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Abstract
This article is devoted to the variational problem of

the least absolute deviations method. The main goal
is to construct a reliable and effective nonoptimality
level for a current iteration. The duality theory for con-
vex variational problems are applied to the least abso-
lute deviations method to obtain upper bounds for the
nonoptimality levels.
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1 Introduction
Anomalous measurement errors (outliers) are fre-

quently occur in the processing of measurement data.
In this case, the least absolute deviations (LAD)
method is an effective estimation method. However,
various numerical algorithms for the implementation
of this method are iterative and the question of con-
vergence rate is not always clear. The present paper
is devoted to constructing the nonoptimality levels for
the current iteration. These levels allow us to guarantee
the approximation accuracy and in so doing to give a
reliable stopping criterion for the iteration process.

2 Least Absolute Deviations
Consider the measurements of the form

z = HT q + r, (1)

where q ∈ Rn is an unknown vector to be es-
timated, z ∈ RN is the measurement vector,
H = (H1, . . . , HN ) is a specified matrix of di-
mension n × N (N ≥ n), r ∈ RN is the vector of
measurement errors.

In accordance with the least absolute deviations
method the estimation of q reduces to the solution of
the following variational problem:

I0 = min
q

I(q), I(q) =
N∑

i=1

|zi −HT
i q|. (2)

In other words, the l1-norm of the residual vector is
minimized.
The LAD method permits to decrease the influence of

the outliers in the desired estimate. This is the distinc-
tion of the LAD method from the classical least squares
method that has a good averaging property but is not
robust to anomalous measurement errors.
There are several ways for solving the variational

problem (2). Among them one can cite the reduction
to linear programming [Boyd, Vandenberghe, 2004;
Ekeland, Temam, 1976]. The linear programming
problem can be solved by the well-known simplex
method as well as by the more modern interior-point
method [Boyd, Vandenberghe, 2004]. Another method
for solving the problem (2) is the so-called Weiszfeld
method [Weiszfeld, 1937; Weiszfeld, Plastria, 2008],
which is briefly described in the next section. All these
methods are iterative. So, there appears the necessity to
obtain the stopping criterion, particularly for process-
ing the large number of measurements (N À 1).

3 Weiszfeld Method
The Weiszfeld method (it is also called the

variationally-weighted quadratic approximations
method) is popular in engineering literature [Mudrov,
Kushko, 1983]. It involves the iterations each defined
by the minimization of the specially constructed
quadratic form in q [Weiszfeld, 1937; Weiszfeld,
Plastria, 2008]



(instead of the initial nonsmooth function I(q)):

qk = argminq

(∑N
i=1 W k−1

i |zi −HT
i q|2

)
,

k = 0, 1, . . . .
(3)

Here k is the iteration number, qk−1 is the estimate
vector obtained at the previous iteration, W k−1

i =(|zi −HT
i qk−1|)−1 is a weight coefficient that corre-

sponds to the i-th entry of the residual vector at the
previous step. The initial vector q0 (with k = 0) is
chosen from a priori (maybe rough) information on
the unknown parameter. Thus the minimization of the
quadratic form can be considered as the weighted least
squares (WLS) method with the specified weight coef-
ficient matrix W = diag(W k−1

1 , . . . ,W k−1
N ):

J0 = min
q

(
(z −HT q)T W (z −HT q)

)
. (4)

The chosen method of constructing the quadratic
form is confronted by numerical difficulties un-
der small values of the residual vector entries
z −HT qk−1. Whereas one of these entries be-
comes zero, it is impossible to calculate the coefficient
W k−1

i =
(|zi −HT

i qk−1|)−1
at a given step. In order

to resolve this difficulty, the regularization is applied
(the details are omitted). Obviously, the Weiszfeld
method is very attractive from the computation point
of view. Since there is no mathematical guarantee that
this algorithm always converges, it is important to eval-
uate how much the vector qk at a step k is close (in cost
function) to the optimal one; in other words, how much
the current value I(qk) is greater than the unknown op-
timal value I0 = I(q∗) where q∗ is the exact solution
of the problem (2).
We shall call the value

∆ =
I(qk)
I(q∗)

= =
I(qk)

