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Abstract

A flatness-based adaptive fuzzy control is applied
to the problem of stabilization of the dynamics of a
chaotic finance system, describing interaction between
the interest rate, the investment demand and the price
exponent. First it is proven that the system is differen-
tially flat. This implies that all its state variables and
its control inputs can be expressed as differential func-
tions of a specific state variable, which is a so-called
flat output. It also implies that the flat output and its
derivatives are differentially independent which means
that they are not connected to each other through an or-
dinary differential equation. By proving that the sys-
tem is differentially flat and by applying differential
flatness diffeomorphisms, its transformation to the lin-
ear canonical (Brunovsky) is performed. For the lat-
ter description of the system, the design of a stabi-
lizing state feedback controller becomes possible. A
first problem in the design of such a controller is that
the dynamic model of the finance system is unknown
and thus it has to be identified with the use of non-
linear regressors, among which neurofuzzy approxima-
tors are known to be very accurate. The estimated dy-
namics provided by the approximators is used in the
computation of the control input, thus establishing an
indirect adaptive control scheme. The learning rate of
the approximators is chosen from the requirement the
system’s Lyapunov function to have always a negative
first-order derivative. Another problem that has to be
dealt with is that the control loop is implemented only
with the use of output feedback. To estimate the non-
measurable state vector elements of the finance system,
a state observer is implemented in the control loop. The
computation of the feedback control signal requires the

solution of two algebraic Riccati equations at each iter-
ation of the control algorithm. Lyapunov stability anal-
ysis demonstrates first that an H-infinity tracking per-
formance criterion is satisfied. This signifies elevated
robustness against modelling errors and external per-
turbations. Moreover, the global asymptotic stability is
proven for the control loop.
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1 Introduction
The problem of control and synchronization of chaotic
dynamics is a non-trivial one [Andrievsky, 2016],
[Guzenko et al., 2013]. Chaotic dynamics is often ap-
parent in finance and results in random-like variations
of the parameters and variables of markets while also
annihilating financial stability conditions [Guegan,
2009], [Lorenz, 1993], [Chian, 2000], [Haas, 1998],
[Holyst et al., 1996], [Holyst et al., 2000], [Serrano et
al., 2012], [Fanti et al., 2007]. Systematic approaches
for the control of financial systems exhibiting chaotic
dynamics have been first presented in [Rigatos, 2017].
To harness chaotic dynamics and to develop methods
that stabilize chaotic finance systems, much work has
been done during the last years. One can note results
on chaotic finance systems synchronization [Cai et al.,
2013], [Cai et al., 2012], [Zhao et al, 2011], [Vargas et
al., 2015]. Systems’ theoretic results have been used in
[Chen et al., 2014], [Chian et al., 2006], [Danca et al.,
2013], [Xin et al., 2015], [Wang et al., 2011], [Ma and
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Chen, 2001]. for analyzing the dynamics of chaos in
finance. Moreover, methods for feedback control and
stabilization of chaotic systems appearing in finance
have been given in [Yu et al., 2012], [Andrievskii and
Fradkov, 2004], [Zhao and Wang, 2014], [Chen, 2008],
[Wang et al., 2012].

Elaborating on the developments of [Rigatos, 2017],
this article presents an adaptive fuzzy control method
for a chaotic finance system that shows interaction be-
tween variables such as the interest rate, the investment
demand and the price exponent. The method is based
on differential flatness theory and on diffeomorphisms
(change of state variables) which allow transformation
of the initial nonlinear description of the system, into
an equivalent linear form. Moreover, the method is
implemented only with output feedback thus requiring
to monitor only a limited number of state variables in
the financial system.

First, it is proven that the dynamic model of the
chaotic dynamical system is a differentially flat one.
This means that all its state variables and its control
inputs can be expressed as differential functions of
a primary state variable which is the system;s flat
output. Moreover, the flat output and its derivatives are
differentially independent which means that they are
not connected between them with a relation of the type
of a differential equation [Rigatos, 2011], [Rigatos,
2013], [Rigatos, 2015], [Rigatos, 2017]. Next, by
applying a change of state variables (diffeomorphism)
which is in accordance to differential flatness theory,
one arrives at an input-output linearized system. This
description is also written in the linear canonical
(Brunovsky) state-space form [Rudolph, 2003], [Fliess
and Mounier, 1999], [Sira-Ramirez and Agrawal,
2004]. For the latter description the design of a
stabilizing state feedback controller becomes possible.

