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Abstract

This paper considers the optimal control problem for
a control affine driftless system with quadratic cost, de-
fined by means of a left invariant distribution on a Lie
group satisfying the property that the Lie algebra gen-
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ensemble ofrn linear constraints on the velocities writ-
tenasd " a;(q)g; =0, j =1,....m. Ifitis
possible to find constraints on the position only, say
51(q) -+« = Bm(g) = 0, in such a way that,
Z?Zlai =0, j = 1,...,m, determines the

aqj QZ

[

erated by the distribution is 3-step nilpotent. The Pon- same ensemble of constraints for the system, then it is
tryagin Maximum Principle provides necessary con- said that the constraints anelonomig otherwise they
ditions for the extremal trajectories and in some low are callechon-holonomic

dimensions explicit integration for the adjoint system |, the control theory literature non-holonomic systems

is_ carried out. The explicit inte_gration of _these Cases gppear as models of mechanical systems with external
yields the elements for completing the optimal synthe- f5rces, the constraints come up in two flavors: the ones

sis. Indimension five these systems are related with theinat are obtained from the derivation of the equations

so called cross-chained form.
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Non-holonomic system, 3-step nilpotent Lie algebra,
Pontryagin Maximum Principle.

1 Introduction

In the nineteenth century the German physicist H.R.
Hertz (1857-1894) coined the term holonomic, (from
the Greek roothblosmeaningvholeandnomogamean-

ing law), for describing some mechanical systems sub-
ject to velocity constraints. Generally speaking a sys-
tem is said to be non-holonomic with respect to a given
constrained motion, if the system can evolve between
any two given configurations without violating the con-
straints, otherwise is said to be holonomic. A proto-
typical non-holonomic system is the one of a sphere
rolling over the plane without slipping and twisting.

There is a large amount of literature regarding holo-
nomic and non-holonomic constraints for mechanical

of motion from the Euler-Lagrange equations (or from
the Hamiltonian formalism), such constraints are not
imposed on the system and it is better to take them
as conservation laws rather that as genuine constraints;
and those constraints that are direct consequence of the
kinematics, such as the non slipping and twisting of the
rolling, see for instance [Bloch A., 2003].

An important class of non-holonomic control systems
is the one of driftless control-affine systems, such sys-
tems are defined either by a finite family of vector fields
or by a Pfaffian system, that is, by the kernel of a finite
family of differential 1-forms. A relevant example of
this class is the so-called Goursat chained form, which
provides a model for a robot towing a finite number
of trailers, all of them satisfying the non slipping and
twisting rolling conditions.

If @ denotes the configuration space of this mechan-
ical system, the dynamical equation can be written as
q = ule(q) + UQXQ(Q), q € Q, whereu; andug
are the control parameters of the velocity of the cen-
ter of mass of the leading robot, and the vector fields

systems, we refer the reader to the classical book in-X1 and.X» satisfy the following commuting relations:

classical mechanics [Whittaker E.T., 1988] and also
[Neimark J.I., 1972], both containing plenty of inter-
esting examples.

To be precise, assume that= (q1,...,¢,) denotes
the coordinates of the configuration space of the sys-
tem, and that the evolution of the system obeys to an

[Xl,Xi] = Xi+1, 1 = 2,. Lo, n, with n = dlmQ,

(of coursen depends on the number of trailers), and all
other commutators are zero, for details see [Tilbury D.
etal., 1995].

An important feature of this system is that the Lie
algebra generated by the set of vector fields =



{X1, X2} is nilpotent. The property of a system of vectorof the distributionA at g, andv(g) the non-

being nilpotent presents theoretical and computationalholonomy degreef the distribution aty. The distri-

advantages for tackling various problems in control: bution is said to be regular gtif the growth vector is

optimal synthesis, path planning, small time control- constant on a neighborhoodgfit is said to be regular

lability, stability etc. However it is a very strong con- in G if it is regular for all g with the same degree of

dition to impose, in part for this reason techniques of nonholonomy.

