A QUICK LOOK AT ROW ECHELON FORM OF MULTI-INPUT CONTROL SYSTEMS

Miguel V. Carriegos
Department of Mathematics
University of León
Spain
miguel.carriegos@unileon.es

Montserrat M. Cb López
Department of Mathematics
University of León
Spain
mmlopc@unileon.es

Abstract

We give a first generalization of the invariants and canonical forms of single-input linear control systems over principal ideal domains to the multi-input case by means of quotient rings.

Key words

Multi-input, dynamical-systems, invariants, rowechelon, Bézout, pid.

1 Introduction

The feedback classification of linear dynamical systems over a commutative ring is an open problem on Control Theory, see [Brewer, 1986], [McDonald, 1984], [Sontag, 1998] and [Hermida, 2003] for a general lecture. In other words, we are about given a certain linear dynamical system $\Sigma=(A, B)$ over a particular commutative ring R, find its feedback invariants, that is to say, finding the canonical dynamical system $\hat{\Sigma}=(\hat{A}, \hat{B})$ over R feedback equivalent to Σ. Eventually, some cases have been studied and solved, see for example [Brewer and Klinger, 2001], [Brunovsky, 1970], [Carriegos and García, 2004] and [Carriegos and Sánchez, 2001].
In this paper, we focus our interest in applying for digital systems or coding case. So, we deal with linear dynamical systems over $R=\mathbb{Z}$ or finite ring, see [Carriegos and Hermida, 2003] for reading a canonical form for single-input n-dimensional linear systems. In this way, the main section of this study deal with rising from single-input to multi-input over a principal ideal domain R. Finally, under some conditions, we find row-echelon form $\hat{\Sigma}=(\hat{A}, \hat{B})$ corresponding to a given linear control system $\Sigma=(A, B)$ over R.

2 Feedback equivalence

Let R be a commutative ring with identity element. An m-input n-dimensional linear control system Σ
over R is a pair (A, B), i.e. $A=\left(a_{i j}\right)$ an $n \times n$ matrix and $B=\left(b_{i j}\right)$ an $n \times m$ matrix with entries in R.
We say that two m-input n-dimensional systems $\Sigma=$ (A, B) and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ are (static) feedback equivalent, and write $\Sigma \sim_{R} \Sigma^{\prime}$, if there exist invertible matrices P and Q, and a feedback matrix F such that $B^{\prime}=P B Q$ and $P A-A^{\prime} P=B F$. The objective of the feedback relation is to obtain a matrix F such that $A^{\prime}=P(A-B F) P^{-1}$ has some desired property. Note that, one of the principal difficulty of this problem is to find change of basis P and Q in the respective sampling spaces. In this way, in some cases, the difficulty of the static feedback classification is tackled through enlargement systems, i.e. for playing a technique called dynamic feedback, see [Brewer and Klinger, 1988] for reading general case and [Hermida and Trobajo, 2003] for reading case R a principal ideal domain, and for playing a technique called weakly feedback, see [Hermida and López, 2006].
So, on the one hand, we say that two m-input n dimensional systems $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ are dynamically feedback equivalent, and write $\Sigma \approx_{R}$ Σ^{\prime}, if $\Sigma(r)$ is feedback equivalent to $\Sigma^{\prime}(r)$ for some positive integer r, where

$$
\Sigma(r)=\left(\left(\begin{array}{c|c}
0_{r \times r} \mid 0 \\
\hline 0 & A
\end{array}\right),\binom{\operatorname{Id}_{r} \mid 0}{\hline 0 \mid B}\right)
$$

