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Abstract
This paper considers the optimal control problem for

a control affine driftless system with quadratic cost, de-
fined by means of a left invariant distribution on a Lie
group satisfying the property that the Lie algebra gen-
erated by the distribution is 3-step nilpotent. The Pon-
tryagin Maximum Principle provides necessary con-
ditions for the extremal trajectories and in some low
dimensions explicit integration for the adjoint system
is carried out. The explicit integration of these cases
yields the elements for completing the optimal synthe-
sis. In dimension five these systems are related with the
so called cross-chained form.
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1 Introduction
In the nineteenth century the German physicist H.R.

Hertz (1857-1894) coined the term holonomic, (from
the Greek rootshólosmeaningwholeandnomosmean-
ing law), for describing some mechanical systems sub-
ject to velocity constraints. Generally speaking a sys-
tem is said to be non-holonomic with respect to a given
constrained motion, if the system can evolve between
any two given configurations without violating the con-
straints, otherwise is said to be holonomic. A proto-
typical non-holonomic system is the one of a sphere
rolling over the plane without slipping and twisting.
There is a large amount of literature regarding holo-

nomic and non-holonomic constraints for mechanical
systems, we refer the reader to the classical book in
classical mechanics [Whittaker E.T., 1988] and also
[Neimark J.I., 1972], both containing plenty of inter-
esting examples.
To be precise, assume thatq = (q1, . . . , qn) denotes

the coordinates of the configuration space of the sys-
tem, and that the evolution of the system obeys to an

ensemble ofm linear constraints on the velocities writ-
ten as

∑n
i=1 αij(q)q̇i = 0, j = 1, . . . , m. If it is

possible to find constraints on the position only, say
β1(q) = · · · = βm(q) = 0, in such a way that,∑n

i=1
∂βj

∂qi
q̇i = 0, j = 1, . . . , m, determines the

same ensemble of constraints for the system, then it is
said that the constraints areholonomic, otherwise they
are callednon-holonomic.

In the control theory literature non-holonomicsystems
appear as models of mechanical systems with external
forces, the constraints come up in two flavors: the ones
that are obtained from the derivation of the equations
of motion from the Euler-Lagrange equations (or from
the Hamiltonian formalism), such constraints are not
imposed on the system and it is better to take them
as conservation laws rather that as genuine constraints;
and those constraints that are direct consequence of the
kinematics, such as the non slipping and twisting of the
rolling, see for instance [Bloch A., 2003].

An important class of non-holonomic control systems
is the one of driftless control-affine systems, such sys-
tems are defined either by a finite family of vector fields
or by a Pfaffian system, that is, by the kernel of a finite
family of differential 1-forms. A relevant example of
this class is the so-called Goursat chained form, which
provides a model for a robot towing a finite number
of trailers, all of them satisfying the non slipping and
twisting rolling conditions.

If Q denotes the configuration space of this mechan-
ical system, the dynamical equation can be written as
q̇ = u1X1(q) + u2X2(q), q ∈ Q, whereu1 andu2

are the control parameters of the velocity of the cen-
ter of mass of the leading robot, and the vector fields
X1 andX2 satisfy the following commuting relations:
[X1, Xi] =: Xi+1, i = 2, . . . , n, with n = dim Q,
(of coursen depends on the number of trailers), and all
other commutators are zero, for details see [Tilbury D.
et al., 1995].

An important feature of this system is that the Lie
algebra generated by the set of vector fields∆ =



{X1, X2} is nilpotent. The property of a system of
being nilpotent presents theoretical and computational
advantages for tackling various problems in control:
optimal synthesis, path planning, small time control-
lability, stability etc. However it is a very strong con-
dition to impose, in part for this reason techniques of
nilpotent approximations for control systems have been
extensively developed.
In this paper we consider the optimal control prob-

lem of a driftless control-affine system with quadratic
cost, for which the Lie algebra generated by the vec-
tor fields defining the system is 3-step nilpotent, that is,
Lie brackets of length greater that three vanish.
Apart from this introduction the paper contains five

sections, in section 2 we present a characterization of
non-holonomic control systems and the basic defini-
tions of nilpotent Lie algebras and nilpotent approxi-
mations. In section 3 we formulate the optimal control
problem and apply the Pontryagin Maximum Principle
that provides necessary conditions for the optimal con-
trols. In section 4 we specialize the general results to
some low dimensional cases, in particular we discuss
the so-called cross-chained form. At the end in sec-
tion 5 we derive some conclusions and perspectives of
future work on the study of non-holonomic nilpotent
control systems.

