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Abstract: An exponential mean square stability for the limit cycles of nonlinear
stochastic systems is considered. The first approximation linear systems are
introduced and a notion of P -stability (projective) is proposed. A spectral criterion
for P -stability is obtained. Mean square stabilization of periodic solutions of
stochastically forced nonlinear systems is considered. The necessary and sufficient
conditions of stabilizability are presented. The possibilities of constructive design
of stabilizing regulator for 2D limit cycles are demonstrated.
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1. INTRODUCTION

Many nonlinear phenomena of mechanics ob-
served under transition from the order to chaos
are frequently connected with a chain of bifur-
cations: a stationary regime (equilibrium point)
– periodic regime (limit cycle) – chaotic regime
(strange attractor). Each such transition is accom-
panied by the loss of stability of simple attrac-
tor and new more complicated stable attractor
birth. Stability analysis of appropriate invariant
manifolds is key for understanding of the complex
behavior of nonlinear dynamical systems. The
stability investigation and control of stochastic
systems are attractive from theoretical and engi-
neering points of view. Even weak noise can result
in qualitative changes in the system’s dynamics.
We consider the mean square stability problem
for limit cycles of stochastic differential equations.
One of the most important directions of stability
analysis is Lyapunov function technique (LFT)
(Krasovskii (1963); Kats and Krasovskii (1960);
Khasminskii (1980); Kushner (1967)). LFT in re-
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search of a stationary point stochastic stability
has been widely studied by many authors (see
Arnold (1974); Arnold (1998); Mao (1994); Khas-
minskii (1980)).

The orbital Lyapunov functions were used in sta-
bility and sensitivity analysis via a quasipotential
of stochastic forced limit cycles (Ryashko (1996);
Bashkirtseva and Ryashko (2002); Bashkirtseva
and Ryashko (2004)).

The aim of this work is to present foundations of
stability analysis for stochastically forced nonlin-
ear oscillations and its applications to stabiliza-
tion problem.

The first approximation linear systems for limit
cycles are introduced and a notion of P-stability
(projective) is proposed. A general criterion for
P-stability is obtained. The stochastic stability
analysis is reduced to the estimation of the spec-
tral radius of some positive operator.

For important case of limit cycle in 2-dimensional
stochastic system the parametric criterion is
given.



This stochastic stability criterion allows to solve
relevant stabilization problem effectively. The nec-
essary and sufficient stabilizability conditions are
presented. The example of constructive solving
of stabilization problem for stochastic periodic
regime is demonstrated. As shown, this approach
gives the useful analytical tool for analysis and
control of thin effects observed in nonlinear sto-
chastic models.

2. STOCHASTIC STABILITY OF LIMIT
CYCLES

Consider a deterministic nonlinear system

dx = f(x) dt (1)

where x is n-vector, f(x) is sufficiently smooth
vector-function of the appropriate dimension. It is
assumed that system (1) has a T -periodic solution
x = ξ(t) – limit cycle M .

A standard model for random forced deterministic
system (1) is a system of Ito’s stochastic differen-
tial equations

dx = f(x)dt +
m∑
r=1

σr(x)dwr(t), (2)

where wr(t) (r = 1, ...,m) are independent stan-
dard Wiener processes, σr(x) are sufficiently
smooth vector-functions of the appopriate dimen-
sion. To ensure cycle M is an invariant of stochas-
tic system (2) we assume

σr|M = 0 (3)

Definition 1. The cycle M is called exponentially
stable in the mean square sense (EMS-stable) for
the system (2) in neighborhood U if there exist
K > 0, l > 0 such that

E||∆(x(t))||2 ≤ Ke−ltE||∆(x0)||2
where x(t) is a solution of system (2) with initial
condition x(0) = x0 ∈ U.
Here ∆(x) = x− γ(x) is a deviation of a point x
from a cycle M , γ(x) is the point on cycle M that
is nearest to x. It is assumed that a neighborhood
U is invariant for systems (1), (2).

Consider for (1), (2) the corresponding first ap-
proximation systems

dz = F (t)zdt (4)

dz = F (t)zdt+
m∑
r=1

Sr(t)zdwr(t) (5)

with T -periodic coefficients

F (t) =
∂f

∂x
(ξ(t)), Sr(t) =

∂σr
∂x

(ξ(t)).

Due to (3), matrix functions Sr(t) are singular:
Sr(t)f(ξ(t)) ≡ 0.

Solution z = 0 of systems (4), (5), because of
presence of the solution z = f(ξ(t)) can not be ex-
ponentially mean square stable in standard sense.
Here more weak analog of exponential stability de-
fined with the help of a projector P (t) = Pf(ξ(t)),

Pr = I − rr>

r>r
is considered.