Since there is no knowledge about the financial sys-
tem’s dynamics and the control method is a model-free
one, the unknown parts of the dynamics are identified
in real-time with the use of neurofuzzy approxmators.
The information obtained about the system’s dynamics
is used for the computation of the control input, and
thus an indirect adaptive control scheme is established.
The update of the approximators’ weights is based
on a gradient-type algorithm [Rigatos and Tzafestas,
2007], [Baseville and Nikiforov, 1993], [Rigatos and
Zhang, 2009]. The learning rate of the neurofuzzy
approximators is obtained from the requirement the
first derivative of the system’s Lyapunov function to be
always negative. The computation of the control signal
requires also the solution of two algebraic Riccati
equations. Lyapunov stability analysis proves that the
control loop satisfies the H-infinity tracking perfor-
mance ciretion and this signifies elevated robustness
agaisnt model uncertainty and external perturbations.
Morever, under moderate conditions global asymptotic

stability is proven.

2 Dynamic Model of the Chaotic Finance System
The considered macroeconomics model is derived af-
ter using accumulated knowledge about the interaction
between parameters such as the interest rate, the invest-
ments demand and the price exponent (this indirectly
expresses the inflation rate) [Ma and Chen, 2001], [Yu
et al., 2012]. Thus one has:
(i) The change of the interest rate in time time is propor-
tional to the difference between investments demand
and savings. Moreover, it is proportional to the price
exponent (interest rate) which implies an adjustment to
consumption goods’ prices. The above can written in
the form of the differential equation:

ẋ = f1(y − SV )x+ f2z (1)

where y is the investments demand, SV is the amount
of savings and f1, f2 are constants.
(ii) The change of the investment demand is propor-
tional to the benefit from the rate of investments, while
(a) it is inhibited in a proportional manner by the invest-
ments demand itself, (b) it is inhibited in an exponential
(square) manner by the value of the interest rate. The
previous are expressed through the following relation:

ẏ = f2(BEN − αy − βx2) (2)

where BEN is the benefit rate of investments, f2, α
and β are constants.

(iii) The price exponent expresses a contradiction (dis-
crepancy) between supply and demand in a commercial
market. The price exponent is an indication of the infla-
tion rate. The change of the price exponent is inhibited
in a proportional manner by the value of the inflation
rate itself. It is also inhibited in a proportional man-
ner by the value of the interest rate. The previous are
expressed through the following relation

ż = −f4z − f5x (3)

where f4 and f5 are constants.

2.1 State-space Model of the Chaotic Financial
System

The following state variables notation is used next:
x1 = x, x2 = y and x3 = z. Moreover, the coeffi-
cient of the previous equations are denoted as a,b and
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c. Thus, the dynamics of the chaotic finance system is
now given by [Yu et al., 2012]

ẋ1 = x3 + (x2 − a)x1

ẋ2 = 1− bx2 − x2
1

ẋ3 = −x1 − cx3

(4)

As previously noted, in state vector x = [x1, x2, x3]
T ,

x1 is the interest rate, x2 is the investment demand and
x3 is the price exponent. Moreover, a is the savings
amount, b is the cost per investment, and c is the elas-
ticity of demand. The dynamics of the financial system
is complemented with the inclusion of control inputs
[Yu et al., 2012]

ẋ1 = x3 + (x2 − a)x1

ẋ2 = 1− bx2 − x2
1 + u

ẋ3 = −x1 − cx3

(5)

The financial system is also written in the state-space
form:

ẋ = f(x) + g(x)u (6)

where

f(x) =

x3 + (x2 − a)x1

1− bx2 − x2
1

−x1 − cx3

 g(x) =

0
1
0

 (7)

2.2 Chaotic Dynamics of the Finance System
The finance system exhibits chaotic dynamics. This
means that in steady state it has a behavior that can
be neither characterized as a stable equilibrium nor
as a periodic or almost periodic oscillation. As time
advances, the behavior of the system changes in a
random-like manner and this depends on its initial con-
ditions. Although the system is deterministic, it ex-
hibits randomness in the way it evolves in time. By
selecting the parameters’ values to be a = 0.9, b = 0.2,
c = 1.2 and the initial condition to be x0 = [1, 3, 2] one
arrives at a chaotic behavior for the finance system as
depicted in Fig. 1 and Fig. 2.

3 Flatness-based Control of the Chaotic Finance
Dynamics

3.1 Differential Flatness of the Chaotic Finance
System

The state-space model of the chaotic finance system,
complemented by the application of an external control
input, is
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Figure 1. Chaotic dynamics of the finance system: (a) phase dia-
gram of state variables x1 and x2, (b) phase diagram of state vari-
ables x1 and x3

ẋ1 = x3 + (x2 − a)x1

ẋ2 = 1− bx2 − x2
1 + u

ẋ3 = −x1 − cx3

(8)

The flat output of the system is taken to be the state
variable y = x3. From the third row of Eq. (8) one has

x1 = −ẋ3 − cx3⇒x1 = f1(y, ẏ) (9)

From the first row of Eq. (8) one has

x2 = ẋ1−x3

x1
+ a⇒x2 = f2(y, ẏ, ÿ) (10)

From the second row of Eq. (8) one has

u = ẋ2 − 1 + bx2 + x2
1⇒u = f3(y, ẏ, ÿ, y

(3))
(11)