2 Non-holonomic nilpotent systems
We present in this section a characterization of non-

holonomic control systems and the basic definitions of
nilpotent Lie algebras and nilpotent approximations.

2.1 Non-holonomic control systems
Let G be a smooth manifold, and let∆ =
{X1, . . . , Xn} with n < dim(G) be a distribution of
smooth vector fields onG, the Lie algebra generated
by the distribution is denoted asG(∆) and it consists
of the Lie algebra spaned by iterations of all the Lie
brackets of elements of∆. It is said that the distribu-
tion ∆ is of full rank,1 if for all g ∈ G it holds that
G(∆)g = TgG.
For k = 1, 2, . . ., the modules of vector fields∆j

are defined inductively as follows:∆1 := ∆ and
∆k+1 := ∆k + [∆, ∆k]. For eachg ∈ G, the full rank
condition implies the existence of an integerν(g) such

that∆ν(g)
g = TgG, together with a flag of modules of

vector fields naturally defined as

∆1
g ⊂ ∆2

g ⊂ · · · ⊂ ∆ν(g)
g = TgG.

Furthermore ifni(g) = dim∆i
g, i = 1, . . . , ν, then the

vector (n1(g), n2(g), . . . , nν(g)) is called thegrowth

1This condition goes also in the literature under the names
of bracket generating distribution, Lie algebra rank condition or
Hörmander condition.

vector of the distribution∆ at g, andν(g) the non-
holonomy degreeof the distribution atg. The distri-
bution is said to be regular atg if the growth vector is
constant on a neighborhood ofg, it is said to be regular
in G if it is regular for all g with the same degree of
nonholonomy.
Assume that∆ is a full rank, regular distribution

of vector fields inG, an absolutely continuous curve
g : [0, Tg] → G is said to beadmissiblefor the dis-
tribution ∆ if satisfiesġ(t) ∈ ∆(g(t)), a.e., which is
tantamount of saying that, there is a measurable and
bounded functiont 7→ u = (u1, . . . , un) such thatg(t)
is an admissible solution of the following control-affine
system:

ġ(t) =

n∑

i=1

uiXi(g(t)), (1)

that we shall call it anon-holonomic control systemon
G; the family of all admissible curves is denoted as
A, whereas the one of admissible control parameters is
denoted asU . It is known that the full rank condition
guarantees the controllability of the system, see for in-
stance [Jurdjevic V., 1997]. A smooth varying inner
productg 7→ 〈·, ·〉g on the vector spaces∆g can be
defined by means of〈Xi, Xj〉g = δij , in such a way
that the energy functionalΛ : A → R+ for admissible
curves is written as follows:

Λ(g,u) =

∫ Tg

0

〈ġ(t), ġ(t)〉 =

∫ Tg

0

u2
1+· · ·+u2

n. (2)

In this paper we study the optimal control problem de-
fined by (1) and (2), for the particular case whenG(∆)
is a 3-nilpotent and 2-solvable Lie algebra.

2.2 Nilpotent Lie algebras and control systems
In order to set the notation for presenting our results,

we shall digress on some aspects of structure theory of
n−step nilpotent Lie algebras, for more details we refer
the reader to [Jacobson N., 1962] and [Corwin L., and
Greenleaf F.P., 1990].