Definition 2. The solution z = 0 of system (5) is
called exponentially P -stable in the mean square
sense (system (5) is P -stable for short) if there
exist K > 0, l > 0 such that

E‖P (t)z(t)‖2 ≤ Ke−lt E‖P (0)z0‖2

for any solution z(t) of system (5) with initial
conditions z(0) = z0 ∈ Rn.
Consider a space Σ of symmetrical n × n-matrix
functions V (t) defined and sufficiently smooth on
R1 and satisfying periodicity V (t+T ) = V (t) and
singularity V (t)f(ξ(t)) = 0 conditions.

Definition 3. A matrix V (t) ∈ Σ is called P -
positive definite if

∀ t ∈ R1 ∀ z ∈ Rn P (t)z 6= 0⇒ (z, V (t)z) > 0.

In space Σ we shall consider a cone K of nonneg-
ative definite matrices and set

KP = {V ∈ Σ|V is P − positive definite}.

Theorem 1. The following statements are equiv-
alent:

(a) Cycle M for system (2) is EMS-stable;
(b) System (5) is P -stable;
(c) For any matrix W ∈ KP equation

L[V ] = V̇ + F>V + V F +
m∑
r=1

S>r V Sr = −W (6)

has unique matrix solution V ∈ KP .

2.1 A spectral stability criterion

Theorem 1 reduces a problem of cycle M stability
to analysis of equation L[V ] = −W decision
problem in the space of P−positive definite ma-
trices KP .

It is difficult to analyze the system stability by
direct investigation of decision problem for matrix
Lyapunov equation especially in cases close to
critical. Here we shall consider an extension of
the effective criteria (Ryashko (1979); Ryashko
(1981); Ryashko (1999)) based on positive opera-
tors spectral theory (Krasnosel’skii et al. (1985)).

Represent the operator L from (6) in the form

L = A+ S,



where
A[V ] = V̇ + F>V + V F,

S[V ] =
m∑
r=1

S>r V Sr.

Consider the operator P = −A−1S.
Theorem 2. The stochastic system (5) is P -stable
if and only if it holds that

(a) The deterministic system (5) is P -stable,
(b) The inequality ρ(P) < 1 holds.

Remark 1. Spectral radius ρ = ρ(P) 6= 0 defines
bifurcation value ε∗ =

√
1/ρ of random noises

intensity ε ≥ 0 for a system

dx = f(x)dt + ε

m∑
r=1

σr(x)dwr(t).

The cycle M for this system is EMS-stable for any
ε < ε∗ and is unstable for any ε ≥ ε∗. Case ρ = 0
means this system is stable for any ε ≥ 0.

Remark 2. If one can not find spectral radius ρ
exactly then its estimations ρ1 < ρ < ρ2 may
be useful. Actually, the inequality ρ2 < 1 gives
sufficient and ρ1 < 1 gives necessary stability
condition.

3. STABILITY OF 2D LIMIT CYCLE

In the case n = 2 one can find for spectral radius
of operator P the following explicit representation

ρ(P) = −〈β〉〈α〉
Here

α(t) = p(t)>[F>(t) + F (t)]p(t),

β(t) = p>(t)

(
m∑
r=1

Sr(t)S>r (t)

)
p(t),

p(t) is a vector orthonormal to limit cycle M at a
point ξ(t), brackets 〈·〉 mean time averaging

〈α〉 =
1
T

T∫

0

α(t)dt.

Inequality (famous Poincare criterion)

〈α〉 < 0

is necessary and sufficient condition of exponential
stability of limit cycle M for the deterministic
system (1). Thus, the inequality ρ(P) < 1 written
as

〈α+ β〉 < 0. (7)

is necessary and sufficient condition of EMS-
stability of cycle M for stochastic system (2) in
2D-case (Ryashko (1996)).

4. STABILIZATION

Consider controlled deterministic system

dx = f(x, u) dt, (8)

and corresponding stochastic system

dx = f(x, u)dt +
m∑
r=1

σr(x, u)dwr(t), (9)

where x is n-dimensional state variable, u is l-
dimensional vector of control functions, f(x, u),
σr(x, u) are vector functions of the appropriate
dimension, wr(t) (r = 1, ...,m) are independent
standard Wiener processes. It is supposed that for
u = 0 cycle M is invariant for system (8). Under
condition

σr(x, 0)|M = 0. (10)

for u = 0 cycle M is invariant for system (9) too.
Our stabilization problem is to design a regulator
guaranteeing EMS-stability of invariant cycle M
for system (9).

The stabilizing regulator we shall select from
the class F of admissible feedbacks u = u(x)
satisfying conditions:

(a) u(x) is sufficiently smooth and u|M = 0;
(b) for the deterministic system

dx = f(x, u)dt

the cycle M is exponentially stable in the neigh-
borhood U of M .

