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Abstract
In last decades map-based neural models have at-
tracted much attention. These models replicate
the most important features of neurons dynamics
and allow to simplify the analysis of the cooper-
ative dynamics appearing in the complicate neu-
ral system. In this work we have studied the co-
operative dynamics appearing in the ensembles of
map-based neurons. Synchronization regimes of
two coupled map-based neurons are analyzed. The
possible mechanism for control of the synchronous
properties of the distant elements in the neural en-
semble is proposed.
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1 Introduction
The nervous system is an extremely complex sys-
tem comprising nerve cells (or neurones) and glial
cells. By electrical and chemical synapses of differ-
ent polarity neurones form a great variety of large-
scale networks. Dynamical modeling approach
is effective tool for the analysis of this kind of
networks. The observed types of neural activ-
ity are extremely various. Understanding dynam-
ical mechanism of such activity in biological neu-
rones has stimulated the development of models
on several levels of the complexity. To explain bio-
physical membrane processes in a single cell, it is
generally used ionic channel-based models. The
prototype of those models is the Hodgkin-Huxley
(HH) system which was originally introduced in
the description of the membrane potential dynam-
ics based on voltage-gated ion channels in the gi-
ant squid axon. In 1952 in a series of five articles
Alan Hodgkin, Andrew Huxley and Bernard Katz
made detection of the several types of ionic con-
ductances that generate the nerve action potential
(electric impulse). Besides they have developed the

dynamical model of the propagation of action po-
tentials along the axon. Although HH model was
obtained for a specific problem, its base ideas have
universal nature and it induced new approach in
neurophysiological modeling. Experimental back-
ground to create the HH model was experiments
with respect to division of ionic currents through
the membrane of the axon.
The HH model is extremely complex dynamical
system in four-dimensional phase space, and its
detailed analysis is a very difficult problem, which
hasn’t been completely solved even today. However
the existence of some properties of the ionic chan-
nels permits using of the simplified models which
have less complicate mathematical structure but
still replicates the key features of neural dynam-
ics. They are based on separation of the fast and
slow processes on the membrane and their mod-
eling with different fullness of description. The
HH model lay down the foundation of the series of
the models (so-called conductance based models).
They describe basic property of neuron dynamics,
but these models do not take into account the large
number of voltage-gated ion channels of neurones.
As a rule it involves generalized variables which
mimic the dynamics of the some number of ionic
currents at the same time. The example of this
type models are FitzHugh-Nagumo, Hindmarsh-
Rose, Morris-Lecar etc. They have the form of the
differential equation systems. However, there is
another class of models in the form of point maps.
Such type of models are called "map-based" mod-
els. In the last decade this kind of neural models
has attracted much attention. For example, using
a map-based approach Rulkov et al. [Rulkov, 2002;
Rulkov, 2004] have studied dynamics of one- and
two-dimensional large-scale cortical networks. It
has been found that such map-based models pro-
duce spatio-temporal regimes similar to those ex-
hibited by Hodgkin-Huxley type models.
In this paper we report about modeling of the
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Figure 1. Dynamics of the single map-based neuron.

cooperative regimes of the neural activity in the
ensembles of map-based neurons. In doing so, we
use the map-based neurons model which has been
suggested recently in [Courbage, 2007; Nekorkin,
Vdovin, 2007; Nekorkin, Vdovin, 2007].

2 Map based model of the neural activity
In order to model basic regimes of neural activ-
ity we design a new family of maps that are two-
dimensional and based on the discrete FitzHugh-
Nagumo system in which we introduce the Heavi-
side step function. Let f : R2 → R2 be the map
(x, y) → (x, y) given by the following equations

{
x = x + F (x)− y − βH(x− d),
y = y + ε(x− J),

(1)

where the x-variable describes the evolution of the
membrane potential of the neuron, y - variable
describe the dynamics of the outward ionic cur-
rents (recovery variable), the functions F (x) and
H(x− d) are of the form

F (x) = x(x− a)(1− x), 0 < a < 1, (2)

H(x) =

{
1, x > 0
0, x < 0.