2.3 Nilpotent and solvable Lie algebras
Let g be a Lie algebra overR, the lower central

series is defined follows g := g
1 ⊇ [g2, g] ⊇

[g3, g] · · · , whereg
j := [gj−1, g] for j = 2, 3, . . . The

Lie algebra is said to benilpotentif there is an integer
n such thatgn+1 = 0, if such an is minimal in the
sense thatgn 6= 0 then the Lie algebra is said to be
n−step nilpotent. The Jacobi identity together with an
elementary induction argument clearly imply

[gi, gj ] ⊆ g
i+j ∪ for all i andj. (3)



As a consequence, any product ofk elements ofg is
an element ofgk, independently of the order. Further-
more,g is n−step nilpotent if and only if all brackets of
order greater thatn vanish. A typical elementx ∈ g

k is
the monomial [Xi1 [Xi2 , . . . , [Xik−1

, Xik
] . . .]], with

{Xi1 , Xi2 , . . . , Xik
} ⊂ g, the degree of an such ele-

ment is naturally defined as deg(x) = k.
In a similar manner, thederived seriesof g is de-

fined inductively as follows g ⊇ g
(1) ⊇ g

(2) · · · ,
with g

(1) = [g, g] and g
(j) = [g(j−1), g(j−1)] for

j = 2, 3, . . .. The Lie algebra is said to besolvableif
there is an integerm such thatg(m) = 0. For then, re-
lation (3) impliesg(k) ⊇ g

2k

, for all k, therefore nilpo-
tent Lie algebras are also solvable.
There is a collecting process for organizing the com-

mutators of free Lie algebras generated by a finite num-
ber of elements, that was originally presented by Philip
Hall in [Hall Ph., 1934] and has recently been utilized
in applications to path planning problem and construc-
tive controllability, see for instance [Laferriere G. and
Sussmann H., 1992].
Let g be the free Lie algebra generated by the symbols
{X1, . . . , Xp} which are considered of being of degree
one. For two given monomialsm1 andm2 the relation
deg[m1, m2] = deg(m1)+deg(m2) readily follows. A
linear combination of monomials of degreek is said to
be homogeneous of degreek, and any element ofg is
written as linear combination of monomials.
Since there are only a finite number of monomials of a

given degree, then for eachn, a number of monomials,
saymn1

, . . . , mns
, denominatedstandard monomials,

which are linearly independent and have the property
that each homogeneous expression of degreen is writ-
ten as linear combination ofmn1

, . . . , mns
, such a col-

lection is defined recursively as follows:

Definition 2.1. The standard monomials of degree one
are X1, . . . , Xp. Assume that the standard monomi-
als of degreen − 1, are defined, and that they are
≺ −ordered in such a way thatu ≺ v provided
deg(u) < deg(v). If deg(x) = i, deg(v) = j and
deg[x, v] = i + j, then[x, v] is a standard monomial if
and only if satisfies:

1. x andv are standard monomials withx ≺ v.
2. If v = [y, z] theny � x andy ≺ z.

An element of the free Lie algebrag is said to be in
standard form if it is written as linear combination of
standard monomials.

Theorem 2.1. (M. Hall, 1950)The standard monomi-
als form a basis for the free Lie algebrag generated by
X1, . . . , Xp.

Applying this process to a 3-step nilpotent free Lie
algebra generated by{X1, X2, . . .} one has that a basis
is given by

[Xi1 , Xi2 ] = Xi1i2 , i1 < i2,

[Xi12 , Xi1i2 ] = Xi12,i1i2 , i1 < i2 ≤ i12;

[Xi2 , Xi1i12 ] = Xi2,i1i12 , i1 ≤ i2 < i12,

and the remaining elements are againXi2,i1 = −Xi1,i2

and[Xi1 , Xi2i12 ] = Xi12,i1i2−Xi2,i1i12 , i1 < i2 < i12
with i1, i2, i12 = 1, . . . , n.

