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Abstract

Many technical systems include rotating friction
disks. Assuming pure sticking or sliding in the con-
tact is sometimes not satisfactory to render a precise
system dynamics model. Here the plane motions of a
simple pin-on-a-disk system and two rigid disks rotat-
ing and contacting each other are examined. A numer-
ical study is executed which covers both sticking and
sliding states of the frictional contact interface. The
static indeterminacy of multiple contacts between rigid
bodies during sticking is circumvented by means of an
elasto-visco-plastic regularization approach. Sliding
is regarded as plastic deformation of an infinitesimal
thick layer between the two disks. For higher rotational
speeds a limit cycle with intermittent phases of sticking
and sliding is observed. Special attention is drawn to
the transitions between this limit cycle and a pure stick-
ing solution. The transition is identified as sensitive to
the system’s parameters and initial conditions.
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Figure 1. The disk-on-a-disk system with a set of twelve contact

points. At each contact point normal and tangential forces are plotted.

1 Introduction
Disk clutches [Reik, 1994] and clutch actuation sys-

tems [Zink, 2002] are both systems which live on fric-
tion. For these systems, friction is not an undesired sec-
ondary effect, as it is often the case. In fact their func-
tioning is reliant on the formation of friction. To per-
form a system dynamics analysis on clutches and their
actuators sometimes a precise friction model is needed.
As crucial features of such a model one should mention
the transitions from sticking to sliding and vice versa as
well as contacts distributed along a plane surface.
Dynamics of friction disks have been examined by

many researchers. Examples can be found in [Ibrahim,
1994; Mottershead, 2004]. Common applications are
dynamics of computer harddisks, friction brakes and
a pin-on-disk testing apparatus in tribology (see ref-
erences in [Ibrahim, 1994; Mottershead, 2004]). The
system at hand includes rather uncommon assumptions
compared to the work found in literature: Only in-plane
motions in radial directions of the two rigid disks (cf.
Fig. 1) are considered. The normal pressure is assumed
as equally distributed over the contact surface; axial or
tilting movement of both disks are ignored. The lower
disk in Fig. 1 is driven at constant angular speed and
has a rigid support. The upper disk is elastically sup-
ported in radial direction, which is interpreted as the
elasticity of a shaft. Such a system can be regarded as
a strongly simplified clutch model. This interpretation
clarifies the focus on radial motions: The frequency of
the rotation of clutches and the natural frequency of the
disk with elastic support can operate in the same range.
A separate study of this system but with assumed slid-

ing for the numerical simulations is contributed to the
conference by the same authors. In this study, for dif-
ferent parameters and initial conditions, the following
solutions were found: The driven disk can come to an
equilibrium in the vicinity of the rotation centre, which
is referred to as self-centering of the disk. Next, a
limit cycle solution with large oscillation amplitudes is
possible for higher rotational speeds. Under high fric-
tion a sticking solution can be found analytically. Fi-
nally, due to the coupling between the radial and the



rotational motions, this second study reports a destabi-
lization of the limit cycle leading to another one with
slowly modulated amplitude. Out of these four basic
motions only two are taken into account in the cur-
rent work: The sticking solution and the limit cycle,
which will be shown to exist with alternating sticking
and sliding. The contact modeling will allow us to lo-
cate the transitions between these two solutions in pa-
rameter space.
The friction model proposed hereafter belongs to the

class of penalty approaches, i.e. relative displace-
ments in contacts during sticking are constrained by
means of a penalty force. It is based on an analogy
of friction and plasticity, whereat the simplest plastic-
ity model usual in continuum mechanics already suits
our needs. The analogy of friction and plasticity has
formerly been used in structural mechanics [Laursen,
2002; Michalowski, 1978] and inspired other fric-
tion models in robotics and control theory [Canudas,
1995]. Here it is applied in an intuitive and straightfor-
ward way to the field of nonlinear rigid body dynam-
ics. There are at least two alternative possibilities to
model systems with distributed contacts – classic rigid
body mechanics does not belong to them due to the
static indeterminacy of multiple contacts during stick-
ing. Firstly, one could consider all involved bodies as
elastic and perform a finite element analysis on them.
This certainly leads to a high number of degrees of free-
dom and long computation times which usually conflict
with the aims of any dynamics analysis. Secondly, sig-
nificant progress has been made innonsmooth dynam-
ics [Acary, Brogliato, 2008], where – under some geo-
metric restrictions which can be mostly fulfilled [Mc-
Namara, 2006] – it is also possible to represent surface-
to-surface contacts between rigid bodies.

