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Abstract 
Problem of unknown encoded parameter 

reconstruction is solved by means of procedure of 
design of adaptive observer for chaotic Duffing 
system. Unlike known analogues, the problem in 
question is only solved using measurements of output 
of chaotic system and in conditions of full 
parametrical uncertainty. 
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1 Introduction 
Problem of an adaptive observer design for 

nonlinear dynamic systems has been in the centre of 
attention for the last years. One of reasons of this 
interest is that there is a possibility of use of adaptive 
observers for information encoding and transmission. 
One of new directions of data transmission is 
encoding information with parameters of a dynamic 
system (“transmitter”). Output signal of that system is 
transmitted to “receiver”, which is intended to 
reconstruct unmeasured signals and model parameters 
of “transmitter”. Structural scheme of such system is 
shown in Fig.1, where θ  is parameter vector of 
“transmitter” system model, encoding transmitted 
information; y  is “transmitter” output transmitted via 

communication channel; θ̂ is estimation of vector θ , 
produced by receiver. 
 

 
Fig 1.   Structural scheme of data transmitting 

system 
 

It is especially prospective to use chaotic dynamic 
systems as models of “transmitters” because output 
signal of a chaotic system has, on the one hand, wide 
frequency range and, on the other hand, solutions of 
such systems show weak dependence on initial 
conditions that increases protection of the system 
from unauthorized reconstruction of signal 
information component. In this case “receiver” must 
construct an adaptive observer of chaotic system.  

A few groups of methods (Fradkov et al., 1997, 
Markov et al., 1996) are usually used for design of 
adaptive observers. Most of the methods are based on 
possibility of passification of transmitter system 
model via feedback in assumption that this model has 
relative degree equal to zero or one. Other solutions 
imply accessibility for measurement full state vector 
of the “transmitter” system (Fradkov et al., 1998,  
Huijberts et al., 2000). In paper (Nikiforov et al., 
2002) the solution which allows to design adaptive 
observers for “transmitter” models of high (more than 
one) relative degree and not passificated via output 
feedback was proposed. These results are based on 
use of new canonical form of nonlinear adaptive 
observers proposed in (Nikiforov et al., 2002). 

Result of (Nikiforov et al., 2002) was strengthened 
in (Efimov, 2004, Efimov et al., 2005) where problem 
of design of adaptive partial observers for non-
autonomous nonlinear dynamic systems was 
considered. Use of external exiting signal is one of 



approaches to create chaotic modes of operation in 
nonlinear systems. Examples of such systems are 
Duffing model and model of brusselator (Nikolis et 
al., 1977)  demonstrating chaotic behaviour only in 
presence of proper harmonic disturbance. Propagation 
of classical results on adaptive observers design 
problem for non-autonomous systems allows essential 
extending of class of possible models for 
“transmitter” system and increases protection of the 
system from unauthorized access.  

In this paper we consider problem of an adaptive 
observer design for chaotic signals generated by 
Duffing chaotic system. The heart of the problem 
involves separation of useful information transmitted 
via communication channel from chaotic signal. 
Unlike known results, in this paper problem of 
observer design using only measurements of output 
variable of chaotic signal in conditions of full 
parametrical uncertainty of its model is considered. 
 

2 Problem statement 
Consider chaotic Duffing system described by 

equation of the following form 
 

 1 2( ) ( ) ( ) ( ) ( ) 0y t c y t c y t f y w tθ+ + − − =  (1) 
 
where 1c , 2c  and θ are unknown numbers, nonlinear 
function 3( )f y y=  and ( ) sin( )w t A tω ϕ= +  is 
unmeasured harmonic signal. 
 

It is required to design an observer ensuring 
reconstruction of unknown parameter θ  of model 
(1). Let us assume that only output variable ( )y t  of 
model (1) is measured. We also assume that 
parameters of chaotic system 1c , 2c , θ , A ,ω   and 
ϕ   are unknown numbers. 

 

3 Design of an adaptive observer 
Let us rewrite model (1) the following way to derive 

the main result 
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Passing to Laplace images in equation (1) we obtain 
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where s  is complex variable, { }( ) ( )Y s L y t= , 

{ }( ) ( ( ))F s L f y t= , { }( ) ( )W s L w t=  are Laplace 
images of functions ( )y t , ( ( ))f y t  and ( )w t  
respectively, polynomial ( )D s  denotes sum of all 
terms containing nonzero initial conditions. 

 
Let us transform model (3) the following way 
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whence 
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where λ  is any positive number, polynomials 

2
1( ) ( ) ( )a s s a sλ= + −  and 2

1 2( )a s s c s c= + + . 
From equation (4) we obtain 
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where 3( )f y y=  and 1
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exponentially decaying function of time caused by 
nonzero initial conditions. Neglecting exponentially 
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parameterize model (5).  
 
Remark 1. As exponentially decaying function 
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 depends on parameter λ , it is 

possible to accelerate convergence of  ( )y tε  to zero 
by increasing λ . 

