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Abstract
We consider a synergetic model of multistable visual

perception with additive noise and study dynamics of
coexisting percepts as a function of a bias parameter.
The bifurcation analysis allows us to estimate the re-
gion of coexisting percepts. The effect of noise on the
attention state manifests itself as intermittent switches
between different perception states. Using the recur-
rence plot we find a threshold value of the noise inten-
sity when the perception selection can be well defined.
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1 Introduction
The term “multistable” used in perception means that

an ambiguous stimulus received by the brain can be in-
terpreted in different ways. This phenomenon was in-
tensively studied by psychologists since 1832 [Kuhn
and Hawkins, 1963]. Multistable perception can be
evoked by visual patterns that are too ambiguous for
the human visual system to recognize a single inter-
pretation. The famous examples of such images are
the Necker cube, Rubin vase, rabbit-duck, etc. Since
the most of ambiguous images have only two possible
meanings, this kind of perception is often referred to
as bistable perception. When a person observes such
an image for a long time, the attention intermittently
switches between different percepts. This alternation

was attributed to neuronal adaptation [Köhler and Wal-
lach, 1944].

Nowadays, there are several hypotheses about possi-
ble mechanisms underlying these switches. Some of
them suppose the influence of stochastic processes in-
herent to neural network activity [Moreno-Bote et al.,
2007; Pisarchik et al., 2014; Pisarchik et al., 2015;
Runnova et al., 2016; Pisarchik et al., 2017]. Other
hypotheses [Kelso, 2012] relate the switches to proper
dynamics of the brain neural network.

In the theory of complex systems, multistability
means the coexistence of several stable states or attrac-
tors for the same set of parameters. The stability of
an attractor depends on the velocity at which the sys-
tem comes back to this state after a small disturbance
which kicks the system out of the attractor. Theoreti-
cally, multistability can be detected by simply varying
initial conditions of all system variables. Experimental
detection of multistability is a more sophisticated prob-
lem. The most common ways to reveal multistability
are either to vary a control parameter forth and back
in order to find a hysteresis behavior, or to add noise
which induces switches between coexisting states [Pis-
archik and Feudel, 2014]. In the last case, noise con-
verts the multistable system to a metastable one. This
happens with visual perception of ambiguous images
where brain noise benefits distinct imterpretations of
the same ambiguous image [Moreno-Bote et al., 2007].
Alternation of perception is a stochastic process ac-
cording to the Markov chain. Any decision would be
impossible without noise which produces probabilistic
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choices.

In the recent paper [Pisarchik et al., 2014], the Necker
cube has been used as the essential example of an am-
biguous figure, where the contrast of inner lines was
taken as a control parameter to measure dynamical hys-
teresis in perception when the control parameter was
increased and decreased. The level of brain noise was
estimated from the dependence of the hysteresis size
on the velocity of the contrast change. Apart from in-
herent brain noise, external noise also induced alterna-
tion in perceptions. The results of psychological exper-
iments have been interpreted on the base of a stochas-
tic bistable energy model. There are also other models
which can be used to reveal essential mechanisms un-
derlying switches between different visual percepts.

In this paper, we focus on the synergetic model,
first introduced by Haken [Haken, 1979] for studying
bistable visual perception. The rest of the paper is or-
ganized as follows. In Sec. 2 we describe the model.
Then, in Sec. 3 we construct the perception bifurcation
diagram, and in Sec. 4 we analyze stochastic dynam-
ics under the influence of additive noise. In Sec. 5 we
make the recurrence plot of the selection of preferen-
tial perceptions for different noise intensities. Finally,
in Sec. 6 we summarize our results.

2 Model

In 1944, Köhler proposed a psychological hypothe-
sis about perception saturation [Köhler and Wallach,
1944]. He suggested, and many psychologists sup-
ported his opinion, that the observed switches between
different percepts of ambiguous images result from fa-
tigue, inhibitions or neuronal saturation. This percep-
tual behavior can be simulated using the synergetic
model of human perception of ambiguous patterns [Ko-
honen, 1989; Haken, 1979; Ditzinger and Haken 1989;
Haken, 2004], which results are in a qualitative agree-
ment with our experimental results. This mathematical
model is a straightforward extension of a general algo-
rithm for pattern ambiguous recognition on one hand,
and saturation of the attention parameter on the other
hand [Haken, 1979]. In this paper, we focus on the
Ditzinger and Haken synergetic model [Ditzinger and
Haken 1989] which consists of four coupled nonlinear
differential equation: two variables for saturation atten-
tion and two for perception of ambiguous patterns.