Example 2.1. The basis for a 3-step nilpotent free
Lie algebra generated by seven symbols∆ =
{X1, X2, X12, X112, X212, X6, X7}.
The standard monomials of degree2, are denoted as

Xij = [Xi, Xj], i < j. We have then the seven ele-
ments of∆, and the 21 elements of length two,

∆12 = {X12, X13, X14, X15, X16, X17},

∆23 = {X23, X24, X25, X26, X27},

∆34 = {X34, X35, X36, X37},

∆45 = {X45, X46, X47},

∆56 = {X56, X57},

∆67 = {X67},

and if we denote as∆ijk = {[Xi, Xjk | Xjk ∈ ∆jk]},
we further have the following 112 elements of length
three

∆112 ∪ ∆212 ∪ ∆312 ∪ ∆412 ∪ ∆512 ∪ ∆612 ∪ ∆712

∪∆223 ∪ ∆323 ∪ ∆423 ∪ ∆523 ∪ ∆623 ∪ ∆723

∪∆334 ∪ ∆434 ∪ ∆534 ∪ ∆634 ∪ ∆734

∪∆445 ∪ ∆545 ∪ ∆645 ∪ ∆645

∪∆556 ∪ ∆656 ∪ ∆756

∪∆667 ∪ ∆767

2.4 Nilpotent approximations
A nilpotent approximation of a distribution of vector

fields is another family of vector fields with the same
generic properties that further has the property of gen-
erating a nilpotent Lie algebra. The definition of nilpo-
tent approximations is based on the notion oforder
of smooth functions and vector fields, see for instance
[Vendittelli M. et al., 2004].
Let G be a smooth manifold, and let∆ =
{X1, . . . , Xn} ( TG be a regular and full rank distri-
bution of vector fields. A smooth functionf : G → R

is said to be oforder ≥ k at a pointg ∈ G, if all its
Lie derivatives, (with respect to vectorsXis) of order
≤ k−1 vanish atg, if is of order≥ k but is not of order
≥ k + 1 atg, then it is said to be of orderk atg.
A vector fieldX is said to be oforder≥ k at a point

g ∈ G if for every j and every functionf of orderj at



g, the functionX(f) has order≥ k + j atg, again ifX
is of order≥ k but is not of order≥ k+1 atg, then it is
said to be of orderk atg. From this definition of order
it is clear that theXis are of order−1, the brackets
[Xi, Xj] are of order−2, etc.
A family of vector fields∆̃ = {X̃1, . . . , X̃n} is said

to be anilpotent approximationof ∆ atg if

1. The vector fieldsXi − X̃i are of positive order at
g

2. The Lie algebraG(∆̃) isκ-step nilpotent, withκ >
ν(g), that is Lie brackets of length greater thatκ
vanish.

The explicit computation of nilpotent approximations
for a given distribution is rather technical and is based
on the existence of the so-called privileged coordi-
nates. There are in the literature various algorithmic
processes for finding nilpotent approximations, see for
instance [Vendittelli M. et al., 2004], however, those
processes are far from the purposes of this paper. From
now on we shall consider regular full rank distributions
that generate 3-step nilpotent Lie algebras, or distribu-
tions that are 3-step nilpotent approximations of non-
nilpotent ones

3 The optimal control problem
Following the technique of completing the Philip Hall

basis for finitely generated Lie algebras, it has been
shown in [Monroy-Pérez F. and Anzaldo-Meneses, A.,
2011] that a 3-step nilpotent, 2-solvable Lie algebrag

generated by a set∆ of n symbols has dimension at
most

η := n︸︷︷︸
∆1

+
(n − 1)n

2︸ ︷︷ ︸
∆2

+
(n − 1)n(n + 1)

3︸ ︷︷ ︸
∆3

. (4)

The associated Lie group and corresponding group law
can be obtained by standardBCH techniques. It has also
been shown in the aforementioned reference that good
models for this situation are the Lie the subgroups of
Rn × son ×RD whereD = (n− 1)n(n + 1)/3; in this
case the group law can be written as follows:

g ⊙ h = (α + β, a + b + α ∧ β, ă + b̆ + Γ), (5)

where

α ∧ β =
1

2
(α ⊗ βT − β ⊗ αT ), and

Γ = −
1

2
ϕ(a, α, b, β) −

1

12
ζ(α ∧ β, α, β),

for certain smooth functionsϕ andζ.