On the other hand, we say that two m-input n dimensional systems $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ are weakly feedback equivalent if $\Sigma[s]$ is feedback equivalent to $\Sigma^{\prime}[s]$ for some positive integer s, where

$$
\Sigma[s]=\left(A,\left(B \mid 0_{n \times s}\right)\right)
$$

3 Single-input case

Let R be a Bezout domain and let $\Sigma=(A, \underline{b})$ be an n dimensional single-input linear dynamical system over
R. In the sense of feedback equivalence, Σ can be reduced to a row echelon form. That is
$\Sigma \sim_{R}\left(\left(\begin{array}{ccccc}a_{11} & a_{12} & \cdots & a_{1 n-1} & a_{1 n} \\ d_{2} & a_{22} & \cdots & a_{2 n-1} & a_{2 n} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ddots & a_{n-1 n-1} & a_{n-1 n} \\ 0 & 0 & \cdots & d_{n} & a_{n n}\end{array}\right),\left(\begin{array}{c}d_{1} \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)\right)$,
and we say that $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ is the diagonal sequence of the system Σ. Moreover, the diagonal sequence of a reduced form is a feedback invariant up to units and it determines equivalence class of the control system Σ, see [Carriegos and Hermida, 2003].

4 Multi-input case

Through this section, let R be a principal ideal domain. Let $\Sigma=(A, B)$ be an n-dimensional m input linear dynamical system over R. Since R is a pid, without loss of generality we can assume that multi-input matrix B is rewrote, by some changes of basis P and Q, as

$$
B=\left(\begin{array}{c|c}
D & 0_{t \times(m-t)} \\
\hline 0_{(n-t) \times t} & 0_{(n-t) \times(m-t)}
\end{array}\right) \in \mathcal{M}_{n \times m}(R)
$$

where $D=\left(\begin{array}{ccc}D_{1} & & \\ & & \\ & \ddots & \\ & & D_{k}\end{array}\right) \in \mathcal{M}_{t \times t}(R)$,
$D_{i}=\left(\begin{array}{ccc}d_{i} & & \\ & \ddots & \\ & & d_{i}\end{array}\right) \in \mathcal{M}_{t_{i} \times t_{i}}(R), \quad t=\sum_{i=1}^{k} t_{i}$ and $d_{1} / d_{2} / \ldots / d_{k}$.

Now, let $\Sigma^{\prime}=\left(A^{\prime}, B^{\prime}\right)$ be another n-dimensional m input linear dynamical system over R feedback equivalent to Σ. By some changes of basis P^{\prime} and Q^{\prime}, multiinput matrix B^{\prime} is assumed as matrix B. So, at this moment we have two linear systems $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B\right)$ feedback equivalent over R with input matrix B in the above form. Furthermore, if we consider the systems

$$
\Sigma_{w}=\left(A,\left(\frac{D}{0_{(n-t) \times t}}\right)\right)
$$

and, analogously Σ_{w}^{\prime}, then it is clear that

$$
\Sigma \sim_{R} \Sigma^{\prime} \Leftrightarrow \Sigma_{w}[m-t] \sim_{R} \Sigma_{w}^{\prime}[m-t] .
$$

Remark 4.1. it is known that feedback equivalence and weakly feedback equivalence are equivalent concepts over principal ideal domains, see [Hermida and López, 2006].

Hence, following this idea

$$
\Sigma \sim_{R} \Sigma^{\prime} \Leftrightarrow \Sigma_{w} \sim_{R} \Sigma_{w}^{\prime}
$$

Lemma 4.2. Let R be a commutative ring with unit element. Let Σ be the $\left(t_{i}+t_{i+1}\right)$-input $\left(t_{i}+t_{i+1}\right)$ dimensional linear system given by

$$
\Sigma=\left(\left(\begin{array}{c|c}
A_{11} & A_{12} \\
\hline B_{1} & A_{1}
\end{array}\right),\left(\begin{array}{c|c}
D_{i} & 0 \\
\hline 0 & D_{i+1}
\end{array}\right)\right)
$$

with $D_{i}=d_{i} \operatorname{Id}_{t_{i}}, D_{i+1}=\alpha_{i} d_{i} \operatorname{Id}_{t_{i+1}}$ and d_{i} a nonzero element of R. Suppose that the t_{i}-input $\left(n-t_{i}\right)$ dimensional system $\left(A_{1}, B_{1}\right)$ is feedback equivalent to $\left(A_{1}^{\prime}, B_{1}^{\prime}\right)$. Then there exist C_{11} and C_{12} matrices such that Σ is feedback equivalent to the system

$$
\left.\Sigma^{\prime}=\left(\begin{array}{c|c}
C_{11} & C_{12} \\
\hline B_{1}^{\prime} & A_{1}^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
D_{i} & 0 \\
\hline 0 & D_{i+1}
\end{array}\right)\right)
$$