nilpotent approximations for control systems have been Assume thatA is a full rank, regular distribution

extensively developed. of vector fields inG, an absolutely continuous curve
In this paper we consider the optimal control prob- ¢ : [0,7,] — G is said to beadmissiblefor the dis-

lem of a driftless control-affine system with quadratic tribution A if satisfiesg(t) € A(g(t)), a.e., which is

cost, for which the Lie algebra generated by the vec- tantamount of saying that, there is a measurable and

tor fields defining the system is 3-step nilpotent, that is, bounded functiot — u = (u1, ..., u,) such thag(t)

Lie brackets of length greater that three vanish. is an admissible solution of the following control-affine
Apart from this introduction the paper contains five system:

sections, in section 2 we present a characterization of

non-holonomic control systems and the basic defini-

tions of nilpotent Lie algebras and nilpotent approxi- n

mations. In section 3 we formulate the optimal control g(t) = uiXi(g(t)), (1)
problem and apply the Pontryagin Maximum Principle i=1

that provides necessary conditions for the optimal con-

trols. In section 4 we specialize the general results to that we shall call it anon-holonomic control systeon

some low dimensional cases, in particular we discussG; the family of all admissible curves is denoted as

the so-called cross-chained form. At the end in sec- A, whereas the one of admissible control parameters is

tion 5 we derive some conclusions and perspectives ofdenoted ag{. It is known that the full rank condition

future work on the study of non-holonomic nilpotent guarantees the controllability of the system, see for in-

control systems. stance [Jurdjevic V., 1997]. A smooth varying inner

productg — (,-), on the vector spaced, can be

defined by means ofX;, X;), = d;;, in such a way

that the energy functional : A — R* for admissible

curves is written as follows:

2 Non-holonomic nilpotent systems

We present in this section a characterization of non-
holonomic control systems and the basic definitions of
nilpotent Lie algebras and nilpotent approximations.

T, T,
2.1 Non-holonomic control systems A(g,u):/ (9(t),9(t)) :/ uit- - Ful. (2)
Let G be a smooth manifold, and leN = 0 0

{X1,..., X, } with n < dim(G) be a distribution of _ i
smooth vector fields o, the Lie algebra generated N this paper we study the optimal control problem de-

by the distribution is denoted @A) and it consists fined by (1) and (2), for the particular case whgm)
of the Lie algebra spaned by iterations of all the Lie IS & 3-nilpotentand 2-solvable Lie algebra.
brackets of elements a@k. It is said that the distribu-

tion A is of full rank,! if for all ¢ € G it holds that 2.2 Nilpotent Lie algebras and control systems

G(A), =T,G. In order to set the notation for presenting our results,
Fork = 1,2,..., the modules of vector fielddJ we shall digress on some aspects of structure theory of
are defined inductively as followsA! := A and n—step nilpotent Lie algebras, for more details we refer

AR .= AF 1 [A, AF]. For eachy € G, the fullrank  the reader to [Jacobson N., 1962] and [Corwin L., and
condition implies the existence of an integgy) such Greenleaf F.P., 1990].

that A4 = T,G, together with a flag of modules of

vector fields naturally defined as 2.3 Nilpotent and solvable Lie algebras
Let g be a Lie algebra oveR, the lower central
seriesis defined follows g := g* 2 [g%,g] 2
AL cAZc. cA =T,G. [0%,9] -, whereg’ := [g' ! g]forj =2,3,... The

Lie algebra is said to beilpotentif there is an integer
n such thatg”t! = 0, if such an is minimal in the
sense thag™ # 0 then the Lie algebra is said to be
n—step nilpotent The Jacobi identity together with an
elementary induction argument clearly imply

Furthermoreifo;(9) = dim A}, i = 1,...,v,thenthe
vector (n1(g), n2(g),...,n.(g)) is called thegrowth

1This condition goes also in the literature under the names
of bracket generating distribution, Lie algebra rank ctodi or o o
Hérmander condition. [g",¢’] C g"™7 Uforall i andj. 3)



As a consequence, any productioglements ofy is
an element ofi*, independently of the order. Further-
more,g is n—step nilpotent if and only if all brackets of

; - . Xiy, Xiy) = Xigin, 0 2,

order greater that vanish. A typical element ¢ g~ is [Xir, Xis] 12 “,< 12_ _
the monomial [Xi1 [Xi27 ceey [X’ik—l ) ch] .- ]]a with [Xi12’Xi1i2] = Xi12,i1i2a 11 <ig < 2123
{Xi,, X4, ..., X4, } C g, the degree of an such ele- [(Xin, Xivire) = Xiginings 11 <2 <12,
ment is naturally defined as deg = k.

