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Abstract—We study synchronous behavior in ensembles of model of a neuron network [7]:
locally coupled nonidentical Bonhoeffer - van der Pol oscillators.

We show that in a chain of N elements2¥~! different regimes &y = Fj(z;,y;) + d(zj11 — 235 + 25-1),
of global synchronization are possible. Uj = Gj(xj)7 1)
j=1,..,N,

I. INTRODUCTION
WhereFj(a:j,yj) = T; — 1/31‘33 — Yj» GJ(JZJ) = E(l’j -

The understanding of principles of functioning of theg;), N is the number of elements in the chain, ahi the
human neuronal system and algorithms of information pracoupling between the elements,<< 1, 0 < a; < 1. We
cessing in neuron systems is an important actual challengsnsider slightly nonidentical oscillators, which have small
Answers to these problems will have an immediate impagfarameter mismatched; ; = a; — a;. Free-end boundary
on the creation of highly efficient and low cost artificial conditions are taken. Because<< 1 is very small, all
neuron systems which are capable to solve tasks, apparegtillations in (1) can be divided in slow and fast motions.
now as extremely complex [1], [2]. There are already firskFrom a physiological point of view, the fast variabl€an be
solutions in this direction demonstrating the potentials ofonsidered as a voltage, but the slow variapleas a gating
artificial networks constructed by analogy with neuron syser recovery variable. Therefore, the cooperative behavior of
tems. For example, it is processing of threads of multimedigeuronal nets or cardiac tissue can be at least qualitatively
data, including tasks of recognition of texts and imageseproduced by a model of coupled BvdP oscillators. In [12]
optimum management of complex structures, brain-machingis oscillator were successfully used as individual cell for
interactions etc. modelling the frequency entrainment of heart pacemakers.

One basic feature of ensembles of neurons in the ceQollective dynamics of synaptically coupled BvdP neurons
tral and peripheral nervous systems, or in cardiac tissweas studied in [13].
is there ability to synchronization [2-12]. Therefore, the
study of synchronization in chains and networks of elements Hl. SINGLE NEURON
simulating self-oscillatory activity of neurons and cardiac For a single element:
cells is extremely important. In this paper we investigate ) 8
synchronization in small (two and three elements) and large { r=T=Y-=3, 2)
(chain) ensembles of coupled neuron-like oscillators. We y=ex+a)
demonstrate that such ensembles generate multistability t?lf

3
. L .~ there is one unstable steady st = (—a,% — a).
synchronous regimes. In dependence on the initial conditions y state ) (—a, %5 —a)

in a chain of N coupled oscillators2¥—! synchronous Woﬁ_uhs ifa =~ tV 1|_ 2\/5{ glndl'(”')t a nlodeB ffa < f
regimes are possible. FaV = 2 the existence of in- — 21/€). There exists also a stable limit cycle. Because o

phase and anti-phase regimes is proved analytically. Nme smallnes;ga‘it consi;ts of fgst and slow parts. A typical
merical simulations show the appearance of four differe hase portrait is s_hown in a Fig.1a. Hére(.:v) andh. (z)
synchronous regimes fa¥ = 3. In large ensembles different are the left resp. right steady parts anglx) is the upstable
regimes of global and cluster synchronization are found. part of the curve of slow movements, correspondingly.

V. TWO COUPLED NEURONS
II. MODEL . o )
For some fixed parameters there are two limit cycles in

In this paper we investigate a chain of locally diffusivelya pair of coupled elements. These cycles corresporid-to
coupled Bonhoeffer - van der Pol (BvdP) oscillators as ghaseandanti-phasesynchronous regimes. For the analytical

proof of this fact fora; ~ a2, we consider a piece-wise linear
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15 a b) Let in the momentr = ¢; the second element jumps to

5 .
\ oo O e the line h_(z). Then, solving system (4), one obtains for
\ \ ; yl(tl) andyg(tl):
y \ . R \h+ y \ rightpo|i} yr () = [3(uF —vE) +2 — (a1 — az)d] exp(—55)+
\ - \ \ ?fexcess \ R
1 1 Ieft{)ointofexcess [%(y? -+ yg) — %(al + QQ)} exp(f%) -2 dag + dal,
25 X 25 25 X 2.5
(6)

Fig. 1. a). Phase portrait of system (2). b). In-phase regime at piece-wisgy >V (¢,) = [L(y2 — y™) — 2+ (a1 — a2)d] exp(— L)+
linear approximation of the functions; 2 given according to (3). Y2 ( ) [2 (y2 i ) ( ) 1 p( 2d)

[y —y5) — 2(a1 + as)] exp(—3L) + 2 — day + das.
These functions have two extrema: the right extreme @)

Y2 = 2/3 +d(z2,1 — 212), and the left extreme » = In expressions (6) and (7) the index " means, that the
—2/3 + d(w2,1 — 21,2). Under the general assumption that .ot alement is on the liné_ (), and the second one on
the switching time fronh; (x) t0 iz (x) is extremely small, oo jine 5, (). From another side, because the fact that at
in the steady regime there are four possible types of mutu,pI: #, the second element jumps to the line (x) we have:
arrangements of both elements: 0 4

i). both are situated if, (z); 2, ¢ _ _

ii). both are situated irh_ (z); 2{tn) 3" Qd(yQ(tl) i) = 4) ©)

iii). the representing point of the first element is situate@Comparing (7) and (8) and taking into account (6), we can
in hy(x), and the representing point of the second elemefind the momentt;. Now both elements are on the line
-in h_(x); h_(z). The corresponding valueg (7) and y2(7) can be

iv). the representing point of the first element is situatedalculated:
in h_(az),)and the representing point of the second elementyl——(T) _ [%(y1(7'o) — ya(10)) — (a1 — az)(ﬂ eXp(_T;JroH
- in h+ xZ).