Proof. Let $\left(P_{1}, Q_{1}, F_{1}\right)$ the feedback action between $\left(A_{1}, B_{1}\right)$ and $\left(A_{1}^{\prime}, B_{1}^{\prime}\right)$. That is

$$
P_{1} A_{1}-A_{1}^{\prime} P_{1}=B_{1}^{\prime} F_{1}, \quad P_{1} B_{1}=B_{1}^{\prime} Q_{1}
$$

Consider the invertible $n \times n$ block matrix P, the invertible $\left(t_{i}+t_{i+1}\right) \times\left(t_{i}+t_{i+1}\right)$ matrix Q and the $\left(t_{i}+t_{i+1}\right) \times\left(t_{i}+t_{i+1}\right)$ matrix F given by
$P=\left(\begin{array}{c|c}Q_{1} & F_{1} \\ \hline 0 & P_{1}\end{array}\right), \quad Q=\left(\begin{array}{c|c}Q_{1} & \alpha_{1} F_{1} \\ \hline 0 & P_{1}\end{array}\right), \quad F=\binom{0}{0}$.
An easy calculation shows that
$P\left(\begin{array}{c|c}A_{11} & A_{12} \\ \hline B_{1} & A_{1}\end{array}\right)-\left(\begin{array}{c|c}C_{11} & C_{12} \\ \hline B_{1}^{\prime} & A_{1}^{\prime}\end{array}\right) P=\left(\begin{array}{c|c}D_{i} & 0 \\ \hline 0 & D_{i+1}\end{array}\right) F$,
where $C_{12}=\left(Q_{1} A_{11}+F_{1} B_{1}-C_{11} F_{1}\right) P_{1}^{-1}$ and $C_{11}=\left(Q_{1} A_{11}+F_{1} B_{1}\right) Q_{1}^{-1}$ and

$$
P\left(\begin{array}{c|c}
D_{i} & 0 \\
\hline 0 & D_{i+1}
\end{array}\right)=\left(\begin{array}{c|c}
D_{i} & 0 \\
\hline 0 & D_{i+1}
\end{array}\right) Q
$$

Corollary 4.3. Let R be a principal ideal domain. Let Σ be the t_{i}-input n-dimensional linear system given by

$$
\Sigma=\left(\left(\begin{array}{c|c}
A_{11} & A_{12} \\
\hline B_{1} & A_{1}
\end{array}\right),\binom{D_{i}}{\hline 0}\right)
$$

with $D_{i}=d_{i} \operatorname{Id}_{t_{i}}$ and d_{i} a nonzero element of R. Suppose that the t_{i}-input $\left(n-t_{i}\right)$-dimensional system $\left(A_{1}, B_{1}\right)$ is feedback equivalent to $\left(A_{1}^{\prime}, B_{1}^{\prime}\right)$. Then there exist C_{11} and C_{12} matrices such that Σ is feedback equivalent to the system

$$
\Sigma^{\prime}=\left(\left(\begin{array}{c|c}
C_{11} & C_{12} \\
\hline B_{1}^{\prime} & A_{1}^{\prime}
\end{array}\right),\binom{D_{i}}{\hline 0}\right)
$$

Proof. The result is obtained by remark 4.1 and by previous lemma 4.2 with $\alpha_{i}=0$.

Note that in under result, we deal with $\pi: R \longrightarrow$ $R(d)$ the canonical ring homomorphism of R onto the quotient ring $R /(d)$, where $d \neq 0$ is a non-unit of R. The extension of a system $\Sigma=(A, B)$ to $R /(d)$ is the linear system $\pi(\Sigma)=(\pi(A), \pi(B))$ where $\pi(A)=$ $\left(\pi\left(a_{i j}\right)\right)$ and $\pi(B)=\left(\pi\left(b_{i j}\right)\right)$.