Since all state variables and the control input can be
written as differential functions of the flat output, it is
confirmed that the system is differentially flat.
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Figure 2. Chaotic dynamics of the finance system: (a) phase di-
agram of state variables x2 and x3, (b) variation in time of state
variables x1,x3 and x3

3.2 Design of a Stabilizing Feedback Controller
By deriving twice the third row of Eq. (8) with respect
to time, and by substituting the time derivatives ẋi, i =
1, 2, 3 again in accordance to the rows of Eq. (8) one
has

x
(3)
3 = (x1 + cx3)(1− bx2 − x2

1)x1+
+x2[x3 + (x2 − a)x1] + a[x3 + (x2 − a)x1]+
+c[x3 + (x2 − a)x1] + c2[−x1 − cx3]− x1u

(12)
or equivalently

x
(3)
3 = f(x) + g(x)u (13)

or in the form

y(3) = f(y, ẏ, ÿ) + g(y, ẏ, ÿ)u (14)

where

f(y, ẏ, ÿ) = (x1 + cx3)(1− bx2 − x2
1)x1+

+x2[x3 + (x2 − a)x1] + a[x3 + (x2 − a)x1]+
+c[x3 + (x2 − a)x1] + c2[−x1 − cx3]

(15)

g(y, ẏ, ÿ) = −x1 (16)

By defining the transformed control input v =
f(y, ẏ, ÿ) + g(y, ẏ, ÿ)u one has that

y(3) = v (17)

For the linearized description of the finance system
given in Eq. (17), and using the notation z1 = y,
z2 = ẏ and z3 = ÿ, and v = f(y, ẏ, ÿ) + g(y, ẏ, ÿ)u
one arrives also at the state-space description

ż1
ż2
ż3

 =

0 1 0
0 0 1
0 0 0

z1
z2
z3

+

0
0
1

 v (18)

zmeas =
(
1 0 0

)z1
z2
z3

 (19)

and the stabilizing feedback control input is given by

v = y
(3)
d − k1(ÿ − ÿd)− k2(ẏ − ẏd)− k3(y − yd)

(20)
and the control input that is actually applied to the fi-
nancial system is

u = g−1(y, ẏ, ÿ)[v − f(y, ẏ, ÿ)] (21)

The previous control signal results in the tracking error
dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (22)

By selecting the feedback gains ki, i = 1, 2, 3 such
that the characteristic polynomial of Eq. (22) to be a
Hurwitz one, it assured that limt→∞e(t) = 0.
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4 Adaptive Fuzzy Control of the Chaotic Finance
System Using Output Feedback

4.1 Problem Statement
Adaptive fuzzy control aims at solving the control
problem of the chaotic finance system in case that its
dynamics are unknown and the state vector is not com-
pletely measurable. It has been shown that after ap-
plying the differential flatness theory-based transfor-
mation, the following non-linear SISO system is ob-
tained:

x(n) = f(x, t) + g(x, t)u+ d̃ (23)

where f(x, t), g(x, t) are unknown nonlinear functions
and d̃ is an unknown additive disturbance. The objec-
tive is to force the system’s output y = x to follow
a given bounded reference signal xd. In the presence
of non-gaussian disturbances w, successful tracking of
the reference signal is denoted by the H∞ criterion
[Rigatos, 2015]

∫ T

0

eTQedt ≤ ρ2
∫ T

0

wTwdt (24)

where ρ is the attenuation level and corresponds to the
maximum singular value of the transfer function G(s)
of the linearized equivalent of Eq. (23).

Remark: From the H∞ control theory, the H∞
norm of a linear system with transfer function
G(s), is denoted by ||G||∞ and is defined as
||G||∞ = supωσmax[G(jω)] [Rigatos, 2015]. In
this definition sup denotes the supremum or least
upper bound of the function σmax[G(j(ω)], and thus
the H∞ norm of G(s) is the maximum value of
σmax[G(j(ω)] over all frequencies ω. H∞ norm has a
physically meaningful interpretation when considering
the system y(s) = G(s)u(s). When this system
is driven with a unit sinusoidal input at a specific
frequency, σmax|G(jω)| is the largest possible output
for the corresponding sinusoidal output. Thus, the
H∞ norm is the largest possible amplification over all
frequencies of a sinusoidal input.

4.2 Transformation of Tracking into a Regulation
Problem

The H∞ approach to nonlinear systems control con-
sists of the following steps : i) linearization is applied:
ii) the unknown system dynamics are approximated
by neural of fuzzy estimators, iii) an H∞ control
term, is employed to compensate for estimation errors
and external disturbances. If the state vector is not
measurable, this can be reconstructed with the use of
an observer.