For the remaining of the paperG shall be taken as
the simply connected Lie groupRn × son × RD of
dimensiónη with group law (5), whose Lie algebrag is
the 3-step nilpotent, 2-solvable Lie algebra generated
by a given distribution∆ = {X1, . . . , Xn} ( TG of
left invariant vector fields onG.
As explained in section 2, the left invariant distribu-

tion ∆ determines on the Lie groupG an optimal con-
trol problem, namely: for certain given initial condi-
tions find, among the solutions of (1), the one that min-
imizes the functional (2).

3.1 The Hamiltonian formalism.
We approach the aforementioned optimal control

problem by means of the Hamiltonian formalism on the
cotangent bundleT ∗G and the necessary condition for
optimality given by the Pontryagin Maximum Principle
of optimal control theory, see for instance [Agrachev
A.A. and Sachkov Y.L., 2004] and [Jurdjevic V., 1997].
We summarize in this paragraph the basic notation for
the symplectic structure of the cotangent bundle and the
Hamiltonian formalism.
The differential of the left translationg 7→ Lg on

G, yields the trivialization of the cotangent bundle
T ∗G ≃ G × g

∗, in such a way that Hamiltonian func-
tions corresponding to left invariant vector fields onG
are linear functions ong∗. Each left invariant vector
field X on G defines a Hamiltonian functionHX on
T ∗G asHX(g, p) = p(X(e)).
The double bundleT (T ∗G) is identified with(G ×

g) × (g∗ × g
∗), and with this realization, any tangent

vector ((g, X), (p, Y ∗)) ∈ T (T ∗G), is simply repre-
sented by means of the pair(X, Y ∗) ∈ g × g

∗.
The canonical symplectic form onT ∗G ≃ G × g

∗,
allows to write, for each Hamiltonian functionH
on T ∗G, the corresponding Hamiltonian vector field
~H(g, p) = (X(g, p), Y ∗(g, p)) as follows

X(g, p) =
∂H

∂p
(g, p),

Y ∗(g, p) = −dL∗
g

(
∂H

∂g
(g, p)

)
− (ad)∗X(p),

or equivalently, integral curvest 7→ (g(t), p(t)) of the
Hamiltonian vector field~H, satisfy the Hamilton equa-
tions,

dg

dt
= dLg

(
∂H

∂p

)
, and

dp

dt
= −dL∗

g

(
∂H

∂g

)
−

(
(ad)∗

∂H

∂p

)
.

For details on the representation of tangent and cotan-
gent bundles of Lie groups, and the integral curves of
the Hamiltonian lifting of left invariant vector fields,



we refer the reader to V. Jurdjevic’s book [Jurdjevic
V., 1997].

3.2 The Pontryagin Maximum Principle.
Following the notation explained in example 2.1,Xij

denotes the Lie bracket[Xi, Xj ] whereasXijk denotes
[Xi, [Xj, Xk]]. The Hamiltonian functions associated
to the left invariant vector fieldsXi, Xij andXijk shall
be denoted asHi, Hij andHijk, respectively. These
Hamiltonians span the dual Lie algebrag

∗, endowed
with the Poisson brackets that clearly satisfy the fol-
lowing commuting relations,

{Hi, Hj} = Hij and{Hi, Hjk} = Hijk,

evidently the Lie algebrag∗ is also 3-step nilpotent and
2-solvable.
Each admissible controlu = (u1, . . . , un) ∈ U , de-

termines a control dependent Hamiltonian function

Hλ0

u
= −

λ0

2

[
u2

1 + · · · + u2
n

]
+ u1H1 + · · ·+ unHn.

Integral curvest 7→ ξ(t) = (g(t), p(t)) of the corre-
sponding Hamiltonian vector field~Hλ0

u
are called ex-

tremal curves, the ones forλ0 6= 0, are called normal,
whereas the ones forλ0 = 0 are called abnormal. The
necessary conditions forΛ−optimal trajectories, i.e.,
solutions of (1) that minimize (2), read as follows:

Theorem 3.1. (Pontryagin Maximum Principle) If a
trajectory t 7→ (g, û) is Λ−optimal then it is the pro-
jection of an extremal curvet 7→ ξ = (g, p), satisfying:

i Hλ0

bu
(ξ) ≥ Hλ0

v
(ξ), for all v ∈ U

ii H0
bu
(ξ) is not identically zero.

