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Abstract
Locomotion of a mechanical system consisting of a

main body and one or two links attached to it by cylin-
drical joints is considered. The system moves in a re-
sistive fluid and is controlled by periodic angular os-
cillations of the links relative to the main body. The
resistance force acting upon each body is a quadratic
function of its velocity. Under certain assumptions, a
nonlinear equation of motion is derived and simplified.
The optimal control of oscillations is found that corre-
sponds to the maximal average locomotion speed.
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1 Introduction
It is well-known that a multilink mechanical sys-

tem, whose links perform specific oscillations relative
to each other, can move progressively in a resistive
medium. This locomotion principle is used by fish,
snakes, insects, and some animals [Gray, J. (1968)],
[Lighthill, J. (1975)], [Blake, R.W. (1983)]. In ro-
botics, the same principle is applied to locomotion of
snake-like robots along a surface [Hirose, S.(1993)].
Dynamics and optimization of snake-like multilink

mechanisms that move along a plane in the pres-
ence of Coulomb’s dry friction forces acting between
the mechanism and the plane, have been studied in
[Chernousko, F.L.(2001)], [Chernousko, F.L.(2003)],
[Chernousko, F.L.(2005)].
Various aspects of fish-like locomotion in a fluid

are considered in many papers, and a number of
swimming robotic systems have been developed [Ter-
ada, Y., Yamamoto, I.(1999)], [Mason, R., Bur-
dick, J.(2000)], [Colgate, J.E., Lynch, K.M.(2004)],
[wikipedia. org/wiki/RoboTuna].
In this paper, we consider a progressive motion of a

multilink system in a fluid in the presence of resistance

Figure 1. System with two links.

forces proportional to the squared velocity of the mov-
ing body. The mechanical model is described and sim-
plified. The optimal control problem for the motion of
the links is formulated, and its exact solution is pre-
sented. Similar problem for the case of small angles of
deflection of links relative to the main body was con-
sidered in [Chernousko, F.L. (2010)]. Here, the angles
of deflection are finite.

2 Mechanical Model
Consider a mechanical system consisting of the main

body and two symmetric linksOA andO′A′ attached
to it by cylindrical joints (Fig. 1). The length of the
links is denoted bya, and their mass is negligible com-
pared to the massm of the main body. The main body
is symmetric with respect to the axisCx.
Let us introduce the Cartesian coordinate frameCxy

connected with the main body and denote byi and j
the unit vectors directed along the axesCx and Cy,
respectively.
The links perform symmetric periodic oscillations of

periodT about the jointsO andO′ so that the angleϕ
between the links and the axisCx satisfies the condi-
tion

ϕ(t + T ) = ϕ(t) (1)

for each time instantt. During the period[0, T ], the
angleϕ first increases from0 to ϕ0 and then decreases



from ϕ0 to 0.
Denote byv the velocity of the progressive motion of

the main body along the axisCx. We will consider
only forward motions, so thatv ≥ 0. The value of
the resistance force acting upon the body is denoted by
c0v

2, wherec0 is a positive constant.
Suppose for simplicity that the resistance forces acting

upon each link can be reduced to a force applied at the
end pointsA andA′. Denote byV the velocity of point
A and byω the angular velocity of the linkOA. We
have (see Fig. 1):

V = vi + aω sinϕi− aω cos ϕj, ω = ϕ̇. (2)

Here and below, dots denote derivatives with respect to
time t.
The quadratic resistance force applied to the pointA

is given by

F = −k0V V, (3)

wherek0 > 0 is a constant coefficient.
Under the assumptions made, the equation of the pro-

gressive motion of the main body can be written as fol-
lows:

(m + m0)v̇ = −c0v
2 + 2Fx , (4)

wherem0 is the added mass of the main body, andFx

is the projection of the vectorF from (3) onto the axis
Cx. Note that the projection of the resistance force act-
ing upon the linkO′A′ is also equal toFx. Introducing
the notation

c0/(m + m0) = c, 2k0/(m + m0) = k

and using equations (2) and (3) to determineFx, we
convert equation (4) to the form:

v̇ = −cv2−

−k(v + aω sinϕ)
√

v2 + a2ω2 + 2vaω sinϕ .
(5)

Similarly, the system with one link attached to
the main body can be considered [Chernousko,
F.L.(2010)]. The system with one link (Fig.2) imitates
a fish with a tail, whereas the system with two sym-
metric links is a model of a swimming animal with
two extremities (e.g., a frog). Under certain conditions,
the system with one link can be described by the same
equation (5). These conditions are listed below.
1. The main body is symmetric with respect to the

axisCx.
2. The oscillations of the linkOA are periodic and
symmetric, i.e., conditions (1) and

ϕ(t + T/2) = −ϕ(t)

Figure 2. System with one link

are fulfilled.
3. The frequency of oscillations is sufficiently high,

i.e.

T � a/v.