I0
(5)

the nonoptimality level [Matasov, 1998] of the k-th
iteration of the algorithm (e.g., of the variationally-
weighted quadratic approximation method).
The exact value of the nonoptimality level is unknown

since the cost optimal value I0 is unknown. How-
ever if we succeed in the evaluation of ∆ from above:
∆ ≤ ∆0, and ∆0 turned out to be close to 1, then it is
possible to assert that I(qk) is little different from I0.
Then qk can be chosen as a successful approximation
for the problem (2) solution. So, the calculation of the
upper bound for the nonoptimality level of the current
iteration provides the reliable stopping criterion for the
calculation of the sequence {qk}. The desired accu-
racy for ∆0 can vary for different classes of problems.
For an example below an appropriate stopping condi-
tion is ∆0 ≤ 1 + 10−6. In what follows we shall con-
sider two approaches that permit to evaluate ∆ quite

accurately; one of them can be used not only for the
Weiszfeld method but for other iteration algorithms for
solving the problem (2) as well.

4 Levels of Nonoptimality
In the basis of the both approaches the duality theory

for convex variational problems lies. With this theory
we can estimate from above the optimal cost I0 for the
LAD method (2). Introduce the notation ‖·‖1 and ‖·‖∞
for the l1- and l∞- norm respectively.
For the variational problems under consideration the

so-called dual problems can be put into correspon-
dence [Boyd, Vandenberghe, 2004; Ekeland, Temam,
1976].

THEOREM 1. The problem dual to (2) has the form:

I0 = max
λ

zT λ, λ ∈ RN , (6)

under the constraints
Hλ = 0, ‖λ‖∞ ≤ 1.

Moreover, the duality relation holds: I0 = I0.

Note that the problem (6) is the maximization prob-
lem; it allows us to propose the following estimate for
the nonoptimality level [Boyd, Vandenberghe, 2004;
Matasov, 1998]:

∆ = ‖z−HT qk‖1
I0

= ‖z−HT qk‖1
I0 ≤

≤ ‖z−HT qk‖1·‖λ̃‖∞
|zT λ̃|

,
(7)

where λ̃ ∈ RN ia a vector that satisfies the condition
Hλ̃ = 0. One possibility of this idea application is
presented in the following theorem.

THEOREM 2. Let qk be the solution of the weighted
least squares method (4). Then for the nonoptimality
level ∆ the following inequality holds:

∆ ≤ ∆(1)
0 where

∆(1)
0 = ‖z−HT qk‖1 ‖W (z−HT qk)‖∞

(z−HT qk)T W (z−HT qk)
.

(8)

At the derivation of inequality (9) the solution of the
problem dual to the weighted least squares problem (4)
was chosen as λ̃.
Another version of the upper bound for ∆ is also

based on the choice of an appropriate vector λ̃ that can
obtained from the following assertions.

THEOREM 3. Let rank H = n. Then there exists a so-
lution q∗ of the problem (2) such that n entries of the



residual vector zi −HT
i q∗ equal zero. In these residu-

als, the associated vectors Hi are linear independent.

This solution q∗ is closely linked to the solution of the
dual problem (6).

THEOREM 4. Let q∗ be a solution of the LAD prob-
lem (2). Vector λ̂ is the solution of the problem (6)
if and only if the following relations for the entries λ̂i

hold:

λ̂i = sign(zi −HT
i q∗) if zi −HT

i q∗ 6= 0,

Hλ̂ = 0, ‖λ̂‖∞ ≤ 1.

(9)

This theorem permits to propose the following algo-
rithm to construct the proper vector λ̃ for the esti-
mate (7).

STEP 1. Put in increasing order the absolute values of
the current residual vector entries ei = zi −HT

i qk:

|ej1 | ≤ . . . ≤ |ejn | ≤ |ejn+1 | ≤ . . . ≤ |ejN
|.