For measurable state vector x, desirable state vector xm

and uncertain functions f(x, t) and g(x, t) an appropri-
ate control law for (23) would be

u =
1

ĝ(x, t)
[x(n)

m − f̂(x, t) +KT e+ uc] (25)

where, f̂ and ĝ are the approximations of the unknown
parts of the system dynamics f and g respectively, and
which can be given by the outputs of suitably trained
neuro-fuzzy networks. The term uc denotes a supervi-
sory controller which compensates for the approxima-
tion error w = [f(x, t)− f̂(x, t)]+ [g(x, t)− ĝ(x, t)]u,
as well as for the additive disturbance d̃. More-
over the vectors KT = [kn, kn−1, · · · , k1], and
eT = [e, ė, ë, · · · , e(n−1)]T are chosen such that the
polynomial e(n) + k1e

(n−1) + k2e
(n−2) + · · · + kne

is Hurwitz. The substitution of the control law of Eq.
(25) in Eq. (23) results into

x(n) = f(x, t) + g(x, t) 1
ĝ(x,t) [x

(n)
m − f̂(x, t)−KT e+

uc] + d̃ ⇒ x(n) = f(x, t) + {ĝ(x, t) + [g(x, t) −
ĝ(x, t)]} 1

ĝ(x,t) [x
(n)
m − f̂(x, t)−KT e+uc]+ d̃⇒x(n) =

f(x, t) + { ĝ(x,t)
ĝ(x,t) [x

(n)
m − f̂(x, t) − KT e +

uc] + [g(x, t) − ĝ(x, t)]u + d̃⇒x(n) =

f(x, t) + x
(n)
m − f̂(x, t) − KT e + uc + [g(x, t) −

ĝ(x, t)]u+uc+ d̃⇒x(n)−x
(n)
m = −KT e+[f(x, t)−

f̂(x, t)] + [g(x, t) − ĝ(x, t)]u + uc + d̃⇒x(n) =

−KT e+uc+[f(x, t)−f̂(x, t)]+[g(x, t)−ĝ(x, t)]u+d̃

The above relation can be written in a state-equations
form. The state vector is taken to be eT =
[e, ė, · · · , e(n−1)], which yields

ė = Ae−BKT e+Buc +B{[f(x, t)− f̂(x, t)]+

+[g(x, t)− ĝ(x, t)]u+ d̃}
(26)

or equivalently

ė = (A−BKT )e+Buc +B{[f(x, t)− f̂(x, t)]+

[g(x, t)− ĝ(x, t)]u+ d̃}

e1 = CT e
(27)

where
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A =


0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1
0 0 0 · · · · · · 0


BT =

(
0, 0, · · · , 0, 1

)
, CT =

(
1, 0, · · · , 0, 0

)
KT =

(
k0, k1, · · · , kn−2, kn−1

)
(28)

where e1 denotes the output error e1 = x − xm. Eq.
(27) describes a regulation problem.

4.3 Estimation of the State Vector
The control of the system described by Eq. (23) be-
comes more complicated when the state vector x is
not directly measurable and has to be reconstructed
through a state observer. The following definitions are
used

error of the state vector e = x− xm

error of the estimated state vector ê = x̂− xm

observation error ẽ = e− ê = (x−xm)−(x̂−xm)

When an observer is used to reconstruct the state vec-
tor, the control law of Eq. (25) is written as

u =
1

ĝ(x̂, t)
[x(n)

m − f̂(x̂, t) +KT e+ uc] (29)

Applying Eq. (29) to the nonlinear system described
by Eq. (23), after some operations results into

x(n) = x
(n)
m −KT ê+ uc + [f(x, t)− f̂(x̂, t)]+

[g(x, t)− ĝ(x̂, t)]u+ d̃

It holds e = x−xm ⇒ x(n) = e(n)+x
(n)
m . Substituting

x(n) in the above equation gives

e(n) + x
(n)
m = x

(n)
m −KT ê+ uc + [f(x, t)− f̂(x̂, t)]+

+[g(x, t)− ĝ(x̂, t)]u+ d̃ ⇒
(30)

ė = Ae−BKT ê+Buc +B{[f(x, t)− f̂(x̂, t)]+

+[g(x, t)− ĝ(x̂, t)]u+ d̃}
(31)

e1 = CT e (32)

where e = [e, ė, ë, · · · , e(n−1)]T , and ê =
[ê, ˙̂e, ¨̂e, · · · , ê(n−1)]T .

The state observer is designed according to Eq. (31)
and (32) and is given by [Rigatos, 2015]:

˙̂e = Aê−BKT ê+Ko[e1 − CT ê] (33)

ê1 = CT ê (34)

The observation gain Ko =
[ko0 , ko1 , · · · , kon−2 , kon−1 ]

T is selected so as to
assure the convergence of the observer.