4. The moment of inertia of the main body is suffi-
ciently high, so that the amplitude of the angular oscil-
lations of the body is small.
5. The resistance force of the main body in the lateral

direction (along the axisCy) is much greater than the
resistance force in the longitudinal direction (along the
axisCx).
Under these assumptions, the change in the orienta-

tion of the main body as well as its motion in the lateral
direction (along the axisCy ) are insignificant, and the
body will move mostly along the axisCx. The oscilla-
tions of the tail (linkOA in Fig.2) during two halves of
the periodT correspond to the oscillations of two links
OA andO′A′ in Fig.1. The equation of motion of the
model of Fig.2 is reduced to equation (5) with

k = k0/(m + m0).

In what follows, we consider equation (5) that de-
scribes the dynamics of the both models of Fig.1 and
Fig.2.
Note that the coefficientsc andk in equation (5) have

the dimension of inverse length. To clarify the mean-
ing of these coefficients, consider the motion of a unit
mass point along a line in the presence of the quadratic
resistance. The corresponding equations of the motion
are

ẋ = v, v̇ = −cv2,

wherex is the coordinate andv is velocity of the mass.
Integrating these equations under the initial conditions

x(0) = 0, v(0) = v0 > 0,

we obtain

v = v0 exp(−cx).



Hence, the quantityc−1 is the distance where the
initial velocity decreases by the factore due to the
quadratic resistance.
We assume that the following dimensionless parame-

ter is small:

ε = a
√

ck � 1. (6)

Let us introduce the new dimensionless variablest̃ and
ṽ as follows:

t = t̃T, v = (a/T )(k/c)1/2ṽ. (7)

We substitute formulas (7) into equation (5) and sim-
plify this equation by omitting terms of higher order of
ε. After simplifications and replacing̃t andṽ by t and
v, respectively, we obtain the equation

dv

dt
= −ε

(
v2 +

dϕ

dt

∣∣∣∣dϕ

dt

∣∣∣∣ sinϕ

)
. (8)

This equation contains a small parameterε, andϕ(t)
is a periodic function oft with a period equal to 1.
Applying the asymptotic method of averaging [Bogoli-
ubov, N.N., Mitropolsky, Y.A.,(1961)] to equation (8),
we come to the following equation of the first approxi-
mation:

dv

dt
= −ε(v2 + I), (9)

I =
∫ 1

0

dϕ

dt

∣∣∣∣dϕ

dt

∣∣∣∣ sinϕ dt. (10)

The solutionv(t) of the averaged equation (9) differs
from the solution of the original equation (8), under the
same initial conditions, by terms of an order ofε for
the large time interval of an order ofε−1.
If I > 0, then the right-hand side of equation (9) is

positive for allv > 0. Hence,dv/dt < −εI < 0, the
velocity decreases and reaches zero in finite time. In
this case, the forward motion of the system is impossi-
ble.
We will consider below a more interesting case, where

I < 0. Then equation (9) has a unique positive station-
ary solution

v∗ =
√
−I (11)

which is globally asymptotically stable. Thus, for any
initial conditionv(t0) = v0 ≥ 0, we havev(t) → v∗
ast→∞ . To check the inequalityI < 0 and evaluate
the velocityv∗, we are to specify the periodic function
ϕ(t) and calculate the integralI from (10).

3 Piecewise constant angular velocity
Let us first consider the case where the angular veloc-

ity of links ω(t) = dϕ/dt is a piecewise constant peri-
odic function of time. Suppose that the angleϕ(t) first
grows linearly from0 to ϕ0 on the time interval(0, θ)
and then decreases linearly fromϕ0 to 0 on the interval
(θ, 1). Here,θ is a given time instant,θ ∈ (0, 1), and
ϕ0 ∈ (0, π/2). We set

ϕ(t) =

{
ω+t, t ∈ (0, θ)

ω−(1− t), t ∈ (θ, 1) ,
(12)

whereω+ and ω− are fixed constant angular veloci-
ties of deflection and retrieval of the links, respectively.
Sinceϕ(t) is a continuous function oft, it follows from
(12):

ϕ0 = ω+θ = ω−(1− θ). (13)

We obtain from equation (13):

θ =
ϕ0

ω+
, 1− θ =

ϕ0

ω−
, ϕ0 =

ω+ω−

ω+ + ω−
. (14)

We substitute formulas (12) into equation (10) and cal-
culate the integralI. Taking into account equations
(14), we obtain

I = (ω+ − ω−)(1− cos ϕ0). (15)

It is evident from (15) thatI > 0 for ω+ > ω− and
I < 0 for ω+ < ω−, if ϕ0 ∈ (0, π/2]. Therefore, the
average velocityv∗ of the system is positive if and only
if ω+ < ω−, i.e., the angular velocityω+ of deflection
of the links from the axis of the system is smaller than
the angular velocity of retrievalω−. The velocityv∗ in
this case is given by equations (11) and (15) as follows:

v∗ = [(ω− − ω+)(1− cos ϕ0)]
1/2

. (16)