(3)

The parameter ε (ε > 0) defines the time scale of
recovery variable, the parameter J is a constant
stimulus, the parameter d, (d > 0) controls thresh-
old property of the model and parameter β controls
amplitude of the fast oscillations.
Due to the smallness of the parameter (ε > 0)
the evolution of variable y is much slower then x
and therefore the dynamics of the map (1) is a
relaxation. The distinctive characteristic of these
systems is two time and velocity scales, so-called
"fast" and "slow" motions. Basically fast motions
are provided by a "frozen" system in which slow
variables are regarded as parameters, and it is as-
sumed that a small parameter of the system equals
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Figure 2. Regimes of synchronization of two coupled map-based
neurons.

zero. Slow motions with the size of order of the
small parameter are given by the evolution of the
"frozen" variable.
The dynamics of the system was studied in
[Courbage, 2007; Nekorkin, Vdovin, 2007; Neko-
rkin, Vdovin, 2007]. The conditions on the pa-
rameters under which different oscillations modes
are produced by map f were found. It was shown
that the chaotic attractor A exists inside invariant
domain (Fig.1 (a)) and its fractal dimension is a
rational value. Chaotic attractor provides simulat-
ing of spike-bursting oscillations (Fig.1(d)) which
are commonly observed in a wide variety of neu-
rons. It was shown that two close invariant curves
Cso (Fig.1(b)) and Cts (Fig.1(c)) exist under dif-
ferent values of the parameter J . The invariant
curve Cso corresponds to quasiperiodic subthresh-
old oscillations (Fig.2(e)) and the invariant curve
Cts corresponds to periodic single spikes generation
(Fig.2(f)). The system (1) is able to demonstrate
excitable dynamics and generate the single or burst
of spikes as the response on the external stimulus
as well.
By using this simple and flexible model we have
studied different cases of the cooperative dynamics
of the neural systems.

3 Regimes of synchronization of two coupled map-
based neurons

Let us consider a simple network of two electri-
cally coupled map-based neurons. The model of
such network can be written as follows





x1 = x1 + F (x1)− y1 − βH(x1 − d) + c(x2 − x1),
y1 = y1 + ε(x1 − J1),
x2 = x2 + F (x2)− y2 − βH(x2 − d) + c(x1 − x2),
y2 = y2 + ε(x2 − J2).

(4)
The study of synchronization regimes in coupled
chaotically spiking-bursting neurons is of most in-
terest for us. First, consider the main regimes of



synchronization between the elements generating
chaotic bursts of spikes. Let J1 = J2 = J . When
the neurons are uncoupled (c = 0) they produce
chaotic spiking-bursting oscillations (Fig. 2(a)).
In the case of strong positive coupling bursts of
spikes becomes synchronized, but single spikes in
the burst are generated asynchronously (Fig. 2
(b)). If the neurons are connected via inhibitory
coupling with negative value of the parameter c,
the elements demonstrate synchronous antiphase
bursts of spikes (Fig. 2(c)). These regimes were ex-
perimentally observed in neurophysiological stud-
ies of coupled neurons.
To study in-phase synchronization in relation to
the strength of coupling and the external stimu-
lus we calculate the coefficient of synchronization
defined as

D2(c, J) =
1
N

N∑

k=1

[x1(k)− x2(k)]2, (5)

where N is the number of iterations in the numeri-
cal experiment (Fig.3). According to our analysis,
there is a minimal value of the parameter c under
which in-phase synchronization takes place. Criti-
cal value has the increasing dependency versus pa-
rameter J .