In our study, if most part of the period of the limit cycle: [L (1 (70) + 12(70)) + 2 — 2(a1 + a2)] exp(—3(r — 7)) —

(a) variant i) or ii) is realized, then an in-phase synchronous 2 3 *

regime takes place, and (b) variant iii) or iv) is realized, 92— day + day

then an anti-phase synchronous regime sets in. Note that for ’

a1 = ag for an in-phase regime = 5, y; = 9, and for an 9)
anti-phase regime the lag between two time series is equal

to T/2, whereT is the period of the oscillations. o 1 o

Let us study the first variant: both elements arehgriz) Y1 (7) = [2(42(70) = 91(70) + (a1 — az)d] exp(=T572)+
(see Fig.1b). After substitutiom = &t at vanishinge,

1 2 3
according to (3) we get the simplified model: [3(11(70) +v2(70)) +2 = 3 (a1 + a2)] exp(—3(7 — 70))—
0 = F1($171'23y17y23d)a Q_dal"i-(ia%
dy;
o e (4) (10)
0 = (21, 72,91,92,d), Each element can reach the left extreme before the other
dy2  _ Ty + ay. element. This depends on the initial conditions and the
dr parameters. Let at = ¢, one of the elements reaches the

Solving this linear system, we find both limit cycles. To dd/ft extreme. Theny, (5),y»(t2) can be obtained from (9)
this, we build the mappingdf...1 (df..), wheren corresponds and (10). From another side, we can use the fact that one
to the n-th passing of the limit cycle, andf, = y7 — y&. element atr = ¢, is located in the left extreme. Therefore,
Without loosing generality, let us consider the following caseVe can define the momert. If we move further along
Let y,y2 be the values of; andy, on then-th passing of t_he cycle, the_n we can obtain (i) the moment Whe_re the
the limit cycle. Then the first element just comes to the lin8rst element jumps aga|2+f1rom thi'l'”e%(x) to the line
h_(z). The statey} of the second element can be arbitrary?- (%), and (i) the valueg; ™" andy,™". Therefore, we can
on the lines:_(z) or i (z). The statey} of the first element PUild the mappingif,, 1 (df,). This mapping at/ = 0.002,

is defined throughyy. Let us assume that the second elemerftt = 0995, az = 0,994 and at the initial state of the second
is located on thé:. (z). Then element theh_(z) is presented in Fig.2a. It is visible, that

there are two steady fixed points, each related to the certain
Yyl =2/3+d(zy —x1) = d—1(4J/3 —dy3), (5) synchronous regime. The fixed point in a vicinity of zero
corresponds to an in-phase regimg & x5); the point near
whered = 2/3 +d andd = 4/3 + d. df(n) = 1.323 corresponds to an anti-phase regime. Both
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a) b) Fig. 4. Synchronization regimes in an ensemble of two coupled elements.
25 25 Distribution of mean frequencies vs. coupling. Parametersare:0.02,
a1 = 0.995, az = 0.994.
X X increases, and therefore, the anti-phase regime disappears
(Fig. 4). It can be noticed, that for identical elements
| u decreasing of this frequency can be estimated analytically.
25 25 Thus, atd > d. only the in-phase regime exists.
4500 t 5000 4500 t 5000

V. THREE COUPLED ELEMENTS

?i?.fa Time series for in-phase (a), and anti-phase (b) regimes of system|n an ensemble of three coupled elements the interval of
1) for N = 2. R . . . .
coupling, in which four synchronous regimes can be realized
in dependence on the initial conditions, is found: (i) in-phase
regime 1 ~ z2 =~ x3,y1 ~ Y2 ~ y3) and three mixed

of these regimes appear if the coupling strengthecomes egimes where two of the oscillators are synchronized in-

larger than some critical value. With further increase of
d, the fixed point corresponding to an anti-phase regim%
disappears but the fixed point corresponding to an in-phase
regime remains (Fig.2b). This means that for relatively large (iv) regime, for whichz, ~ a3,y ~ ys, in SOMe sense

coupling only ah in-phase synchronous reglme exists. _this regime can be called anti-phase regime.
These analytical results obtained for a linear approxima- tharefore2V-1 — 92 — 4 synchronous regimes are

tion of the functionst; , are tested in numerical experimentpossible_ The lags between the time setie&), z2(t), ()