4 Optimal Control
Let us consider the optimal control problem for the

angular motion of the links. We will regard the dimen-
sionless angular velocityω as the control subject to the
constraints

−ω− ≤ ω = dϕ/dτ ≤ ω+, (17)

whereω− andω+ are given positive constants.
Suppose that the angleϕ changes over the intervalt ∈

(0, 1) as follows: it grows fromϕ(0) = 0 to ϕ(θ) =
ϕ0 > 0 and then decreases fromϕ0 to ϕ(1) = 0. Here,
θ ∈ (0, 1) andϕ0 ∈ (0, π/2] are constant parameters.



The problem is to find functionsω(t) and ϕ(t)
that satisfy (17) and the boundary conditions imposed
above and maximize the average velocityv∗ defined by
(16).
The solution of this problem is obtained by means

of Pontryagin’s maximum principle [Pontryagin, L.S.,
Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko,
E.F.(1986)]. After that, parameterθ ∈ (0, 1) is chosen
that maximizesv∗. Omitting this rather lengthy analy-
sis, we present below the final results.
The optimal controlω(t) and the corresponding opti-

mal time history of the normalized angleϕ(t) are given
by equations

ω = ω+, ϕ = ω+t for t ∈ (0, t∗), t∗ = z/ω+,

ω2 sinϕ = ω2
+ sin z,∫ ϕ

z

(sinx)1/2dx = ω+(sin z)1/2(t− t∗)

for t ∈ (t∗, θ),

ω = −ω−, ϕ = ω−(1− t) for t ∈ (θ, 1).

(18)

Here, parametersz andθ are defined by equations

∫ ϕ0

z

(sinx)1/2dx = (ω+θ − z)(sin z)1/2,

θ = 1− ϕ0/ω−.

(19)

Note that equation (19) forz has a unique root in the
interval(0, ϕ0).
The maximal value of the velocityv∗ of the system for

the optimal solution (18) is expressed as follows:

v∗ = {ω−(1− cos ϕ0)−

ω+ [1− cos z + (ω+θ − z) sin z]}1/2
.

(20)

Let us consider two particular limit cases.
Suppose the constraint imposed upon the angular ve-

locity of the deflection of links is absent,i.e.,ω+ →∞
in (17). Then the first interval(0, t∗) in (18) tends to
zero(t → ∞), and the solution of our optimal control
problem becomes

ω2 sinϕ = c,∫ ϕ

0

(sinx)1/2dx = c1/2t, for t ∈ (0, θ),

ω = −ω−, ϕ = −ω−(1− t) for t ∈ (θ, 1).

Here, the constantc is defined as follows:

c =
[
θ−1

∫ ϕ0

0

(sinx)1/2dx

]2

.

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

t

ω

t* θ

Figure 3. Optimal controlω(t).
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Figure 4. Optimal trajectoryϕ(t).

Equation (20) for the velocityv∗ takes the form:

v∗ = [ω−(1− cos ϕ0)− cθ]1/2.

If the constraint imposed upon the angular velocity of
the retrieval of links is absent, i.e.,ω− = ∞ in (17),
then the third interval in the solution (18) tends to zero
(θ → 1). In this case,I → −∞, andv∗ →∞.
Thus, the optimal control is completely determined in

terms of normalized variables. To return to the original
dimensional ones, one is to use equations (6) and (7).

5 Example
Let us consider a numerical example. We assume that

ϕ0 = π/4, ω+ = ω− = 2

and obtain from the optimal solution (18)–(20):

θ = 0.6073, z = 0.1563,

t∗ = 0.0763, v∗ = 0.4894.
(21)

The time histories of functionsω(t) andϕ(t)obtained
by means of equations (18) are shown in Figs. 3 and 4,
respectively.
This optimal solution is close to the case of a piece-

wise constant angular velocityω(t). If we choose the



piecewise linear functionϕ(t) so that it coincides with
the optimal one att = 0, t = θ, andt = 1, we obtain
from equations (13)-(16):

ω+ = 1.293, ω− = 2, v∗ = 0.4551.

Comparing these data with the optimal solution given
by equations (21), we see that the difference in the av-
erage speedv∗ does not exceed 7%.

6 Conclusions
A mechanical system consisting of a main body and

one or two links attached to it by cylindrical joints can
move progressively in a medium that acts upon moving
bodies with forces proportional to the squared veloc-
ities of the bodies. Under the assumptions made, the
equation of motion is simplified, and the average ve-
locity of the progressive motion is evaluated.
The optimal time history of the angular oscillations

of the links is obtained that corresponds to the maxi-
mal, under the conditions imposed, average speed of
the progressive motion.
The obtained results correlate well with observations

of the process of swimming.
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