 
Consider auxiliary filters of the following form  
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Substituting (6) and (7) into equation (5), we obtain 

 
 1 1 2( ) ( ) ( ) ( ) ( )y t a p t t w tξ θξ= + + ,  (8) 

   



where function 2
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From equation (8) we have 
 

 ( ) ( ) ( )y t t w tδ= + ,  (9) 
 

where function 1 1 2( ) ( ) ( ) ( )t a p t tδ ξ θξ= + . 
Consider filter (6) 
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whence 
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As signal ( ) sin( )w t A tω ϕ= + , and polynomial 

2( )p λ+  is Hurwitz then function ( )w t  can be 
represented the following way  

 
( ) sin( )w t tσ ω φ= ⋅ + , 

2 2( ) sin( ) ( )p w t t w tσω ω φ θ= − + = , 
 

where 2ωθ −= . 
Let us rewrite the last equation  
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As ( ) ( ) ( )w t y t tδ= − , then 
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From the last equation we obtain 
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Let us transform model (11) 
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denoting 
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where function )(tz  is measured by virtue of 

measurability of signals )(ty , )(1 tξ  and )(1 tξ . 
Substituting equation (12) into (14), we obtain 
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Taking into consideration that 1 1 0( )a p a p a= + , we 

have 
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Substituting (16), (17) into equation (15), we have 
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From equation (18) we obtain 
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and vector { ( ), 1,6}icol t iθΘ = =  of unknown 
parameters 

 

01 a+=θθ , θθ =2 , θθθ −=3 , 14 a=θ , 

5 12 aθ λθ θ= − , 2
6 0( )aθ λ θ θ= − . 

   
Let us use an adaptive observer of the view (20), 

(21) for estimation of unknown parameters of model 
(19) 
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 1
ˆ ˆ( ) ( ) ( )( ( ))i i i i ik t e t k t z tθ ψ ψ ξ= = − , (21) 

 
where constant coefficient 0>ik , 1,6i = .  
It is easy to show that an adaptive observer (20), (21) 
is equal to ensures 
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t
z t z t
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− = , (22) 
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Execution of (23) guarantees convergence of 
estimation of parameter θ  to true value of 
“transmitter” system model. 

 
Remark 2. It is easy to show that an adaptive 

observer (20), (21) is robust. 
 

4 Simulation results 
Let us simulate scheme of adaptive estimation of 

unknown parameterθ for the following parameters of 
chaotic Duffing system (1): 1 0c = , 2 0,5c = , 

( ) 8sin(0,5 )w t t= . Algorithm of parameters tuning 
takes the form  

 

1 1 1
ˆ ˆ18 ( )( ( ))t z tθ ψ ξ= − , 2 2 1

ˆ ˆ14 ( )( ( ))t z tθ ψ ξ= − , 

3 3 1
ˆ ˆ14 ( )( ( ))t z tθ ψ ξ= − , 4 4 1

ˆ ˆ14 ( )( ( ))t z tθ ψ ξ= − , 

5 5 1
ˆ ˆ14 ( )( ( ))t z tθ ψ ξ= − , 6 6 1

ˆ ˆ14 ( )( ( ))t z tθ ψ ξ= − . 
 

Fig. 2-8 show simulation results for 1θ = −  and 
1λ =  (i.e. 1 0, 25θ = , 2 1θ = − , 3 0, 25θ = − , 24 =θ , 
05 =θ , 6 0,125θ = − ). 

 

 
Fig 2.   Phase path of chaotic Duffing system (1) 

 

 
Fig 3.   Transients for variable 1̂θ  



 

 
Fig 4.   Transients for variable 2̂θ  

 

 
Fig 5.   Transients for variable 3̂θ  

 

 
Fig 6.   Transients for variable 4̂θ  

 

 
Fig 7.   Transients for variable 5̂θ  

 

 
Fig 8.   Transients for variable 6̂θ  

 

Simulation results show that 1̂ 0, 25θ → , 2̂ 1θ → − , 

3̂ 0, 25θ → − , 4̂ 2θ → , 5̂ 0θ → , 6̂ 0,125θ → − .   
 
Let us simulate scheme of adaptive estimation of 

unknown parameterθ for the following parameters of 
chaotic Duffing system (1): 1 0c = , 2 1c = , 

( ) 12sin( )w t t= . Algorithm of parameters tuning takes 
the form  

 

1 1 1
ˆ ˆ18 ( )( ( ))t z tθ ψ ξ= − , 2 2 1

ˆ ˆ14 ( )( ( ))t z tθ ψ ξ= − , 

3 3 1
ˆ ˆ10 ( )( ( ))t z tθ ψ ξ= − , 4 4 1

ˆ ˆ24 ( )( ( ))t z tθ ψ ξ= − , 

5 5 1
ˆ ˆ16 ( )( ( ))t z tθ ψ ξ= − , 6 6 1

ˆ ˆ12 ( )( ( ))t z tθ ψ ξ= − . 
 

Fig. 9-15 show simulation results for 2θ = −  and 
0,5λ =  (i.e. 1 1,75θ = − , 2 2θ = − , 3 2θ = − , 4 1θ = , 
05 =θ , 6 1θ = − ). 

 

 
Fig 9.   Phase path of chaotic Duffing system (1) 

 

 
Fig 10.   Transients for variable 1̂θ  

 

 
Fig 11.   Transients for variable 2̂θ  

 
 



 
Fig 12.   Transients for variable 3̂θ  

 

 
Fig 13.   Transients for variable 4̂θ  

 

 
Fig 14.   Transients for variable 5̂θ  

 

 
Fig 15.   Transients for variable 6̂θ  

 
Simulation results show that 1̂ 1,75θ → − , 2̂ 2θ → − , 

3̂ 2θ → − , 4̂ 1θ → , 5̂ 0θ → , 6̂ 1θ → − . 
 
Simulation results illustrate efficiency of proposed 

scheme of adaptive estimation of unknown parameter 
θ  of the Duffing model (1).  

 

5  Conclusion 
Problem of estimation of unknown encoded 

parameter is solved using an adaptive observer (20), 
(21) for chaotic Duffing system. Unlike known 

analogues, this result uses only measurements of 
output signal of the chaotic system and also allows to 
find unknown encoded parameter θ  in conditions of 
full parametric uncertainty of the model (1).  
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