with model (1) forV =2, ¢ = 0.02. This way we get the 56 non constant and can be changed in dependence on
existence of_ln-phase an_d antl-ph_ase §ync_hr0nous rIMfve parameters. Under some conditions the regime of splay-
The appropriate time series are given in Fig. 3a and 3b. {510 occurs, for which the time between the maxima of the
is necessary to note, that the anti-phase regime is realizgg,s series is close t4'/3, whereT is the period of the
not only in some intervals of the coupling paramefebut synchronous oscillations. ’

in some interval of the dlffer.ence of the parametefs- a; Dependence of the observed frequencies on coupling of
too. In the case of a Iarge_dﬁferenag—al, when even _for three coupled elements is shown in Fig. 5. Each curve in
one of the elements the time of movement aldng(z) IS he figure describes this dependence at one of the four
close to the time of movement alorig. (z), the anti-phase |ogimes of global synchronization. In numerical experiment
regime disappears. Therefore, it is possible to assume gl e yaried only initial conditions to obtain the synchronous
the strong difference between the times of two parts of SloY‘égime which we need.

movement is a reason for the existence of two (and very big Tha mixed regimes are established at some frequency
for large ensembles) synchronous regimes. We have obtaingd ¢ .1 thatw® < W' . < Wi wherews . w® are

mix? sp mix in? spr¥in

the evolution of the observed fre]auenc'teﬁ = 2m/Tj VS the synchronization frequencies of the splay-state and the in-
th? parameted. HereT; = /M35, Tij ,vyhereM — %0 phase synchronous regimes, correspondingly. Mixed regimes
,J = 1,2, andT}; is the sequence of time intervals betweenyyist in a wider interval ofd than the splay state. With

consecutive maxima of realizatiory (¢). In other wordsw;  jncreasingd the mixed regimes disappear, and only the in-
is an averaged frequency of the occurrence of maxima in t'iﬁﬁase regime remains.

time seriesr;(t).

As our numerical experiments show, the in-phase and anti- V!- GLOBAL AND CLUSTER SYNCHRONIZATION IN
phase regimes have strongly different observed frequencies. LARGE ENSEMBLES
The frequency of the in-phase regime is close to the maximal In order to study synchronization phenomena in large
of the individual frequencies of the uncoupled elements, b#nsembles of neuron-like elements, we investigate a chain of
the frequency of the anti-phase regime goes to zerd if 50 coupled oscillators with linearly distributed parametgrs

(i) regime, for whichx| ~ 29, y1 = yo;
(i) regime, for whichzs =~ x3,y2 ~ ys;
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Fig. 5. Synchronization regimes in an ensemble of three coupled elements.

Distribution of mean frequencid2; » 3 vs. coupling. Curve correspond to

an in-phase synchronous regime (i). Cutiveto an anti-phase synchronous

regime (iv). Curve2 - to an mixed regime (ii). Curve3 - to a mixed
regime (iii). Parameters are:= 0.02, a; = 0.995,a2 = 0.99493, a3 =
0.99486.
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for a; = 0.995, Aa = 0.001, € = 0.02.
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Fig. 7. Global ¢ = 0.03) and cluster synchronization in the chain of 50
coupled elements foi; = 0.995, Aa = 0.001, ¢ = 0.02.

analytical proof for the existence of two synchronous regimes
was performed for N=2. In large ensembles a transition to
global synchronization is accomplished with the formation of
synchronization clusters. For relatively strong coupling, only
the in-phase synchronous regime exists, which is realized
on a frequency close to the maximal of the individual
frequencies.

Many theoretical and experimental results show that syn-
chronization phenomena play a very important role in brain
activity. It is assumed that synchronous firing of neurons are
an essentional mechanism for information processing. There-
fore, the observed multistability of synchronous regimes may
be useful by understanding of mechanisms of different brain
Rinctions including image storage and recognition, visual
perception, memory processing, control of movement and
posture.

(a; = a1 + Aa(j —1)). The results obtained in the previous
sections allows us to suppose that in this chain for some
parameter2N ! different regimes of global synchroniza- [1I
tion are possible. In numerical experiments several of sucl&]
regimes were found (Fig. 6). The evolution of the synchro-
nization frequencies for an increasing coupling parametef]
is similar to the evolution in the systems of two and three
coupled elements. As in the previous numerical experiments,
in the in-phase regime the synchronization frequency is clos&!
to the maximal of the individual frequencies. This regime[s]
remains with increasing.

With an increase of coupling fromd the formation of  [6]
groups of synchronized neighboring elements, i.e. clusters qf;l
synchronization, appears. The number of clusters decreases
with increasingd, and ford >> 0.03 global synchronization
sets in (Fig. 7). The formation of synchronous clusters is[9]
observed for randomly distributed parametersas well.

[14]. [10]

[11]
[12]
[13]
Basing on the received results it is possible to assume,
that in a system ofV locally diffusively coupled Bonhoeffer [y
- Van der Pol oscillators for fixed values of parameters the
number of different globally synchronous regimes can be
equal to2V—1. This was numerically confirmed for N=3. An

VIl. CONCLUSIONS
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