The analysis of stabilization problem of cycle M
for u ∈ F is connected with investigation of the
first approximation systems

dz = (A(t) +B(t)K(t))zdt, (11)

dz = (A(t) +B(t)K(t))zdt+

+
m∑
r=1

(Cr(t) +Hr(t)K(t))zdwr(t),
(12)

where

A(t) =
∂f

∂x
(ξ(t), 0), B(t) =

∂f

∂u
(ξ(t), 0),

Cr(t) =
∂σr
∂x

(ξ(t), 0), Hr(t) =
∂σr
∂u

(ξ(t), 0)

and K(t) =
∂u

∂x
(ξ(t)) are T -periodic matrices.

Here condition (10) looks like

K(t)P (t) ≡ K(t), P (t) = Pf(ξ(t)). (13)

Consider Taylor’s expansion of control function
u(x) at a point γ

u(x) = u(γ) +
∂u

∂x
(γ)(x− γ) +O(‖x− γ‖3).



For γ = γ(x) ∈M we get

u(x) =
∂u

∂x
(γ(x))∆(x) +O(‖∆(x)‖3).

As we see, a first approximation control function
near M for small deviations ∆(x) = x − γ(x) is
the feedback

u1(x) =
∂u

∂x
(γ(x))∆(x).

As it follows from (12), the stabilization capabil-
ities of control u are completely determined by
first approximation u1(x) of a function u(x) and
are independent on higher order terms. It allows
to restrict our consideration by simpler regulators
in the following form

u(x) = K(t(γ(x)))∆(x), (14)

where t(x) is inverse function for x = ξ(t). Regula-
tor (14) is feedback for deviation ∆(x) = x−γ(x)
of state x for system (9) from cycle M .

Stabilizing possibilities of this regulator are de-
fined by l × n-matrix T -periodic function K(t),
satisfying (13). If for some matrix function K(t)
the cycle M of system (9), (14) is EMS-stable then
system (9) is called stabilized, and regulator (14)
is called stabilizing regulator.

Consider set of feedback matrices

K = {K(t)| system (11) is P− stable}
and operators

AK [V ] = V̇ + (A+BK)>V + V (A+BK),

SK [V ] =
m∑
r=1

(Cr +HrK)>V (Cr +HrK),

PK = −A−1
K SK .

Theorem 3. The system (9) with feedback (14) is
stabilized if and only if it holds that

(a) K 6= ∅,
(b) The inequality infK∈K ρ(PK) < 1 holds.

The feedback (14) with K ∈ K stabilizes the
stochastic system (9) if inequality ρ(PK) < 1
holds.

This Theorem reduces stabilization problem to
minimization of operator PK spectral radius.

4.1 Stabilization of 2D cycle.

For the case of cycle on a plane (n = 2) from
(13) it follows that rankK(t) ≤ 1. It gives us
factorization: K(t) = k(t)p>(t). Here k(t) is l-
vector-function, p(t) is a vector orthonormal to
limit cycle M at a point ξ(t). So the regulator
(14) can be written as

u = k(t(γ(x)))δ(x), (15)

where δ(x) = p>(t(γ(x)))∆(x).

Criterion (7) for system (12) with K(t) =
k(t)p>(t) can be written in the following form

Jk < 0, (16)

where

Jk = 〈αk(t) + βk(t)〉. (17)

Here

αk(t) = p>(t)
(
A>(t) +A(t) + p(t)k>(t)B>(t)+

+B(t)k(t)p>(t)
)
p(t) = α(t) + 2b>(t)k(t),

βk(t) =
m∑
r=1

p>(t)
(
Cr(t) +Hr(t)k(t)p>(t)

)×

× (p(t)k>(t)H>r (t) + C>r (t)
)
p(t) =

=
m∑
r=1

(
p>(t)Cr(t)C>r (t)p(t)+

+2p>(t)Cr(t)p(t)p>(t)Hr(t)k(t)+

+k>(t)H>r (t)p(t)p>(t)Hr(t)k(t)
)

=

= β(t) + 2c>(t)k(t) + k>(t)H(t)k(t),

α(t) = p>(t)
(
A>(t) +A(t)

)
p(t), b(t) = B>(t)p(t),

β(t) =
m∑
r=1

p>(t)Cr(t)C>r (t)p(t),

c(t) =
m∑
r=1

p>(t)Cr(t)p(t)H>r (t)p(t),

H(t) =
m∑
r=1

H>r (t)p(t)p>(t)Hr(t).

Thus the functional Jk from (17) has an explicit
representation

Jk = 〈α(t) + β(t) + 2(b(t) + c(t))>k(t)+
+k>(t)H(t)k(t)〉. (18)

It allows from inequality (16) to choose coefficient
k(t) of stabilizing regulator (15) constructively.

5. CONCLUSION

Mean square stability analysis of the limit cycles
of nonlinear stochastic systems was developed.
Criterion of P -stability allows (see Theorem 1)
to investigate nonlinear systems stability using
the first approximation linear systems. A spectral
variant of P -stability criterion (see Theorem 2) is
useful tool for constructive analysis for stabiliza-
tion problem of limit cycles (see Theorem 3).
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