In a similar manner, thelerived seriesof g is de- and the remaining elements are agiip ;, = — X, 1,
fined inductively as followsg D g D g@... | R B

. (1) ) G—1) (-1 and[Xh?Xlzhz] = Xllz,lllz X12,111127 1 <12 <112
with gt = [g,g] and g = [gV" ", gV V] for  \ith i s ie = 1,... n.

j =2,3,.... The Lie algebra is said to mlvableif

there is an integem such thaig(™) = 0. For then, re-  Example 2.1. The basis for a 3-step nilpotent free
lation (3) impliesg® D g2*, for all k, therefore nilpo- ~ Lie algebra generated by seven symbals =
tent Lie algebras are also solvable. {X1, Xo, X12, X112, X012, X, X7}

There is a collecting process for organizing the com- The standard monomials of degrgeare denoted as
mutators of free Lie algebras generated by a finite num- Xij = [Xi, Xj],i < j. We have then the seven ele-
ber of elements, that was originally presented by Philip Ments oA, and the 21 elements of length two,

Hall in [Hall Ph., 1934] and has recently been utilized
in applications to path planning problem and construc-
tive controllability, see for instance [Laferriere G. and Ay = { X129, X13, X14, X15, X16, X17},

Slijestsrlaentr;w:l;;elegﬁize].al ebra generated by the symbols Azs = Xa3, Xau, Xas, Xag, Xar},
g g d y y Asy = { X34, X35, X36, X37},

{X1,..., X, } which are considered of being of degree

one. For two given monomiale; andm the relation Ays = { X5, Xa6, Xar},
dedm;, ms] = deqmy ) +dedms) readily follows. A Ase = {X56, X571},
linear combination of monomials of degreés said to Agr = { X7},

be homogeneous of degréeand any element qof is
written as linear combination of monomials.

Since there are only a finite number of monomials of a
given degree, then for eaeh a number of monomials,
saymnp,, ..., My, , denominatedgtandard monomials
which are linearly independent and have the property
that each homogeneous expression of degrisenrit-
ten as linear combination @t,,, , . .., m,_, such a col- Aq12 U Ao U Az1o UAg10 U As1o U Ag12 U Arqo

lection is defined recursively as follows: U223 U Agaz U Ayaz U Aoz U Agaz U Aras
UA334 U Ayzs U Aszg U Agzg U Argy
UA445 U Asgs U Agas U Agas

and if we denote ad;;, = {[X;, Xji | Xjr € Ajr]},
we further have the following 112 elements of length
three

Definition 2.1. The standard monomials of degree one

are Xi,...,X,. Assume that the standard monomi-
als of degreen — 1, are defined, and that they are UAss6 U Aese U Atse
< —ordered in such a way that < v provided UAge7 U Azg7

dequ) < dedqv). If degz) = i,degv) = j and
dedz,v] =i+ j, then[z,v] is a standard monomial if

2.4 Nilpotent approximations
and only if satisfies: P PP

A nilpotent approximation of a distribution of vector
fields is another family of vector fields with the same
generic properties that further has the property of gen-
erating a nilpotent Lie algebra. The definition of nilpo-
tent approximations is based on the notionoodler
of smooth functions and vector fielde for instance
[Vendittelli M. et al., 2004].

Let G be a smooth manifold, and le =

- {Xy,...,X,} € TG be aregular and full rank distri-
Theorem 2.1. (M. Hall, 1950) The standard monomi-  pytion of vector fields. A smooth functiof: G — R

als form a basis for the free Lie algebgegenerated by s said to be obrder > k at a pointg € G, if all its
Xiyooey Xp. Lie derivatives, (with respect to vecto?s§;s) of order
< k—1vanish ay, if is of order> k butis not of order
Applying this process to a 3-step nilpotent free Lie > k + 1 atg, then it is said to be of ordérat g.
algebra generated HyX;, X5, ...} one hasthatabasis A vector field X is said to be obrder > k at a point
is given by g € G if for every j and every functiorf of order; at

1. z andwv are standard monomials with < v.
2. Ifv=[y,z]theny < z andy < z.