Theorem 4.4. Let R be a principal ideal domain. Let $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B\right)$ be the $\left(t_{i}+t_{i+1}\right)$-input $\left(t_{i}+t_{i+1}\right)$-dimensional linear systems given by

$$
\Sigma=\left(\left(\begin{array}{c|c}
A_{11} & A_{12} \\
\hline B_{1} & A_{1}
\end{array}\right),\left(\begin{array}{c|c}
D_{i} & 0 \\
\hline 0 & D_{i+1}
\end{array}\right)\right)
$$

and

$$
\Sigma^{\prime}=\left(\left(\begin{array}{c|c}
A_{11}^{\prime} & A_{12}^{\prime} \\
\hline B_{1}^{\prime} & A_{1}^{\prime}
\end{array}\right),\left(\begin{array}{c|c}
D_{i} & 0 \\
\hline 0 & D_{i+1}
\end{array}\right)\right)
$$

with $D_{i}=d_{i} \operatorname{Id}_{t_{i}}, D_{i+1}=\alpha_{i} d_{i} \operatorname{Id}_{t_{i+1}}, d_{i}$ a nonzero element and $d_{i+1}=\alpha_{i} d_{i}$ a non-unit of R. Assume that extended systems $\pi(\Sigma)$ and $\pi\left(\Sigma^{\prime}\right)$ are feedback equivalent over $R /\left(\alpha_{i} d_{i}\right)$. Then the linear systems Σ and Σ^{\prime} are dynamically feedback equivalent over R.

Proof. From Theorem 2.6 of [Hermida and López, 2006], we have that system

$$
\Sigma_{d_{i+1}}=\left(A,\left(\begin{array}{c|c|c|c}
D_{i} & 0 & d_{i+1} \operatorname{Id}_{t_{i}} & 0 \\
\hline 0 & D_{i+1} & 0 & D_{i+1}
\end{array}\right)\right)
$$

and the analogous system $\Sigma_{d_{i+1}}^{\prime}$ are dynamically feedback equivalent over R. We follow the proof by considering the invertible matrix

$$
Q=\left(\begin{array}{cccc}
\mathrm{Id} & 0 & -\alpha_{i} \mathrm{Id} & 0 \\
0 & \mathrm{Id} & 0 & -\mathrm{Id} \\
0 & 0 & \mathrm{Id} & 0 \\
0 & 0 & 0 & \mathrm{Id}
\end{array}\right)
$$

as a feedback action over each of the systems Σ and Σ^{\prime}. So, we obtain that $\Sigma\left[\left(t_{i}+t_{i+1}\right)\right]$ and $\Sigma^{\prime}\left[\left(t_{i}+t_{i+1}\right)\right]$ are dynamically equivalent. Finally, we conclude Σ is dynamically feedback equivalent to $\Sigma^{\prime}\left[\left(t_{i}+t_{i+1}\right)\right]$ by remark 4.1.

Example 4.5. Let $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B\right)$ be the 4-input 4-dimensional reduced forms over $R=\mathbb{Z}$ given by

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 \\
0 & 5 & 2 & 4 \\
0 & 0 & 2 & 1
\end{array}\right), \quad A^{\prime}=\left(\begin{array}{cccc}
3 & -4 & 1 & 5 \\
3 & 2 & 7 & 6 \\
0 & 5 & 6 & 9 \\
0 & 0 & 2 & 7
\end{array}\right)
$$

$$
B=\left(\begin{array}{c|ccc}
2 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 6
\end{array}\right) .
$$

We prove that Σ and Σ^{\prime} are dynamically feedback equivalent an we give a procedure for finding (P, F) feedback equivalence action between Σ and Σ^{\prime}.