4.4 The Additional Control Term uc

The additional term uc which appeared in Eq. (25) is
also introduced in the observer-based control to com-
pensate for:

The external disturbances d̃
The state vector estimation error ẽ = e− ê = x−x̂
The approximation error of the nonlinear functions
f(x, t) and g(x, t), denoted as w = [f(x, t) −
f̂(x̂, t)] + [g(x, t)− ĝ(x̂, t)]u

The control signal uc consists of 2 terms, namely:

the H∞ control term, ua = −1
rB

TP ẽ for the com-
pensation of d and w
the control term ub for the compensation of the ob-
servation error ẽ

4.5 Dynamics of the Observation Error
The observation error is defined as ẽ = e− ê = x− x̂.
Subtracting Eq. (33) from Eq. (31) as well as Eq. (34)
from Eq. (32) one gets

ė− ˙̂e = A(e− ê) +Buc +B{[f(x, t)− f̂(x̂, t)]+

+[g(x, t)− ĝ(x̂, t)]u+ d̃} −KoC
T (e− ê)

e1 − ê1 = CT (e− ê)

i.e.

˙̃e = Aẽ+Buc +B{[f(x, t)− f̂(x̂, t)]+

+[g(x, t)− ĝ(x̂, t)]u+ d̃} −KoC
T ẽ

ẽ1 = CT ẽ

which can be written as
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˙̃e = (A−KoC
T )ẽ+Buc +B{[f(x, t)− f̂(x̂, t)]+

+[g(x, t)− ĝ(x̂, t)]u+ d̃}
(35)

ẽ1 = Cẽ (36)

4.6 Approximation of the Functions f(x, t) and
g(x, t)

Neurofuzzy networks can been trained on-line to ap-
proximate parts of the dynamic equation of non-linear
systems, or to compensate for external disturbances.
The approximation of functions f(x, t) and g(x, t)
of Eq. (23) can be carried out with Takagi-Sugeno
neuro-fuzzy networks of zero or first order (Fig. 3 ).
These consist of rules of the form:

Rl : IF x̂ is Al
1 AND ˙̂x is Al

2 AND · · · AND x̂(n−1) is
Al

n THEN ȳl =
∑n

i=1w
l
ix̂i + bl, l = 1, 2, · · · , L

The output of the neuro-fuzzy model is calculated by
taking the average of the consequent part of the rules

ŷ =

∑L
l=1ȳ

l
∏n

i=1µAl
i
(x̂i)∑L

l=1

∏n
i=1µAl

i
(x̂i)

(37)

where µAl
i

is the membership function of xi in the
fuzzy set Al

i. The training of the neuro-fuzzy networks
is carried out with 1st order gradient algorithms, in pat-
tern mode, i.e. by processing only one data pair (xi, yi)
at every time step i. The estimation of f(x, t) and
g(x, t) can be written as

f̂(x̂|θf ) = θTf ϕ(x̂) ĝ(x̂|θg) = θTg ϕ(x̂) (38)

where ϕ(x̂) are kernel functions with elements ϕl(x̂) =∏n
i=1µAl

i
(x̂i)∑L

l=1

∏n
i=1µAl

i
(x̂i)

l = 1, 2, · · · , L. It is assumed that

that the weights θf and θg vary in the bounded areas
Mθf and Mθg which are defined as: Mθf = {θf ∈
Rh : ||θf || ≤ mθf } and Mθg = {θg ∈ Rh : ||θg|| ≤
mθg}, with mθf and mθg positive constants. The val-
ues of θf and θg for which optimal approximation is
succeeded are:

θ∗f = arg minθf∈Mθf
[supx∈Ux,x̂∈Ux̂

|f(x)− f̂(x̂|θf )|]
θ∗g = arg minθg∈Mθg

[supx∈Ux,x̂∈Ux̂
|g(x)− ĝ(x̂|θg)|]

The variation ranges of x and x̂ are the compact sets

Figure 3. Neuro-fuzzy approximator: Gi Gaussian basis function,
Ni: normalization unit

Ux = {x ∈ Rn : ||x|| ≤ mx < ∞},
Ux̂ = {x̂ ∈ Rn : ||x̂|| ≤ mx̂ < ∞} (39)

The approximation error of f(x, t) and g(x, t) is given
by

w = [f̂(x̂|θ∗f )− f(x, t)] + [ĝ(x̂|θ∗g)− g(x, t)]u ⇒
w = {[f̂(x̂|θ∗f )− f(x|θ∗f )] + [f(x|θ∗f )− f(x, t)]}+
{[ĝ(x̂|θ∗g)− g(x̂|θ∗g)] + [g(x̂|θ∗g)g(x, t)]}u

(40)

where

f̂(x̂|θ∗f ) is the approximation of f for the best es-
timation θ∗f of the weights’ vector θf .
ĝ(x̂|θ∗g) is the approximation of g for the best esti-
mation θ∗g of the weights’ vector θg.