An element of the free Lie algebgais said to be in
standard form if it is written as linear combination of
standard monomials.



g, the functionX (f) has ordee> k + j atg, again if X
is of order> k butis not of order> k41 atg, thenitis
said to be of ordek atg. From this definition of order
it is clear that theX;s are of order—1, the brackets
[X,, X;] are of order2, etc.

A family of vector fieldsA = {X;,..., X, } is said
to be anilpotent approximationf A atg if

1. The vector fieldsX; — )?Z— are of positive order at
9 ~

2. The Lie algebrg(A) is k-step nilpotent, withs >
v(g), that is Lie brackets of length greater that
vanish.

The explicit computation of nilpotent approximations

For the remaining of the pap&r shall be taken as
the simply connected Lie grouf™ x so,, x RP of
dimension) with group law (5), whose Lie algebgas
the 3-step nilpotent, 2-solvable Lie algebra generated
by a given distributiomA = {X;,...,X,,} C TG of
left invariant vector fields of.

As explained in section 2, the left invariant distribu-
tion A determines on the Lie grou@ an optimal con-
trol problem, namely: for certain given initial condi-
tions find, among the solutions of (1), the one that min-
imizes the functional (2).

3.1 The Hamiltonian formalism.
We approach the aforementioned optimal control

for a given distribution is rather technical and is based problem by means of the Hamiltonian formalism on the
on the existence of the so-called privileged coordi- cotangent bundIl&™*G and the necessary condition for
nates. There are in the literature various algorithmic optimality given by the Pontryagin Maximum Principle
processes for finding nilpotent approximations, see for of optimal control theory, see for instance [Agrachev
instance [Vendittelli M. et al., 2004], however, those A.A.and Sachkov Y.L., 2004] and [Jurdjevic V., 1997].
processes are far from the purposes of this paper. FromWe summarize in this paragraph the basic notation for
now on we shall consider regular full rank distributions the symplectic structure of the cotangent bundle and the
that generate 3-step nilpotent Lie algebras, or distribu- Hamiltonian formalism.

tions that are 3-step nilpotent approximations of non- The differential of the left translatiog — L, on

nilpotent ones

3 The optimal control problem
Following the technique of completing the Philip Hall

G, yields the trivialization of the cotangent bundle
T*G ~ G x g*, in such a way that Hamiltonian func-
tions corresponding to left invariant vector fieldsGn
are linear functions og*. Each left invariant vector
field X on G defines a Hamiltonian functiof{ x on

basis for finitely generated Lie algebras, it has been 7« asHx (g,p) = p(X(e)).
shown in [Monroy-Pérez F. and Anzaldo-Meneses, A., The double bundld’(T*G) is identified with (G x

2011] that a 3-step nilpotent, 2-solvable Lie algepra
generated by a sek of n symbols has dimension at
most

(n—1n (n—1)nn+1) .

= 4
n 5 3 (4)
Al —_—
A2 A3

The associated Lie group and corresponding group law

can be obtained by standadH techniques. It has also

been shown in the aforementioned reference that good
models for this situation are the Lie the subgroups of

R" x s0,, x RP wherep = (n — 1)n(n +1)/3; in this
case the group law can be written as follows:

goOh=(a+pBa+b+anpi+b+T), (5)

where

ahf= %(Oé@ﬁT—ﬁ@aT)a and
1 1
['=-5ela,ab,8) - 5C(anfaf),

for certain smooth functions and(.

g) x (g* x g*), and with this realization, any tangent
vector ((g, X), (p,Y™*)) € T(T*QG), is simply repre-
sented by means of the paiK, Y*) € g x g*.