This synergetic model simulates visual perception of
ambiguous images, such as, for example, left and right
orientations of the Necker cube shown in Fig. 1. The
model is given by the following equations

Figure 1. Necker Cube

ξ̇1(t) = ξ1

[
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,
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)]
,
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(
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)
+ F (t),

λ̇2(t) = γ
(
1− λ2 − ξ22

)
+ F (t),

(1)

where ξ1 and ξ2 are variables associated with two dif-
ferent cube orientations (Fig. 1), and λ1 and λ2 are
variables associated with corresponding saturation at-
tentions. In this model, the attention is subjected to a
damping mechanism mimicking the effect of saturation
and synaptic connections. Here, A = 1.5, B = 2, and
γ = 0.1 are constant parameters, α is a bias parame-
ter referred to the perception preference, and F (t) is a
perturbation factor which represents either harmonic or
stochastic modulation.
Figure 2 illustrates the time series of the variables for

perception and saturation attention for different values
of bias parameter α at F (t) = 0. When α = 0, there
are no preference between two precepts of ambiguous
patterns because the pulse widths of the two variables
are the same, as seen in Fig. 2(a). We refer these pro-
cesses to as perceptions without bias. However, even
for very small bias α = 0.064 (Fig. 2(b)), one of
the percepts has preference over the other, because the
pulse widths of variables ξ1,2 and λ1,2 are different.
This process was previously described by Ditzinger and
Haken [Kohonen, 1989; Haken, 1979] as perceptions
with different bias. An additional increase in parame-
ter α up to 0.128 gives preference of one percept over
the other. It is clearly seen from Fig. 2(c) that the pulse
widths of the two perception variables are very differ-
ent.
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Figure 2. Time series of perception and saturation attention vari-
ables for F (t) = 0 and bias parameter (a,d) α = 0, (b,e)
α = 0.064, and (c,f) α = 0.128.

3 Bifurcation Diagram

In the bistable perception model, two different per-
cepts are associated with two stable steady states or
attractors. A change in a control parameter responsible
for the ambiguity leads to the deformation of the basins
of attraction of these coexisting attractors and finally to
a change in their stability that occurs at a critical point,
usually a saddle-node bifurcation. Here, we use bias α
as a control parameter. In Fig. 3 we plot the bifurcation
diagram of the local maxima of percept ξ2 as a function
of bias parameter α at F (t) = 0.

As the bias parameter α is increased from 0 to 0.17,
the system is in a periodic orbit (Region I in Fig. 3).
At α ≈ 0.17, a steady state attractor appears (Region
III) which coexists with the periodic orbit (Region II).
When α is further increased, the periodic orbit disap-
pears and only stable steady state remains (Region IV).
While one percept is stable for α < αIncrease, another
percept is stable for α > αDecrease.

The time series of the system variables corresponding
to different regions are shown in Fig. 4. In Region I (for
α < αDecrease) we observe a periodic orbit only (Figs.
4(a,b), whereas for αDecrease < α < αIncrease two
regimes (periodic orbit and steady state) coexist (Figs.
4(c-f)). They are found by varying initial conditions
presented in Table I. Finally, for α > αIncrease only a
steady state exists (Figs. 4(g,h)).

Table I. Parameter α and initial conditions used to ob-
tain regimes shown in Fig. 4.

Figure 3. Bifurcation diagram of local maxima of percept ξ2 as a
function of bias parameterα. The red arrows indicate the direction of
the parameter change. Regions I-IV shown by blue ellipses represent
different perception states.

Figure 4. Time series of variables ξ1,2 and λ1,2 corresponding
to different regimes shown in Fig. 3: (a,b) monostable steady state
at α = 0.1 (Region I), (b-f) bistable regime of coexisting (c,d)
periodic orbit (Region II) and (e,f) steady state (Region III) at α =
0.2, and (g,h) monostable steady state (Region IV) at α = 0.25.
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Fig. 4 α ξ1 ξ2 λ1 λ2

(a),(b) 0.3 0.558 0.382 0.689 0.854
(c),(d) 0.2 0.540 0.399 0.708 0.841
(e),(f) 0.2 0.125 0.677 0.817 0.735
(g),(h) 0.1 0.083 0.697 0.800 0.737