The approximation error w can be decomposed into wa

and wb, where

wa = [f̂(x̂|θf )− f̂(x̂|θ∗f )] + [ĝ(x̂|θg)− ĝ(x̂|θ∗g)]u

wb = [f̂(x̂|θ∗f )− f(x, t)] + [ĝ(x̂|θ∗g)− g(x, t)]u

Finally, the following two parameters are defined:

θ̃f = θf − θ∗f , θ̃g = θg − θ∗g (41)

5 Lyapunov Stability Analysis
5.1 Design of the Lyapunov Function
The adaptation law of the neurofuzzy approximators’
weights θf and θg as well as of the supervisory control
term uc are derived from the requirement for negative
definiteness of the Lyapunov function
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V =
1

2
êTP1ê+

1

2
ẽTP2ẽ+

1

2γ1
θ̃Tf θ̃f+

1

2γ2
θ̃Tg θ̃g (42)

The selection of the Lyapunov function is based on
the following principle of indirect adaptive control ê :
limt→∞ x̂(t) = xd(t) and ẽ : limt→∞ x̂(t) = x(t).
This yields limt→∞ x(t) = xd(t). Substituting Eq.
(31), (32) and Eq. (35), (36) into Eq. (42) and dif-
ferentiating results into

V̇ = 1
2
˙̂eTP1ê+

1
2 ê

TP1
˙̂e+ + 1

2
˙̃eTP2ẽ+

1
2 ẽ

TP2
˙̃e+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(43)
which in turn gives

V̇ = 1
2{(A−BKT )ê+KoC

T ẽ}TP1ê+
+1

2 ê
TP1{(A−BKT )ê+KoC

T ẽ}+
+ 1

2{(A−KoC
T )ẽ+Buc +Bd+Bw}TP2ẽ+

+ 1
2 ẽ

TP2{(A−KoC
T )ẽ+Buc +Bd+Bw}+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(44)
or, equivalently

V̇ = 1
2{ê

T (A−BKT )T + ẽTCKT
o }P1ê+

+1
2 ê

TP1{(A−BKT )ê+KoC
T ẽ}+

+ 1
2{ẽ

T (A−KoC
T )T +BTuc +BTw +BT d}P2ẽ+

+ 1
2 ẽ

TP2{(A−KoC
T )ẽ+Buc +Bw +Bd}+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(45)
which is also written as

V̇ = 1
2 ê

T (A−BKT )TP1ê+
1
2 ẽ

TCKT
o P1ê+

+1
2 ê

TP1(A−BKT )ê+ 1
2 ê

TP1KoC
T ẽ+

+ 1
2 ẽ

T (A−KoC
T )TP2ẽ+

1
2B

TP2ẽ(uc + w + d)+
+1

2 ẽ
TP2(A−KoC

T )ẽ+ 1
2 ẽ

TP2B(uc + w + d)+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(46)
Assumption 1: For given positive definite matrices Q1

and Q2 there exist positive definite matrices P1 and P2,
which are the solution of the following Riccati equa-
tions [Rigatos, 2015]

(A−BKT )TP1 + P1(A−BKT ) +Q1 = 0 (47)

(A−KoC
T )

T
P2 + P2(A−KoC

T )−
−P2B( 2r − 1

ρ2 )B
TP2 +Q2 = 0

(48)

The conditions given in Eq. (47) to (48) are related
to the requirement that the systems described by Eq.
(33), (34) and Eq. (35), (36) are strictly positive real.
Substituting Eq. (47) to (48) into V̇ yields

V̇ = 1
2 ê

T {(A−BKT )TP1 + P1(A−BKT )}ê+
+ẽTCKT

o P1ê+
1
2 ẽ

T {(A−KoC
T )TP2+

+P2(A−KoC
T )}ẽ+BTP2ẽ(uc + w + d)+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(49)
which is also written as

V̇ = −1
2 ê

TQ1ê+ ẽTCKT
o P1ê−

1
2
ẽT {Q2 − P2B( 2r − 1

ρ2 )B
TP2}ẽ+

+BTP2ẽ(uc + w + d) + 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(50)

The supervisory control uc is decomposed in two
terms, ua and ub

ua = − 1
rp1nẽ1 = − 1

r ẽ
TP2B+

+1
r (p2nẽ2 + · · ·+ pnnẽn) = −1

r ẽ
TP2B +∆ua

(51)
where p1n stands for the last (n-th) element of the first
row of matrix P2, and

ub = −[(P2B)T (P2B)]−1(P2B)TCKT
o P1ê (52)

ua is an H∞ control used for the compensation
of the approximation error w and the additive dis-
turbance d̃. Its first component − 1

r ẽ
TP2B has

been chosen so as to compensate for the term
1
r ẽ

TP2BBTP2ẽ, which appears in Eq. (50). By
subtracting the second component −1

r (p2nẽ2 +
· · · + pnnẽn) one has that ua = −1

rp1nẽ1, which
means that ua is computed based on the feedback
the measurable variable ẽ1. Eq. (51) is finally
rewritten as ua = −1

r ẽ
TP2B +∆ua.

ub is a control used for the compensation of the
observation error (the control term ub has been
chosen so as to satisfy the condition ẽTP2Bub =
−ẽTCKT

o P1ê.