The canonical symplectic form di*G ~ G x g*,
allows to write, for each Hamiltonian functiofif
on T*G, the corresponding Hamiltonian vector field

—

H(g,p) = (X(g,p),Y*(g,p)) as follows

OH
X(gap) = a_p(gap)v

Y*(g,p) = —dL? (%—fm,p)) ~ (ad’ X (p),

or equivalently, integral curves— (g(t),p(t)) of the

Hamiltonian vector fieldd, satisfy the Hamilton equa-
tions,

dg OH
i dL, (8_p) , and

dp _ . (9H LoH
@~ <a—g>‘<<ad> ap)'

For details on the representation of tangent and cotan-
gent bundles of Lie groups, and the integral curves of
the Hamiltonian lifting of left invariant vector fields,



we refer the reader to V. Jurdjevic’s book [Jurdjevic Theorem 3.2.If (g,u) is a A—optimal then it is the
V., 1997]. projection of an extremal curvéh,w,Yq,...,T,)
along whichu = (H,, ..., H,) and

3.2 The Pontryagin Maximum Principle.
Following the notation explained in example 2XL;;

denotes the Lie brackek;, X ;]| whereasX;;;, denotes h=wh, (6)
(X, [X;, Xk]]. The Hamiltonian functions associated n
to the left invariant vector fieldX’;, X,; and.X;;; shall w = Z H;Y; @)
be denoted ag$/;, H;; and H;j;, respectively. These i=1
Hamiltonians span the dual Lie algehyé, endowed Y, =0, i=1...,n. (8)

with the Poisson brackets that clearly satisfy the fol-

lowing commuting relations, o o
Proof. The maximality condition implies that along

extremalswe havé = (Hq, ..., H,), forthen the sys-

tem Hamiltonian becomes quadratic
{Hi,Hj} = Hij and{Hi,ij} = Hijk7

evidently the Lie algebrg* is also 3-step nilpotent and H— E(HQ o HY) 9)
2-solvable. P n

Each admissible contral = (us,...,u,) € U, de-
termines a control dependent Hamiltonian function A straightforward differentiation (Poisson bracketing

with 7), yields

A Ao 2 2

Hu(’:_?[U1+"'+U7J+U1H1+"'+Uan- .
H; ={H;,H} = Z H;Hj, (10)
i

Integral curves — £(t) = (g(t),p(t)) of the corre-
sponding Hamiltonian vector ﬁelﬁ?ﬁU are called ex-
tremal curves, the ones foy # 0, are called normal,
whereas the ones foyy = 0 are called abnormal. The
necessary conditions fok—optimal trajectories, i.e.,
solutions of (1) that minimize (2), read as follows:

similarly

Hyj = {H;j,H} ==>  HpHyx, (1)
Theorem 3.1. (Pontryagin Maximum Principle) If a k=1

trajectoryt — (g,u) is A—optimal then it is the pro-

jection of an extremal curve— & = (g, p), satisfying: and finally

i HA0(€) > H(€), forall v e U ,
i H2(€) is not identically zero. Hiji, = {H;jk, H} =0, (12)

Remark 3.1. Abnormal extremals, are trajectories in- )
dependent of the cost functional, they play a very im- as required.
portant role in the geometric analysis of the so-called
optimal synthesis, these extremals deserve a careful
treatment and shall not be discussed here. For the
remaining of the paper we shall consider that all
A—optimal trajectories are projections of normal ex-
tremals only.

Remark 3.2. Equation (12) implies that all the length
three Poisson brackets are constant along extremals,
that is, we have already integrals of motion.

The coordinategy = («,a,a) in G, can be chosen
in such a way that the left invariant vector fields are

A direct application of the Pontryagin Maximum Prin- vyntten asX; = da; +---. In such a case, we have
ciple yields the necessary condition for optimality. Ob- % = %i = i, and therefore
serve that the dual variable can be expressed in terms of
the dual basis g, w, H) € R" x s0,, xRP, whereh =
(Hl,...,Hn)T, w = (Hij)i<j andH = (Tl,...,Tn) n
with T; the skew-symmetric matrix dual to the matrix dt (Hij + Z Ok Hkij) =0.
Ar = (Xij k)i; Which result from the length three k=1
brackets organized according to the Philip Hall pro-
cess, for details see [Monroy-Pérez F. and Anzaldo- We introduce the skew-symmetric constant matrix
Meneses, A., 2011]. with elements



Cij = Hij + Z (a3 H;”*j.

k=1
therefore, from (10)
n n
di_zcijdj = — Z Oékaij dj,
Jj=1 j,k=1

that is,

oy + Z OékH]ﬂ'jO.éj =0 (13)

j,k=1

Since theH,,;; are constant, these equations are given
in terms of thea,’s only. And together with the non-
holonomic constraints (1), after plugging the optimal
controls given by theorem (3.2), determine completely
the optimal curves.

