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Abstract— We study synchronous behavior in ensembles of
locally coupled nonidentical Bonhoeffer - van der Pol oscillators.
We show that in a chain ofN elements2N−1 different regimes
of global synchronization are possible.

I. I NTRODUCTION

The understanding of principles of functioning of the
human neuronal system and algorithms of information pro-
cessing in neuron systems is an important actual challenge.
Answers to these problems will have an immediate impact
on the creation of highly efficient and low cost artificial
neuron systems which are capable to solve tasks, apparent
now as extremely complex [1], [2]. There are already first
solutions in this direction demonstrating the potentials of
artificial networks constructed by analogy with neuron sys-
tems. For example, it is processing of threads of multimedia
data, including tasks of recognition of texts and images,
optimum management of complex structures, brain-machine
interactions etc.

One basic feature of ensembles of neurons in the cen-
tral and peripheral nervous systems, or in cardiac tissue
is there ability to synchronization [2-12]. Therefore, the
study of synchronization in chains and networks of elements
simulating self-oscillatory activity of neurons and cardiac
cells is extremely important. In this paper we investigate
synchronization in small (two and three elements) and large
(chain) ensembles of coupled neuron-like oscillators. We
demonstrate that such ensembles generate multistability of
synchronous regimes. In dependence on the initial conditions
in a chain of N coupled oscillators,2N−1 synchronous
regimes are possible. ForN = 2 the existence of in-
phase and anti-phase regimes is proved analytically. Nu-
merical simulations show the appearance of four different
synchronous regimes forN = 3. In large ensembles different
regimes of global and cluster synchronization are found.

II. M ODEL

In this paper we investigate a chain of locally diffusively
coupled Bonhoeffer - van der Pol (BvdP) oscillators as a
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model of a neuron network [7]:




ẋj = Fj(xj , yj) + d(xj+1 − 2xj + xj−1),
ẏj = Gj(xj),
j = 1, ..., N,

(1)

where Fj(xj , yj) = xj − 1/3x3
j − yj , Gj(xj) = ε(xj −

aj), N is the number of elements in the chain, andd is the
coupling between the elements,ε << 1, 0 < aj < 1. We
consider slightly nonidentical oscillators, which have small
parameter mismatches∆i,j = ai − aj . Free-end boundary
conditions are taken. Becauseε << 1 is very small, all
oscillations in (1) can be divided in slow and fast motions.
From a physiological point of view, the fast variablex can be
considered as a voltage, but the slow variabley - as a gating
or recovery variable. Therefore, the cooperative behavior of
neuronal nets or cardiac tissue can be at least qualitatively
reproduced by a model of coupled BvdP oscillators. In [12]
this oscillator were successfully used as individual cell for
modelling the frequency entrainment of heart pacemakers.
Collective dynamics of synaptically coupled BvdP neurons
was studied in [13].

III. S INGLE NEURON

For a single element:
{

ẋ = x− y − x3

3 ,
ẏ = ε(x + a),

(2)

there is one unstable steady state (x̄, ȳ) = (−a, a3

3 − a).
It is (i) a focus if a >

√
1− 2

√
ε, and (ii) a node ifa <√

1− 2
√

ε). There exists also a stable limit cycle. Because of
the smallness ofε it consists of fast and slow parts. A typical
phase portrait is shown in a Fig.1a. Hereh−(x) andh+(x)
are the left resp. right steady parts andh0(x) is the unstable
part of the curve of slow movements, correspondingly.

IV. T WO COUPLED NEURONS

For some fixed parameters there are two limit cycles in
a pair of coupled elements. These cycles correspond toin-
phaseandanti-phasesynchronous regimes. For the analytical
proof of this fact fora1 ≈ a2, we consider a piece-wise linear
approximation of the functionsF1,2 (Fig.1b):

Fi =





−4
3

xi − 2− yi, for xi ≤ −1,

2
3
xi − yi, for − 1 < xi < 1,

−4
3

xi + 2− yi, for xi ≥ 1.