4 Stochastic Modulation
Most natural systems have a stochastic component

which affects its dynamics. Many researchers from
different areas of science demonstrate a great interest
to the interaction between stochastic and deterministic
processes. In particular, in multistable systems noise
can change the stability of some states, thus making
the system metastable when the phase-space trajectory
visits different attractive regions of the phase space. In
this case, we deal with so-called multistate intermit-
tency [Pisarchik et al., 2012; Hramov et al., 2016]. In-
termittency is a common behavior in nonlinear dynam-
ics, characterized by irregular bursts (turbulent phase)
interrupted by a steady state (laminar phase). In multi-
stable systems, intermittency can be induced by noise.
In the case of bounded noise, which usually takes place
in natural systems, the effect depends on the noise in-
tensity. While weak noise does not eliminate attrac-
tors and only changes the probability of their appear-
ance (preference), strong noise mixes attracting basins
of the coexisting states so that the trajectory visits dif-
ferent states, thus resulting in a new intermittent attrac-
tor, sometimes called attractor hopping [Pisarchik and
Feudel, 2014].
To study the influence of noise, we define the pertur-

bation term in Eq. (1) as follows

F (t) = ης, (2)

where ς ∈ [−1, 1] is a random number and η is the
noise intensity. In the presence of random modula-
tion Eq. (2), the solutions of stochastic Eq. (1) have
a probabilistic character. For α = 0.2 (Region II),
weak noise with η < 0.012 does not induce intermit-
tency of the variables ξ1 and ξ2. It only changes statis-
tical properties of the system providing preference to
one of the attractors over the other, as shown in Fig.
5(a). In this case, ξ1 and ξ2 exhibit almost coherent
behaviors rarely interrupted by some disturbances dur-
ing short time intervals. For stronger noise with inten-
sity 0.012 < η < 0.094, intermittent switches between
the coexisting states arise, as clearly seen in Fig. 5(b)).
During relatively large time windows, ξ1 stays at a zero
state (partial amplitude death) while ξ2 exhibits noisy
oscillations near 0.6. In terms of perception, these in-
tervals can be interpreted as the perception of one cube
orientation only. For stronger noise (η < 0.12), the du-
ration of the dead states increases as the noise intensity
increases (Fig. 5(c)).
Thus, the increasing noise intensity gives preference

Figure 5. Time series of ξ1, ξ2 at α = 0.2 in Region II in Fig. 3
for (a) η = 0.01, (b) η = 0.09, and (c) η = 0.1.

to one of the attractors. In terms of perception this
means that one percept dominates over the other.

5 Recurrence Plot
It is seen from Fig. 5 that there exists a threshold

value of noise amplitude η = ηt at which percept ξ1
prevails over percept ξ2. To study the effect of noise
on the system dynamics, we build the recurrence plot
of percept ξ1. The recurrence plot shows moments of
time at which the phase space trajectory visits roughly
the same area of phase space. In this paper, we con-
sider the projection of the phase-space trajectory to the
perception variable ξ1. In other words, we construct a
map of times when ξ1(i) ≈ ξ1(j). Such recurrence plot
R(i, j) is a time the perception takes the same value as
before. Here, we record the recurrence/non-recurrence
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Figure 6. Recurrence plots of percept ξ1 in Region II for noise in-
tensities (a) η = 0.012, (b) η = 0.096, and (c) η = 0.12. The
red dots (R(i, j) = 2) indicate dead states (ξ1 = 0), whereas
blue and green dots show the oscillatory states (ξ1 > 0) with
R(i, j) = 0 and R(i, j) = 1, respectively.

by ternary function

R(i, j) =


2, if ∥ξ1(i)− ξ1(j))∥ ≤ ε,

1, if ∥ξ1(i)∥ > ε and ∥ξ1(j)∥ > ε,

0, otherwise,
(3)

where ε = 0.01. R(i, j) takes 2 when ξ1 = 0, i.e.
we deal with intermittent amplitude death. Instead, the
values R(i, j) = 0 and 1 mean that the system switches
from one state to another (ξ1 > 0).
Figure 6(a-c) shows the recurrent plots of ξ1 for three

different noise amplitudes η = 0.012, 0.084 and 0.12
at α = 0.2 (Region II in Fig. 3). At small noise
(Fig. 6(a)), there is a very small number of red dots
(R(i, j) = 2) and a large number of green and blue
dots. This means that there is no amplitude death. For
stronger noise (Fig. 6(b,c)), one can clearly see an in-
crease in the number of red dots, i.e., the regions corre-
sponding to the dead states become larger.

6 Conclusion
Perception multistability has been studied using the

synergetic model. Our results have confirmed the hy-

pothesis that the alternation between competing per-
cepts is associated with activation of different states of
neural activity driven by the bias parameter. We have
shown that additive noise induced the preference of one
of the percepts. We have found that when the noise in-
tensity exceeded a certain threshold value, one of the
percepts disappeared during some time intervals, re-
sulting to partial oscillation death. The length of the
time windows during which one percepts had the pref-
erence over the other increased as the noise intensity
was increased. This intermittent regime has been ana-
lyzed using the recurrence plot approach. We believe
that the testing methodology proposed in this work can
help in understanding pathological brain states because
the states with weak and strong stability may contribute
to brain pathologies.
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