4  Some low dimensional cases

We discuss here two examples for illustrating the gen-
eral results of the above sections.

4.1 The Cartan Lie algebran

This case corresponds to 2 and g
and is provided by the rank 2 distributioi
{X1,X5} for which the only non-zero Lie brack-
ets are X5, X112, X212. The Lie algebran
spad X1, Xa2, X192, X112, X212}, is known as the Car-
tan Lie algebra.

If H; denotes the left invariant Hamiltonian associated
with the vector fieldX;, then we have the non-trivial
Poisson bracket® 15, Hi12, Ho12.

The corresponding system Hamiltonian writes as fol-
lows

51

A
H= 70(11% +ud) 4wy Hy + ug Ho (14)

For the normal case\, = 1), the maximality condi-
tion of the Maximum Principle, readily yield;, = H;
andu, = Hs, therefore the system Hamiltonian is
quadraticH = H? + HZ, and the adjoint system can
be directly written as follows

. 1
H, = 5{Hl,H} = HyH2 (15)
. 1
Hy = 5{HQ,H} = —Hi1H2 (16)
. 1
Hyp = §{H12,H} = —HiHu — HyHy2 (17)

Hiio = Hag = 0. (18)

Hi10 and Ho14 are central elements, and multiplying
third equation byH 5, we get

| =

1 d
3 (HYy) = E(HQHHQ — HiHi9),

U

t

therefore we obtain the constant of integration

1
Co 1= 51'{122 — HyHy15 + HiHopo. (19)

Further derivation of (17) yields

; 1
Hyy = coHyo — §Hf’27

in consequence

.. 1d . . 1 .

HyoHyip = [EE(HH)Z} = coHyoHio — §HE2H12
CoMtd, L] 1[td,.
=c [55(1112) ] —3 [ZE(HH) }

we obtain then another constant of integration

1
c3 = ZHil2 — coHYy + (HiHy12 + HaH212)?

Lemma 4.1. The elements of séfH, H112, Ha12,¢2}
are independent first integrals in involution, whereas
K := H%,, + H3,, andcs are neither independent nor
in involution.

Proof. A straightforward calculation shows that
{ca, H1} = {c2,H2} = 0, therefore{cs, H} = 0.
On the contrary we havé¢s, H, } = —2H,H,,K and
{es, Hy} = 2H1H12K. Consequently{cs, H} = 0,
butcs = 2HK — ¢? as can be easily shown. O
Thus the trajectories in cotangent space are given by
the intersection of the cylinddi? + H3 = 1, with the
parabO”C Cylinde%ng — HoHy12 + HiH315 = co.
A simple way to represent this curves is to note that
they can be visualized as curves on the spliéfe+
Ho12)? + (Hy — Ho12)* + Hiy = H +2co + Hijg +
Hiy.



4.2 Cross-chained form Aknowledgements

An alternative normal form to the Goursat [Tilbury D.  The final version of this paper was prepared during
et al., 1995] is the so-called cross-chained introducedthe sabbatical leave of F. Monroy-Pérez at the Labo-
by [Ishikawa M. and Kuroiwa T., 2009]. It turns out ratoire des Sciences de I'information et des Systémes
that such normal form yields the same 3-step nilpotent (LSIS, UMR 7296) in the Université du Sud Toulon-
Lie algebra as the Cartan discussed above. The norvar, France. The author was financially supported by
mal form is defined irR® by the kernel of the Pfaffian  the CONACYT under the program of sabbatical leaves

system abroad for the reinforcement of the research groups,
project number 204051.
dl‘5 —l‘3d$2, dl‘4—$3d$1, d$3 +$2dl‘1 —1‘1d$2 (20)
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