4 Control of the synchronous properties in the en-
semble with long-range distribution of the neu-
rons

We have studied possible dynamical mechanism
for long-range synchronicity driving of the neural
oscillations by using external stimulus. It is ex-
pected that the neurons are widely spaced from
each other. As the result the interaction of the
neurons takes place with large delay. Because of
this,l synaptic coupling makes no sense in first ap-
proximation.
Let us consider a neural network consisting of M
map-based neurons under external stimulus. This

Figure 3. Coefficient of synchronization versus coupling strength.

network could be designed in the following form:

{
xi = xi + F (xi)− yi − βH(xi − d),
yi = yi + ε[xi − Ji − J∗(n)],

(6)

where external pulse stimulus J∗(n) is defined as
follows

J∗(n) =

{
A, n ∈ [n1, n2],
0, n ∈ (−∞, n1) ∪ (n2,∞).

(7)

We have studied response of the ensemble gen-
erating chaotic bursting oscillations on the com-
mon pulse stimulus. Two situations are discussed:
synchronization of the "slow" and "fast" oscilla-
tions under inhibitory stimulus and resetting of
the synchronous oscillations under activator stim-
ulus. We have observed dynamical mechanisms for
these processes and studied dependencies of the
synchronous oscillations properties on the param-
eters of the neurons and external stimulus.
It was shown that there is the threshold value
for inhibitory stimulus under which synchronous
"slow" oscillations appears due to stimulation. We
have found the conditions for synchronization of
"fast" oscillations in the ensemble. Synchronous
modes are not stable and disappear on the time
scale kT , where T is a time scale for "slow" os-
cillations and k > 1 because attractor is chaotic.
We have found condition on the parameters under
which activator stimulus magnifies asynchronous
properties of the oscillations as well. Due to this ef-
fect time scale for disappearing of the synchronous
mode could be reduced (k ∼ 1).
Let us consider neural ensemble consisting of the
set of groups of the elements. For each of them
parameters Ji are equal. Different groups have
the different value for parameter Ji, but all ele-
ments in ensemble produces the chaotic spiking-
bursting oscillations. Such system demonstrates
selective response to the external stimulus depend-
ing on stimulation amplitude. This process is de-

Figure 4. Driving synchronicity properties in the ensemble.



scribed on Fig.4. On the time interval ∆n0 ensem-
ble produce asynchronous oscillations. For time in-
terval ∆n1 after applying the inhibitory stimulus
with amplitude optimal for synchronization of the
group I, this group becomes synchronized, but for
the groups II and III this stimulus makes no sense.
For time interval ∆n2 synchronous properties for
the group I are minimized due to activator stimulus
applying. For time interval ∆n3 "slow" oscillations
are synchronized for both the groups I and II, but
the first burst produced by the group II is syn-
chronized for "fast" oscillations also. This feature
is obtained due to applying of the inhibitory stimu-
lus with amplitude optimal for synchronization of
the group II. This mechanism allows driving the
phase for chaotic oscillation in the ensemble by us-
ing external stimulus. As the result of this research
we have found the dependencies of the synchronous
properties of the oscillations in the ensemble on the
parameters of the elements and external stimulus.

5 Conclusion
In this paper a phenomenological model of neural
activity is proposed. It can reproduce basic activ-
ity modes of real biological neurons such as spiking,
chaotic spiking-bursting, subthreshold oscillations
etc. The model is a discontinuous two-dimensional
map based on the discrete version of the FitzHugh-
Nagumo system and dynamical properties of the
Lorenz-type map. We have investigated the coop-
erative dynamics of electrically coupled map-based
neurons generating spiking-bursting oscillations.
We have analyzed how synchronization regimes of
two coupled map-based neurons depends on cou-
pling strength and other parameters. We have
studied the possible underlying mechanism for con-
troling the synchronous properties of neural ensem-
ble. In spite of model’s sufficiently simple struc-
ture, the dynamical modes which are demonstrated
in our model are in agreement with neural activ-
ity regimes experimentally found in real biological
systems. We hope that our model will be useful
to understand the mechanisms of neural pattern
formation in large ensembles.
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