(3)



Fig. 1. a). Phase portrait of system (2). b). In-phase regime at piece-wise
linear approximation of the functionsF1,2 given according to (3).

These functions have two extrema: the right extreme
y1,2 = 2/3 + d(x2,1 − x1,2), and the left extremey1,2 =
−2/3 + d(x2,1 − x1,2). Under the general assumption that
the switching time fromh±(x) to h∓(x) is extremely small,
in the steady regime there are four possible types of mutual
arrangements of both elements:

i). both are situated inh+(x);
ii). both are situated inh−(x);
iii). the representing point of the first element is situated

in h+(x), and the representing point of the second element
- in h−(x);

iv). the representing point of the first element is situated
in h−(x), and the representing point of the second element
- in h+(x).

In our study, if most part of the period of the limit cycle:
(a) variant i) or ii) is realized, then an in-phase synchronous
regime takes place, and (b) variant iii) or iv) is realized,
then an anti-phase synchronous regime sets in. Note that for
a1 = a2 for an in-phase regime1 = 2, y1 = y2, and for an
anti-phase regime the lag between two time series is equal
to T/2, whereT is the period of the oscillations.

Let us study the first variant: both elements are onh+(x)
(see Fig.1b). After substitutionτ = εt at vanishing ε,
according to (3) we get the simplified model:





0 = F1(x1, x2, y1, y2, d),
dy1

dτ
= x1 + a1,

0 = F2(x1, x2, y1, y2, d),
dy2

dτ
= x2 + a2.

(4)

Solving this linear system, we find both limit cycles. To do
this, we build the mappingdfn+1(dfn), wheren corresponds
to the n-th passing of the limit cycle, anddfn = yn

1 − yn
2 .

Without loosing generality, let us consider the following case.
Let yn

1 , yn
2 be the values ofy1 andy2 on then-th passing of

the limit cycle. Then the first element just comes to the line
h−(x). The stateyn

2 of the second element can be arbitrary
on the linesh−(x) or h+(x). The stateyn

1 of the first element
is defined throughyn

2 . Let us assume that the second element
is located on theh+(x). Then

yn
1 = 2/3 + d(x2 − x1) = d̂−1(4d̄/3− dyn

2 ), (5)

whered̄ = 2/3 + d and d̂ = 4/3 + d.

Let in the momentτ = t1 the second element jumps to
the line h−(x). Then, solving system (4), one obtains for
y1(t1) andy2(t1):

y−+
1 (t1) =

[
1
2 (yn

1 − yn
2 ) + 2− (a1 − a2)d̄

]
exp(− t1

2d̄
)+

[
1
2 (yn

1 + yn
2 )− 2

3 (a1 + a2)
]
exp(− 3t1

4 )− 2− da2 + d̂a1,

(6)
y−+
2 (t1) =

[
1
2 (yn

2 − yn
1 )− 2 + (a1 − a2)d̄

]
exp(− t1

2d̄
)+

[
1
2 (yn

1 − yn
2 )− 2

3 (a1 + a2)
]
exp(− 3t1

4 ) + 2− da2 + d̂a1.

(7)
In expressions (6) and (7) the index ”−+” means, that the

first element is on the lineh−(x), and the second one on
the line h+(x). From another side, because the fact that at
τ = t1 the second element jumps to the lineh−(x) we have:

y2(t1) =
2
3

+
d

2d̄
(y2(t1)− y1(t1)− 4) (8)

Comparing (7) and (8) and taking into account (6), we can
find the momentt1. Now both elements are on the line
h−(x). The corresponding valuesy1(τ) and y2(τ) can be
calculated:

y−−1 (τ) =
[
1
2 (y1(τ0)− y2(τ0))− (a1 − a2)d̄

]
exp(− τ−τ0

2d̄
)+

[
1
2 (y1(τ0) + y2(τ0)) + 2− 2

3 (a1 + a2)
]
exp(− 3

4 (τ − τ0))−

2− da2 + d̂a1,

(9)