- Firstly, we consider $\pi(\Sigma)=(\pi(A), \pi(B))$ and $\pi\left(\Sigma^{\prime}\right)=\left(\pi\left(A^{\prime}\right), \pi(B)\right)$ extended systems over $R /(d)$ with $d=6$. Hence, we can write

$$
\pi(B)=\left(\begin{array}{c|ccc}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- Secondly, in [Carriegos and Hermida, 2003] is presented a numerical procedure in order to obtain (P_{1}, F_{1}) matrices pair of feedback action for proving that $\Sigma_{1}=(A, \underline{b})$ and $\Sigma_{1}^{\prime}=\left(A^{\prime}, \underline{b}\right)$ single-input systems are feedback equivalent, with $\underline{b}=(2000)^{t}$.

$$
P_{1}=\left(\begin{array}{llll}
1 & 4 & 9 & 1 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right), \quad F_{1}=\left(\begin{array}{c}
-7 \\
6 \\
-2 \\
-3
\end{array}\right)
$$

- Thirdly, $\pi(\Sigma)=(\pi(A), \pi(B))$ and $\pi\left(\Sigma^{\prime}\right)=$ $\left(\pi\left(A^{\prime}\right), \pi(B)\right)$ systems are feedback equivalent by

$$
P_{2}=P_{1}, \quad Q_{2}=\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & \mathrm{Id}_{3}
\end{array}\right), \quad F_{2}=\left(\frac{F_{1}}{0}\right) .
$$

- Fourthly, by Theorem 2.1 of [Hermida and López, 2006], we have that if $\pi(\Sigma)=(\pi(A), \pi(B))$ and $\pi\left(\Sigma^{\prime}\right)=\left(\pi\left(A^{\prime}\right), \pi(B)\right)$ systems are feedback equivalent over $R /(d)$, then $\Sigma_{2}=\left(A,\left(B\left|d \mathrm{Id}_{4}\right| 0_{4 \times 1}\right)\right)$ and $\Sigma_{2}^{\prime}=\left(A,\left(B\left|d \operatorname{Id}_{4}\right| 0_{4 \times 1}\right)\right)$ are dynamically feedback equivalent over R, by

$$
P_{3}=\left(\begin{array}{cc}
P_{2}^{\prime} & -H \\
d \operatorname{Id}_{4} & P_{2}
\end{array}\right), \quad Q_{3}=\left(\begin{array}{cccc}
P_{2}^{\prime} & -H \underline{b} & -d H & 0 \\
0 & Q_{2} & 0 & -d S \\
\operatorname{Id}_{4} & N & P_{2} & \underline{b} S \\
0 & \operatorname{Id}_{1} & 0 & Q_{2}^{\prime}
\end{array}\right)
$$

$$
F_{3}=\left(\begin{array}{cc}
0 & -H A \\
0 & F_{2} \\
-A^{\prime} & M \\
0 & 0
\end{array}\right)
$$

where $P_{2}^{\prime} P_{2}+d H=\mathrm{Id}_{4}$ and $Q_{2} Q_{2}^{\prime}+d S=\mathrm{Id}_{1}$. Observe that there exist $P_{2}^{\prime}, H, Q_{2}^{\prime}$ and S matrices over R
because P_{2} and Q_{2} are invertible matrices over $R /(d)$. Moreover, these matrices $P_{2}^{\prime}, H, Q_{2}^{\prime}$ and S can be calculated by means of Cayley-Hamilton theorem.

- Fifthly, as $2=d_{1} / d_{2}=6$ we have that $\Sigma_{2}=$ $\left(A,\left(B\left|d \mathrm{Id}_{4}\right| 0_{4 \times 1}\right)\right)$ is feedback equivalent to $\Sigma[2]$ and $\Sigma_{2}^{\prime}=\left(A^{\prime},\left(B\left|d \operatorname{Id}_{4}\right| 0_{4 \times 1}\right)\right)$ is feedback equivalent to $\Sigma^{\prime}[2]$ by

$$
P_{4}=\mathrm{Id}_{4}, \quad Q_{4}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad F=0_{6 \times 4}
$$

