 − (β + AE)q2 − BMp1; (18)

dq2

dτ
= −αq2 + (β + AE)p2 − BMq1;

dβ

dτ
= N3 − N1β − µ1q1.

In the following we analyze the steady solutions of the
system of equations (18), which may represent equi-
librium states, periodic and almost-periodic and also
chaotic solutions. In the five-dimensional phase-space
(p1, q1, p2, q2, β), these solutions correspond asymp-
totically to a point, a limit cycle, a limit torus and a
chaotic attractor respectively. The condition for the oc-
currence of a chaotic attractor is the combination of to-
tal compression with local instability.
The system of equations (18) is nonlinear, and closed-

form solutions are not possible, and numerical so-
lutions were obtained. In the space of parameters
(α,A,B,N1, N3, µ1) of the equations system (18) ex-
tensive numerical experiments were carried out in or-
der to find the regions of existence of chaotic solu-
tions, and to investigate the transition from regular to
chaotic regimes. The structural reorganization of phase
portraits of the chaotic attractors was also investigated.
The main computational method of the numerical inte-
gration of the equations (18) was a fourth-order Runge-
Kutta method with the correction of the variable com-
putational interval according to Dormand-Prince. A lo-
cal numerical error ofO(10−8) or less was ensured.
In the case of chaotic vibrations the number of points
in those cross-sections was about104 . The Lyapunov
exponents were computed using Bennettin’s method
[Benettin, Galgani and Strelcyn, 1976]. In order to
minimize the effect of transients, all the temporal re-
alizations of the dynamic processes were analyzed af-
ter a prolonged time interval. The system of equations
(18) has six parameters(α,A,B,N1, N3, µ1) which
together with the initial conditions determine its behav-
ior in the steady regimes.



We assume that the tank is filled by fluid to the depth
d > 3a, so, we may use [Miles, 1984; Krasnopolskaya
& Shvets, 1994]:A = 1.112; B = −1.531; α =
0.1; N3 = −0.1; µ1 = 0.5. The following initial
conditions were chosen:

p1(0) = q1(0) = β(0) = 0; p2(0) = q2(0) = 0.01.

The parameterN1 is the bifurcation parameter. That
parameter characterizes the angle of the static charac-
teristic slope of the source of vibrations excitations. As
known, one of the most reliable features that confirm
an existence of the chaotic attractor in the system is
the presence of at least one positive Lyapunov expo-
nent. On the basis of calculations of the highest Lya-
punov exponent on the valueN1 the regions of chaotic
attractors were defined. For valuesN1 in the interval
0.05 ≤ N1 < 0.01, a stable equilibrium state exists.
The coordinates of the equilibrium positions of the sys-
tem are:

p1 = const; q1 = const;β = const; p2 = q2 = 0.

In other words all the equilibrium positions ( for the
chosen initial values) have zero coordinatesp2, q2. At
the pointN = 0.1 the equilibrium position loses its sta-
bility. The system then undergoes a Hopf bifurcation,
and a stable limit cycle appears. WhenN1 = 0.10153
the coordinates of the equations system are periodic
functions that correspond to a two - turn cycle in phase
- space (fig. 2(a)). Results for the dimensionless power
of the motorPo = N3 − N1β, the power consumed
by the damping force under fluid free surface oscilla-
tionsPc = −αµ1(p

2
1 + q2

1 + p2
2 + q2

2) [Miles, 1984],
the total powerP = Po + Pc are shown in fig. 2(b).
For the considered case the powers show typical peri-
odic behaviour. In order to obtain this dimensionless
powers the procedure which was used by Kononenko
[Kononenko, 1969] was applied (for more details see
[Krasnopolskaya & Shvets, 1993]). The total power is
balanced by the rate of change of the total dimension-
less energy of the whole systemEt = µ1(p

2
1+q2

1+p2
2+

q2
2)/2 + β. Further increases of the value ofN1 result

in a cascade of period-doubling bifurcations. The infi-
nite succession of bifurcation of period doubling ends,
whenN1 = 0.101632, at the appearance of the chaotic
attractor. The attractor which appeared in the system is
a quasichaotic attractors and it has a spiral structure. At
the valueN1 = 0.10164 an attractor shift occurs, and
as a result, the two-cycled spiral turns into a single-
cycled one. It is worth noting that all the foregoing
regimes (the regular and the chaotic states), have one
common important property: they are planar regimes
since in all of themp2 = q2 = 0 . It can be concluded
that the vibrations of fluid free surface occur in the first
mode only. The chaotic trajectory forN1 = 0.10164 is
shown in fig. 3(a). Power curves for this case are shown
in fig. 3(b). The total power also oscillates around zero

(a)

(b)

Figure 2. Graphs of (a) the trajectory and (b) the powersPo, Pc

and the total powerP atN1 = 0.10153 for the periodic regime

(as in the periodic regimes), but no constant period ex-
ists in slow time, for which the average power will be
zero. And this total power is balanced by the rate of
change of the total energy of the whole system, which
is changing in chaotic way. Further increases of the
slope angle for the electric drive static characteristic
at the pointN1 = 0.10165 an additional qualitative
shift causes rearrangement of the structure of the phase
portrait. In physical space the second mode appears.
This results in substitution of the ”planar” chaotic at-
tractor by the chaotic attractor of a completely different
type which exists when the values of the parameterN1

change within limits0.10165 ≤ N1 ≤ 0.373.



(a)

(b)

Figure 3. Phase portrait of (a) the chaotic attractor and (b)graphs

of the powersPo, Pc and the total rowerP for N1 = 0.10164

5 Conclusion
Summarizing, in the system “electromotor- fluid free

surface in a tank” three classes of steady state regimes
are determined. The first class (I) consists of the sta-
tionary regimes, when vibrations of the fluid free sur-
face occur with constant amplitude and frequency and
the electromotor shaft rotates with a constant speed.
For this case the power of the motor, the power, con-
sumed by the damping force under fluid free surface
oscillations and the total power are constant. More-
over, the total power as well as the rate of change of the
total energy are equal to zero.
The second class (II) contains regimes with peri-

odically changing amplitude and frequency of fluid
free surface vibrations and the shaft speed periodically
changes with time. For that class all considered powers

have periodic behaviour and the total power oscillates
around zero line. The total power is balanced by the
rate of change of the total energy of the whole complex
system.
Finally, the third class (III) corresponds to chaotic

regimes when amplitude and frequency of vibrations
and the electromotor speed change in time chaotically.
For this case all powers have oscillating behaviour. The
total power oscillates around zero (as in the II regimes),
but no constant period exists in slow time, for which the
average power will be zero. The total power is balanced
by the rate of change of the total energy of the system,
which is the chaotic function of time. The last regime
is asymptotically established in the system. The sys-
tem cannot leave this regime without assistance or be
approximated by regimes of the first two classes.
It was shown that changes of the damping force co-

efficient of fluid free surface oscillations may control
chaotic regimes: for very small and big coefficients
chaotic regimes disappeared. They exist for interme-
diate values of the coefficient.
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