y−−1 (τ) =
[
1
2 (y2(τ0)− y1(τ0) + (a1 − a2)d̄

]
exp(− τ−τ0

2d̄
)+

[
1
2 (y1(τ0) + y2(τ0)) + 2− 2

3 (a1 + a2)
]
exp(− 3

4 (τ − τ0))−

2− da1 + d̂a2,

(10)
Each element can reach the left extreme before the other

element. This depends on the initial conditions and the
parameters. Let atτ = t2 one of the elements reaches the
left extreme. Theny1(t2), y2(t2) can be obtained from (9)
and (10). From another side, we can use the fact that one
element atτ = t2 is located in the left extreme. Therefore,
we can define the momentt2. If we move further along
the cycle, then we can obtain (i) the moment where the
first element jumps again from the lineh+(x) to the line
h−(x), and (ii) the valuesyn+1

1 andyn+1
2 . Therefore, we can

build the mappingdfn+1(dfn). This mapping atd = 0.002,
a1 = 0.995, a2 = 0, 994 and at the initial state of the second
element theh−(x) is presented in Fig.2a. It is visible, that
there are two steady fixed points, each related to the certain
synchronous regime. The fixed point in a vicinity of zero
corresponds to an in-phase regime (x1 ≈ x2); the point near
df(n) = 1.323 corresponds to an anti-phase regime. Both



Fig. 2. Mapdfn+1(dfn). Initially the second element is located onh−(x).
Parameters are:a1 = 0.995, a2 = 0.994, ε = 0.02 and: a)d = 0.002, b)
d = 0.05.

Fig. 3. Time series for in-phase (a), and anti-phase (b) regimes of system
(1) for N = 2.

of these regimes appear if the coupling strengthd becomes
larger than some critical value. With further increase of
d, the fixed point corresponding to an anti-phase regime
disappears but the fixed point corresponding to an in-phase
regime remains (Fig.2b). This means that for relatively large
coupling only an in-phase synchronous regime exists.

These analytical results obtained for a linear approxima-
tion of the functionsF1,2 are tested in numerical experiment
with model (1) forN = 2, ε = 0.02. This way we get the
existence of in-phase and anti-phase synchronous regimes.
The appropriate time series are given in Fig. 3a and 3b. It
is necessary to note, that the anti-phase regime is realized
not only in some intervals of the coupling parameterd, but
in some interval of the difference of the parametersa2 − a1

too. In the case of a large differencea2− a1, when even for
one of the elements the time of movement alongh+(x) is
close to the time of movement alongh−(x), the anti-phase
regime disappears. Therefore, it is possible to assume that
the strong difference between the times of two parts of slow
movement is a reason for the existence of two (and very big
for large ensembles) synchronous regimes. We have obtained
the evolution of the observed frequenciesωj = 2π/Tj vs.
the parameterd. HereTj = 1/M

∑M
i=1 Tij ,whereM →∞

, j = 1, 2, andTij is the sequence of time intervals between
consecutive maxima of realizationxj(t). In other wordsωj

is an averaged frequency of the occurrence of maxima in the
time seriesxj(t).

As our numerical experiments show, the in-phase and anti-
phase regimes have strongly different observed frequencies.
The frequency of the in-phase regime is close to the maximal
of the individual frequencies of the uncoupled elements, but
the frequency of the anti-phase regime goes to zero ifd

Fig. 4. Synchronization regimes in an ensemble of two coupled elements.
Distribution of mean frequencies vs. coupling. Parameters are:ε = 0.02,
a1 = 0.995, a2 = 0.994.

increases, and therefore, the anti-phase regime disappears
(Fig. 4). It can be noticed, that for identical elements
decreasing of this frequency can be estimated analytically.
Thus, atd > dcr only the in-phase regime exists.