Remark 3.1. Abnormal extremals, are trajectories in-
dependent of the cost functional, they play a very im-
portant role in the geometric analysis of the so-called
optimal synthesis, these extremals deserve a careful
treatment and shall not be discussed here. For the
remaining of the paper we shall consider that all
Λ−optimal trajectories are projections of normal ex-
tremals only.

A direct application of the Pontryagin Maximum Prin-
ciple yields the necessary condition for optimality. Ob-
serve that the dual variable can be expressed in terms of
the dual basis as(h, ω, H̆) ∈ Rn×son×RD, whereh =
(H1, . . . , Hn)T, ω = (Hij)i<j andH̆ = (Υ1, . . . , Υn)
with Υi the skew-symmetric matrix dual to the matrix
Ak = (Xij k)ij which result from the length three
brackets organized according to the Philip Hall pro-
cess, for details see [Monroy-Pérez F. and Anzaldo-
Meneses, A., 2011].

Theorem 3.2. If (g, û) is a Λ−optimal then it is the
projection of an extremal curve(h, ω, Υ1, . . . , Υn)
along whichû = (H1, . . . , Hn) and

ḣ = ω h, (6)

ω̇ =
n∑

i=1

HiΥi (7)

Υ̇i = 0, i = 1 . . . , n. (8)

Proof. The maximality condition implies that along
extremals we havêu = (H1, . . . , Hn), for then the sys-
tem Hamiltonian becomes quadratic

H =
1

2
(H2

1 + · · · + H2
n). (9)

A straightforward differentiation (Poisson bracketing
with H), yields

Ḣi = {Hi,H} =
∑

j 6=i

HiHij , (10)

similarly

Ḣij = {Hij ,H} = −

n∑

k=1

HkHijk, (11)

and finally

Ḣijk = {Hijk,H} = 0, (12)

as required.

Remark 3.2. Equation (12) implies that all the length
three Poisson brackets are constant along extremals,
that is, we have alreadyD integrals of motion.

The coordinatesg = (α, a, ă) in G, can be chosen
in such a way that the left invariant vector fields are
written asXi = ∂αi + · · · . In such a case, we have
α̇i = ui = Hi, and therefore

d

dt

(
Hij +

n∑

k=1

αk Hkij

)
= 0.

We introduce the skew-symmetric constant matrixc
with elements



cij = Hij +

n∑

k=1

αk Hkij .

therefore, from (10)

α̈i −
n∑

j=1

cijα̇j = −
n∑

j,k=1

αk Hkij α̇j ,

that is,

α̈i +
n∑

j,k=1

αkHkij α̇j = 0 (13)

Since theHkij are constant, these equations are given
in terms of theαi′s only. And together with the non-
holonomic constraints (1), after plugging the optimal
controls given by theorem (3.2), determine completely
the optimal curves.

4 Some low dimensional cases
We discuss here two examples for illustrating the gen-

eral results of the above sections.

4.1 The Cartan Lie algebran

This case corresponds ton = 2 and η = 5,
and is provided by the rank 2 distribution∆ =
{X1, X2} for which the only non-zero Lie brack-
ets are X12, X112, X212. The Lie algebran =
span{X1, X2, X12, X112, X212}, is known as the Car-
tan Lie algebra.
If Hi denotes the left invariant Hamiltonian associated

with the vector fieldXi, then we have the non-trivial
Poisson bracketsH12, H112, H212.