Substituting Eq. (51) and (52) in V̇ , one gets

V̇ = − 1
2 ê

TQ1ê+ ẽTCKT
o P1ê− 1

2 ẽ
TQ2ẽ+

+1
r ẽ

TP2BBTP2ẽ− 1
2ρ2 ẽ

TP2BBTP2ẽ+

+ẽTP2Bub − 1
r ẽ

TP2BBTP2ẽ+BTP2ẽ(w + d+∆ua)+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(53)
or equivalently,
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V̇ = − 1
2 ê

TQ1ê− 1
2 ẽ

TQ2ẽ−
− 1

2ρ2 ẽ
TP2BBTP2ẽ+BTP2ẽ(w + d+∆ua)+

+ 1
γ1
θ̃Tf

˙̃
θf + 1

γ2
θ̃Tg

˙̃
θg

(54)
It holds that ˙̃θf = θ̇f− θ̇∗f = θ̇f and ˙̃

θg = θ̇g− θ̇∗g = θ̇g.
The following weight adaptation laws are considered:

θ̇f = {−γ1ẽ
TP2Bϕ(x̂) if ||θf || < mθf

0 ||θf || ≥ mθf
(55)

θ̇g = {−γ2ẽ
TP2Bϕ(x̂)uc if ||θg|| < mθg

0 ||θg|| ≥ mθg
(56)

To set θ̇f and θ̇g equal to 0, when ||θf ≥ mθf ||,
and ||θg ≥ mθg || the projection operator is employed
[Rigatos, 2011]:

P{γ1ẽTP2Bϕ(x̂)} = −γ1ẽ
TP2Bϕ(x̂) +

+γ1ẽ
TP2B

θfθ
T
f

||θf ||2ϕ(x̂)

P{γ1ẽTP2Bϕ(x̂)uc} = −γ1ẽ
TP2Bϕ(x̂)uc +

+γ1ẽ
TP2B

θfθ
T
f

||θf ||2ϕ(x̂)uc

The update of θf stems from a gradient algorithm
on the cost function 1

2 (f − f̂)2 [Baseville and Niki-
forov, 1993], [Rigatos and Tzafestas, 2007],[Rigatos
and Zhang, 2009]. The update of θg is also of the gradi-
ent type, while uc implicitly tunes the adaptation gain
γ2. Substituting Eq. (55) and (56) in V̇ gives

V̇ = −1
2 ê

TQ1ê− 1
2 ẽ

TQ2ẽ− 1
2ρ2 ẽ

TP2BBTP2ẽ+

+BTP2ẽ(w + d+∆ua)+

+ 1
γ1
θ̃Tf (−γ1ẽ

TP2Bϕ(x̂)) + 1
γ2
θ̃Tg (−γ2ẽ

TP2Bϕ(x̂)u)

(57)
which is also written as

V̇ = − 1
2 ê

TQ1ê− 1
2 ẽ

TQ2ẽ−
− 1

2ρ2 ẽ
TP2BBTP2ẽ+ ẽTP2B(w + d+∆ua)−
−ẽTP2Bθ̃Tf ϕ(x̂)− ẽTP2Bθ̃Tg ϕ(x̂)u

(58)
and using Eq. (38) and (41) results into

V̇ = −1
2 ê

TQ1ê− 1
2 ẽ

TQ2ẽ− 1
2ρ2 ẽ

TP2BBTP2ẽ+

+ẽTP2B(w + d+∆ua)− ẽTP2B{[f̂(x̂|θf )+
+ĝ(x̂|θf )u]− [f̂(x̂|θ∗f ) + ĝ(x̂|θ∗g)u]}

(59)

where [f̂(x̂|θf )+ ĝ(x̂|θf )u]− [f̂(x̂|θ∗f )+ ĝ(x̂|θ∗g)u] =
wa. Thus setting w1 = w + wa + d+∆ua one gets

V̇ = −1
2 ê

TQ1ê
1
2 ẽ

TQ2ẽ−
− 1

2ρ2 ẽ
TP2BBTP2ẽ+BTP2ẽw1 ⇒

V̇ = −1
2 ê

TQ1ê
1
2 ẽ

TQ2ẽ− 1
2ρ2 ẽ

TP2BBTP2ẽ+

+ 1
2w

T
1 B

TP2ẽ+
1
2 ẽ

TP2Bw1

(60)
Lemma: The following inequality holds

1
2 ẽ

TP2Bw1 +
1
2w

T
1 B

TP2ẽ− 1
2ρ2 ẽ

TP2BBTP2ẽ

≤ 1
2ρ

2wT
1 w1

(61)
Proof : The binomial (ρa − 1

ρb)
2 ≥ 0 is considered.