Note that, on the one hand the input matrix of new systems $\Sigma[2]$ and $\Sigma^{\prime}[2]$ is

$$
B[2]=\left(\begin{array}{c|ccc|cc}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 0
\end{array}\right)
$$

and that, on the other hand, we have the chain of equivalences

$$
\Sigma[2] \sim_{R} \Sigma_{2} \approx_{R} \Sigma_{2}^{\prime} \sim_{R} \Sigma^{\prime}[2] .
$$

Hence, $\Sigma[2]$ and $\Sigma^{\prime}[2]$ systems are dynamically equivalent by

$$
P_{5}=P_{4} P_{3} P_{4}^{-1}, \quad Q_{5}=Q_{4} Q_{3} Q_{4}^{-1},
$$

$F_{5}=F_{4} P_{4} P_{3} P_{4}^{-1}+Q_{4}\left(F_{3} P_{4}^{-1}+Q_{3}\left(-Q_{4}^{-1} F_{4} P_{4}^{-1}\right)\right)$.

- Sixthly and finally, by remark 4.1, we have that $\Sigma=$ (A, B) and $\Sigma^{\prime}=\left(A^{\prime}, B\right)$ linear systems are dynamically feedback equivalent. Furthermore, if we write

$$
Q_{5}=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right), \quad F_{5}=\binom{F_{11}}{F_{21}}
$$

with Q_{11} a 4×4 matrix and F_{11} a 4×4 matrix, then the (P, Q, F) feedback action of the dynamic equivalence over R between $\Sigma=(A, B)$ and $\Sigma^{\prime}=\left(A^{\prime}, B\right)$, is given by

$$
P=P_{5}, \quad Q=Q_{11}, \quad F=F_{11} .
$$

Note that, in Proposition 2.4 of [Hermida and López, 2006], it is proved that in above conditions Q_{11} matrix is invertible over R.

5 Conclusion

Since row echelon form of single-input case and throughout lifting from quotient rings, it is in our aim to determinate feedback invariants and canonical form of a multi-input linear dynamical system over principal ideal domains.

Acknowledgements

This research has been partially supported by INTECO-MInETur (Spain) and MinECo (Spain).

References

Brewer, J. W.,Bunce, J. W. and Van Vleck, F. S. (1986). Linear Systems over Commutative Rings. MarcelDekker. New York.
Brewer, J. W. and Klinger, L. (1988) Dynamic feedback over commutative rings. Linear Algebra Appl., 98, pp. 137-168.
Brewer, J. W. and Klinger, L. (2001) On feedback invariants for linear dynamical systems. Linear Algebra Appl., 325, pp. 209-220.
Brunovsky, P. A. (1970) A classification of linear controllable systems. Kybernetika, 3, pp. 173-187.
Carriegos, M. and García Planas, I. (2004) On matrix inverses modulo a subspace. Linear Algebra Appl., 379, pp. 229-237.
Carriegos, M. and Hermida-Alonso, J. A. (2003) Canonical forms for single input linear systems. Syst. Control Lett., 49, pp. 99-110.
Carriegos, M. and Sánchez-Giralda, T. (2001) Canonical forms for linear dynamical systems over commutative rings: the local case. Lecture Notes in Pure and Appl. Math. , 221, pp. 113-133.
Estes, D. and Ohm, J. (1967) Stable range in commutative rings. J. Algebra, 7(3), pp. 343-362.
Hermida-Alonso, J. A. (2003). Handbook of Algebra vol.3), pp. 3-61. Elsevier Science.
Hermida, J. A. and López-Cabeceira, M. M. (2006) Dynamic feedback over principal ideal domains and quotient rings. Linear Algebra Appl., 413, pp. 235244.

Hermida, J. A., López-Cabeceira, M. M. Trobajo, M. T. (2005) When are dynamic and static feedback equivalent? Linear Algebra Appl., 405, pp. 74-82.
Hermida, J. A. and Trobajo, M. T. (2003) The dynamic feedback equivalence over principal ideal domains. Linear Algebra Appl., 368, pp. 197-208.
McDonald, B. R. (1984). Linear Algebra over Comтиtative Rings. Marcel-Dekker. New York.
Sontag, E. D. (1998). Mathematical Control Theory 2nd ed. Springer-Verlag. New York.