The corresponding system Hamiltonian writes as fol-
lows

H =
λ0

2
(u2

1 + u2
2) + u1H1 + u2H2 (14)

For the normal case(λ0 = 1), the maximality condi-
tion of the Maximum Principle, readily yieldu1 = H1

and u2 = H2, therefore the system Hamiltonian is
quadraticH = H2

1 + H2
2 , and the adjoint system can

be directly written as follows

Ḣ1 =
1

2
{H1,H} = H2H12 (15)

Ḣ2 =
1

2
{H2,H} = −H1H12 (16)

Ḣ12 =
1

2
{H12,H} = −H1H112 − H2H212 (17)

Ḣ112 = Ḣ212 = 0. (18)

H112 andH212 are central elements, and multiplying
third equation byH12, we get

1

2

d

dt

(
H2

12

)
=

d

dt
(H2H112 − H1H212),

therefore we obtain the constant of integration

c2 :=
1

2
H2

12 − H2H112 + H1H212. (19)

Further derivation of (17) yields

Ḧ12 = c2H12 −
1

2
H3

12,

in consequence

Ḣ12Ḧ12 =

[
1

2

d

dt
(Ḣ12)

2

]
= c2H12Ḣ12 −

1

2
H3

12Ḣ12

= c2

[
1

2

d

dt
(H12)

2

]
−

1

2

[
1

4

d

dt
(H12)

4

]

we obtain then another constant of integration

c3 :=
1

4
H4

12 − c2H
2
12 + (H1H112 + H2H212)

2

Lemma 4.1. The elements of set{H, H112, H212, c2}
are independent first integrals in involution, whereas
K := H2

112 + H2
212 andc3 are neither independent nor

in involution.

Proof. A straightforward calculation shows that
{c2, H1} = {c2, H2} = 0, therefore{c2,H} = 0.
On the contrary we have,{c3, H1} = −2H2H12K and
{c3, H2} = 2H1H12K. Consequently{c3,H} = 0,
butc3 = 2HK− c2 as can be easily shown. �

Thus the trajectories in cotangent space are given by
the intersection of the cylinderH2

1 + H2
2 = 1, with the

parabolic cylinder12H12 − H2H112 + H1H212 = c2.
A simple way to represent this curves is to note that
they can be visualized as curves on the sphere(H1 +
H212)

2 + (H2 − H212)
2 + H2

12 = H + 2 c2 + H2
112 +

H2
212.



4.2 Cross-chained form
An alternative normal form to the Goursat [Tilbury D.

et al., 1995] is the so-called cross-chained introduced
by [Ishikawa M. and Kuroiwa T., 2009]. It turns out
that such normal form yields the same 3-step nilpotent
Lie algebra as the Cartan discussed above. The nor-
mal form is defined inR5 by the kernel of the Pfaffian
system

dx5−x3dx2, dx4−x3dx1, dx3+x2dx1−x1dx2 (20)

The non-holonomic control system consisting of a ball
rolling on a plane without twisting and slipping and
driven by the another plane can be modelled in the Lie
groupG = R2 × SO3: the first coordinate of a state
(p, M) ∈ G yields the center of the ball, whereas the
second provides the evolution of a moving frame at-
tached to its center, for details see [Jurdjevic, V., 1993].
It can also be shown that the non-holonomic control
system in this case can be reduced to the kernel of the
following Pfaffian system inR5

dx3 − x1dx2, dx4 − x2
1dx2, dx5 − x1x2dx2. (21)

After a lengthy calculation including a change of vari-
ables and exterior differentiation it can be shown that
system (21) can be taken into the crossed-chained nor-
mal form (20). Furthermore the crossed-chained nor-
mal encodes a driftless control system with two inputs
given by the following vector fields

X1 =
∂

∂x1
− x2

∂

∂x3
+ x3

∂

∂x4

X2 =
∂

∂x2
+ x1

∂

∂x3
+ x3

∂

∂x5
,

The Lie algebra generated by the distribution∆ =
{X1, X2} has the same Lie structure ofn, as can be
easily verified.

5 Conclusions
We have studied general properties for optimal tra-

jectories of a problem defined by a driftless non-
holonomic control system and a quadratic cost. We
have considered the case when the Lie algebra gener-
ated by the distribution of vector fields is 3-step and 2-
solvable. We have derived the geometric properties of
the trajectories using the Pontryagin Maximum Prin-
ciple and the associated Hamiltonian formalism. We
have discussed a five dimensional case that models and
interesting non-holonomic mechanical system.
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