Expanding the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0 ⇒
1
2ρ

2a2 + 1
2ρ2 b

2 − ab ≥ 0 ⇒
ab− 1

2ρ2 b
2 ≤ 1

2ρ
2a2 ⇒

1
2ab+

1
2ab−

1
2ρ2 b

2 ≤ 1
2ρ

2a2

(62)

The following substitutions are carried out: a = w1

and b = ẽTP2B and the previous relation becomes

1
2w

T
1 B

TP2ẽ+
1
2 ẽ

TP2Bw1 − 1
2ρ2 ẽ

TP2BBTP2ẽ

≤ 1
2ρ

2wT
1 w1

(63)
The above inequality is used in V̇ , and the right part of
the associated inequality is enforced

V̇≤− 1

2
êTQ1ê−

1

2
ẽTQ2ẽ+

1

2
ρ2wT

1 w1 (64)

Thus, Eq. (64) can be written as

V̇ ≤ −1

2
ETQE +

1

2
ρ2wT

1 w1 (65)

where

E =

(
ê
ẽ

)
, Q =

(
Q1 0
0 Q2

)
= diag[Q1, Q2] (66)

Hence, the H∞ performance criterion is derived. For
ρ sufficiently small Eq. (64) will be true and the H∞
tracking criterion will be satisfied. In that case, the in-
tegration of V̇ from 0 to T gives
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∫ T

0
V̇ (t)dt ≤ − 1

2

∫ T

0
||E||2dt+ 1

2ρ
2
∫ T

0
||w1||2dt ⇒

2V (T )− 2V (0) ≤ −
∫ T

0
||E||2Qdt+ ρ2

∫ T

0
||w1||2dt ⇒

2V (T ) +
∫ T

0
||E||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||w1||2dt

It is assumed that there exists a positive constant Mw >
0 such that

∫∞
0

||w1||2dt ≤ Mw. Therefore for the
integral

∫ T

0
||E||2Qdt one gets

∫∞
0

||E||2Qdt ≤ 2V (0) +

ρ2Mw. Thus, the integral
∫∞
0

||E||2Qdt is bounded and
according to Barbalat’s Lemma

limt→∞ E(t) = 0 ⇒ limt→∞ ê(t) = 0
limt→∞ ẽ(t) = 0

Therefore limt→∞ e(t) = 0.

6 Simulation Tests
The proposed adaptive fuzzy control method has been
applied to the problem of stabilization of the dynamics
of the chaotic finance system defined in Eq. (5) and its
performance has been checked through simulation ex-
periments in the case of tracking of several reference
trajectories. The presented results are depicted in Fig.
4 to Fig. 8. It has been confirmed that all state variables
converged fast to the reference trajectories and that the
tracking error was minimized. Moreover,the control
inputs computed by the nonlinear H-infinity controller
varied smoothly.
The estimation of the unknown dynamics of the system
with the use of neuro-fuzzy approximators has been
explained in subsection 4.6. The approximators’ inputs
were the system’s state variables x1: interest rate, x2:
investment demand and x3: price exponent. Knowing
that there are i = 3 state variables for the chaotic
finance system and that each such variable comprises
n = 3 fuzzy sets, the total number of rules in the fuzzy
rule base should be nm = 33 = 27. The aggregate
output of the neuro-fuzzy approximator (rule-base) for
function f(x) is given by Eq. (37). Similar is the struc-
ture of the neuro-fuzzy approximator for function g(x).

The control loop was based on simultaneous estima-
tion of the unknown chaotic finance system’s dynamics
(this was performed with the use of neuro-fuzzy ap-
proximators) and of the nonmeasurable elements of the
chaotic finance system’s state vector, that is of the inter-
est rate x1 and of the investment demand x2 (this was
performed with the use of the state observer).

7 Conclusions
The article has presented an adaptive fuzzy control
method for chaotic finance systems, that is is based on
differential flatness theory and which uses feedback of
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Figure 4. Tracking of reference setpoint 1 (red line): (a) state vari-
ables x1, x2, and x3 (blue line), (b) flat output y1 = x3 and its
time derivatives y2 = ẏ1, y3 = ÿ1 (blue lines)

only the system’s output. By proving the differential
flatness properties of the chaotic finance system, and by
applying a change of state variables (diffeomorphism)
the nonlinear state-space description of the system was
transformed into an equivalent linear one. For the lat-
ter description of the system’s dynamics the design of
a stabilizing state feedback controller became possible.
Next, a an adaptive control scheme was implemented
without any prior knowledge of the system’s dynamics.
The unknown dynamics of the chaotic finance system
was identified with the use of neurofuzzy approxima-
tors. The learning rate of these approximators was de-
fined by the requirement the first derivative of the sys-
tem’s Lyapunov function to be always a negative one.
The information provided by the approximators was
used for computing the control input of the system, thus
establishing an indirect adaptive control loop. More-
over, for the computation of the control signal, at each
iteration of the control algorithm, two algebraic Riccati
equations had to be solved. Through Lyapunov stabil-
ity analysis the global asymptotic stability of the con-
trol scheme was proven.
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