Consider the first n entries in this chain, i.e., the n
least in absolute value entries of the current residual
vector. Denote by K the set of these entries indices:
K = {j1, . . . , jn}.
STEP 2. Define N − n entries of the vector λ̃ that

are related to ‘not least’ residuals by the following re-
lations:

λ̃i = sign(zi −HT
i qk) for i /∈ K. (10)

STEP 3. Find the other entries of λ̃j for j ∈ K from
the system of linear algebraic equations:

∑

j∈K
Hj λ̃j = −

∑

i/∈K
Hiλ̃i, (11)

where the right-hand side and the columns Hj are
known. If the system matrix (Hj1 , . . . , Hjn) is non-
singular, then the vector λ̃ can be uniquely determined.
Thus the equality Hλ̃ = 0 holds by construction.
If the current vector qk is sufficiently close to the op-

timal one, then it is quite reasonable to expect that the
signs of the entries of ejn+1 , . . . , ejN coincide with the
signs of the corresponding entries of the optimal resid-
ual vector. Then it follows from Theorem 4 that λ̃ is the
solution of (6). Thus, for sufficiently ‘late’ iterations,
the second estimate for the nonoptimality level allows
us to find the exact value I0 = I0. Note that the second
estimate is applicable to any iterative algorithm as well
since it exploits the structures of the primal and dual
problems (2) and (6) only.

5 Examples
The approach described above was tested at various

estimation problems. For example, we investigated
a model problem of the Doppler data processing in
the satellite navigation system (GPS) for determin-
ing the object velocity. A large array of observations
(N = 9886) was considered in a certain time inter-
val. The unknown parameter was three-dimensional
(n = 3). Both LAD method and the classical least
squares method were applied. For the numerical imple-
mentation of the LAD method, the Weiszfeld algorithm
and the interior-point method (the latter is incorporated
in the software package MathLab) were applied. With
the number of measurements N ∼ 10000 the interior-
point method requires a significant storage capacity. In
this regard, the Weiszfeld method was found to be more
efficient. In addition, the construction of the nonopti-
mality level at each iteration (not only at ‘late’) was
useful.
Both levels ∆(1)

0 and ∆(2)
0 were calculated. The stop-

ping criterion was chosen as: min {∆(1)
0 ,∆(2)

0 } ≤
1 + 10−7. Figure 1 below shows the evolution of the
levels.
At the last iteration the nonoptimality levels took on

the values

∆(1)
0 = 1 + 2.84 10−3 (solid curve)

∆(2)
0 = 1 + 7.93 10−9 (dash curve).

Thus the guaranteed high accuracy was achieved: the
cost value turned out to be very close to the optimal
value. The second estimate at ‘last’ iterations was
much more accurate than the first one. The employ-
ment of the second estimate permitted to stop the cal-
culations earlier, thus to avoid deliberately unnecessary
iterations. However, in practice, the first version of the
estimate is useful as well: ∆(1)

0 also attains the desired
accuracy but in a larger number of steps (one and half
or twice larger). In this case, the nonoptimality esti-
mate requires considerably less computation.
When solving the high dimension problems the num-

ber of required iterations M can be large (for example,
in the previous example M = 153); in the problems
of lesser dimension the desired level of accuracy at-
tains faster. To illustrate the latter case we considered
the problem of the object velocity determination with
the help of phase GPS measurements at a given instant.
The observation number N = 9; n = 3 as in the previ-
ous example. In this case, the extremely high accuracy
was achieved in 24 iterations: ∆(1)

0 = 1 + 1.43 10−7

and ∆(2)
0 = 1 + 4.21 10−11. This example shows that

the first version for the estimate can be quite accurate
as well.
In both examples the testing was performed for the

data with anomalous errors and without outliers as
well. It was found out that without outliers the LAD
method and the classical least squares method yield the
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Figure 1. The evolution of the nonoptimality levels.

same accuracy: the divergence in the estimates of q did
not exceed 0.01 percent. However, with the presence
of anomalous errors, the least squares method strongly
distorts the correct result, it did not give us even an idea
about the quantities of the object coordinates. In con-
trast, the estimates for q obtained by the LAD method
vary less than by 0.05 percent.

6 Conclusion
In the paper, some improvements of the existing solv-

ing algorithms for the LAD method were proposed.
Two versions of the upper bound for the current iter-
ation nonoptimality level were obtained. The corre-
sponding derivation is based on the duality theory for
convex variational problems. The proposed approach
is quite universal and is applicable for various classes
of practical problems. The numerical features of the
approach were investigated at various data processing
problems. The results demonstrated that the proposed
nonoptimality levels realize the guaranteed control for
the calculation accuracy. Thus these levels yield a use-
ful tool for the analysis of the estimation problems with
anomalous measurement errors.
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