V. THREE COUPLED ELEMENTS

In an ensemble of three coupled elements the interval of
coupling, in which four synchronous regimes can be realized
in dependence on the initial conditions, is found: (i) in-phase
regime (x1 ≈ x2 ≈ x3, y1 ≈ y2 ≈ y3) and three mixed
regimes where two of the oscillators are synchronized in-
phase

(ii) regime, for whichx1 ≈ x2, y1 ≈ y2;
(iii) regime, for whichx2 ≈ x3, y2 ≈ y3;
(iv) regime, for whichx1 ≈ x3, y1 ≈ y3, in some sense

this regime can be called anti-phase regime.
Therefore 2N−1 = 22 = 4 synchronous regimes are

possible. The lags between the time seriesx1(t), x2(t), x3(t)
are non constant and can be changed in dependence on
the parameters. Under some conditions the regime of splay-
state occurs, for which the time between the maxima of the
time series is close toT/3, whereT is the period of the
synchronous oscillations.

Dependence of the observed frequencies on coupling of
three coupled elements is shown in Fig. 5. Each curve in
the figure describes this dependence at one of the four
regimes of global synchronization. In numerical experiment
we’ve varied only initial conditions to obtain the synchronous
regime which we need.

The mixed regimes are established at some frequency
ωs

mix, such thatωs
sp < ωs

mix < ωs
in, where ωs

sp, ω
s
in are

the synchronization frequencies of the splay-state and the in-
phase synchronous regimes, correspondingly. Mixed regimes
exist in a wider interval ofd than the splay state. With
increasingd the mixed regimes disappear, and only the in-
phase regime remains.

VI. GLOBAL AND CLUSTER SYNCHRONIZATION IN

LARGE ENSEMBLES

In order to study synchronization phenomena in large
ensembles of neuron-like elements, we investigate a chain of
50 coupled oscillators with linearly distributed parametersaj



Fig. 5. Synchronization regimes in an ensemble of three coupled elements.
Distribution of mean frequenciesΩ1,2,3 vs. coupling. Curve1 correspond to
an in-phase synchronous regime (i). Curve4 - to an anti-phase synchronous
regime (iv). Curve2 - to an mixed regime (ii). Curve3 - to a mixed
regime (iii). Parameters are:ε = 0.02, a1 = 0.995, a2 = 0.99493, a3 =
0.99486.
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Fig. 6. Synchronization frequencies in the chain of 50 coupled elements
for a1 = 0.995, ∆a = 0.001, ε = 0.02.

(aj = a1 + ∆a(j − 1)). The results obtained in the previous
sections allows us to suppose that in this chain for some
parameters2N−1 different regimes of global synchroniza-
tion are possible. In numerical experiments several of such
regimes were found (Fig. 6). The evolution of the synchro-
nization frequencies for an increasing coupling parameter
is similar to the evolution in the systems of two and three
coupled elements. As in the previous numerical experiments,
in the in-phase regime the synchronization frequency is close
to the maximal of the individual frequencies. This regime
remains with increasingd.

With an increase of coupling from0 the formation of
groups of synchronized neighboring elements, i.e. clusters of
synchronization, appears. The number of clusters decreases
with increasingd, and ford ≥> 0.03 global synchronization
sets in (Fig. 7). The formation of synchronous clusters is
observed for randomly distributed parametersaj as well.
[14].

VII. C ONCLUSIONS

Basing on the received results it is possible to assume,
that in a system ofN locally diffusively coupled Bonhoeffer
- Van der Pol oscillators for fixed values of parameters the
number of different globally synchronous regimes can be
equal to2N−1. This was numerically confirmed for N=3. An

Fig. 7. Global (d = 0.03) and cluster synchronization in the chain of 50
coupled elements fora1 = 0.995, ∆a = 0.001, ε = 0.02.

analytical proof for the existence of two synchronous regimes
was performed for N=2. In large ensembles a transition to
global synchronization is accomplished with the formation of
synchronization clusters. For relatively strong coupling, only
the in-phase synchronous regime exists, which is realized
on a frequency close to the maximal of the individual
frequencies.

Many theoretical and experimental results show that syn-
chronization phenomena play a very important role in brain
activity. It is assumed that synchronous firing of neurons are
an essentional mechanism for information processing. There-
fore, the observed multistability of synchronous regimes may
be useful by understanding of mechanisms of different brain
functions including image storage and recognition, visual
perception, memory processing, control of movement and
posture.
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