2 An Elasto-Visco-Plastic Regularization Model
Consider a regularization of sticking with only spring

and damper plus COULOMB friction in the case of
sliding. When detecting a transition from stick-
ing to sliding the friction force switches from a
position-dependent quantity (spring reaction force) to a
velocity-dependent quantity (COULOMB sliding force).
In a 2D-contact this would lead to an instantaneous
jump of the friction force direction, which is difficult to
handle in a numerical integration algorithm. Moreover,
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Figure 2. Spring, dashpot and plastic element of the regularization

approach

while one can think of colliding micro contacts with
discontinuous friction force direction, this shouldn’t be
the case for contacts on a macroscopic scale. The dis-
cretization of the contact surface into a finite set of con-
tact points, which will be done in this regularization
approach, should lead to a single contact point repre-
senting a sufficiently large number of micro contacts.
It is therefore assumed that any discontinuities at micro
scale will appear smoothed to an observer on a macro
scale.
On these preliminary thoughts the subsequent regu-

larization is based. By means of a plastic element, all
contact force directions will change continuously. This
might be a very fast process still, depending on the tan-
gential contact stiffnessc. In the limit case ofc → ∞
the model degenerates to COULOMB friction.
Suppose we have discretized the two-dimensional

frictional contact interface into a set ofN contact
points as e.g. in Fig. 1. Then for each contact point
a regularized friction law is formulated. It is based on
the simplest plasticity model suitable for this task, the
PRANDTL-REUSS material model or idealized time-
independent plasticity [Kachanov, 1971]. The deriva-
tion of the friction law will be roughly outlined in the
following.
The displacementxi of contact pointi, i = 1 . . . N

during stickingand sliding is assumed to consist of
elastic (reversible) and plastic contribution:

xi = zi + wi, ẋi = żi + ẇi (1)

Due to the serial connection of the visco-elastic and
plastic force elements (cf. Fig. 2) we have:

F
f
i = F

el
i = F

pl
i (2)

The force in the elastic element is the reaction force of
spring and dashpot:

F
el
i = −czi − βżi (3)

The plastic deformation is defined as:

−λiF
pl
i = ẇi (4)

whereλi controls the occurrence of plastic deformation
at each contact point. The multiplyerλi is introduced
in the sense of a ‘yield criterion’

λi =
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(5)
with the scalar-valued functionFSt

i (‖ẋi‖) as a local
STRIBECK curve. The two cases of (5) read as fol-
lows: We havestickingif the regularized friction force



is below its current limit prescribed by the STRIBECK

curve and we havesliding until the plastic deforma-
tion rate (almost) vanishes. The absolute value‖ẇi‖
is non-negative and any root-finding algorithm will not
locate the vanishing plastic deformation rate due to the
limits of numerical resolution. Hence, a small thresh-
old ε which defines the onset of sticking is introduced.
Inserting (5) in (4) yields:
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−‖ẇi‖F
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(6)

which describes the evolution of plastic deformation in
the form of an implicit differential equation with dis-
continuous right hand side. For a plane-to-plane con-
tactwi is two-dimensional. Thus for each contact point
i we add two degrees of freedom to the system.
Note that plastic deformationis sliding within this

model. This can be seen from the second case in (6):

FSt
i (‖ẋi‖)

ẇi

‖ẇi‖
= −F

pl
i (7)

The regularized contact forceFpl opposes the velocity
of irreversible relative displacement. Furthermore it is
obvious that for low elastic deformation rates1 we are
approximating COULOMB friction:

FSt
i (‖ẋi‖)

ẋi

‖ẋi‖
≈ −F

pl
i , ‖żi‖ � ‖ẇi‖ (8)

After some calculus it is possible to obtain from (7) an
explicit form of the differential equations for the local
plastic deformations:

ẇi =
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/β > ε
(9)

where the abbreviation

ki = c(xi − wi) + βẋi (10)

is used. Note that the quantitiesxi andẋi are available
at all contact points as kinematic transforms of the sys-
tem’s rigid bodies degrees of freedom. The coupling
between the rigid body and friction subsystems is then
completed by the frictional forces (3) which act at the
contacting bodies. Thus the equations of motions are
augmented by a set of2N equations for the internal
friction variables.

1which we would have to callgross slidingto concur with other
friction models

3 Numerical Solutions
An event-based ROSENBROCK integration scheme

has been used to solve the coupled system of rigid body
motions and friction states. The algebraic constraints
were introduced as LANGRANGIAN multiplyers in the
well-known form of BAUMGARTE [Baumgarte, 1976].
Much attention has to be paid to the event detection al-
gorithm and computational efficiency, because the sys-
tems examined here can feature a high number of stick-
slip transitions (the number of observed transitions oc-
casionally exceeded 100.000 within the desired simula-
tion time). However, the challenging numerics of such
systems is not spotlighted here in order to maintain the
focus of this paper.
In the following subsections the results of a high num-

ber of simulation runs on a pin-on-a-disk system and a
disk-on-a-disk system are presented. They complement
the mentioned separate study with the assumption of
pure sliding in the contact, which is also contributed to
this conference. From this study it is known that both
systems reveal a limit cycle with large oscillation am-
plitudes for higher angular speeds. It is also known that
for higher frictional forces a sticking solution exists.
All system parameters have been chosen arbitrarily,

often close to their SI-unit. It is possible to identify the
same phenomena for a set of more realistic parameters,
as the topology of the solution space is unaffected by
the parameters’ absolute values.

3.1 Pin-On-a-Disk System With Single Contact
As a first simplification the driven disk (slavein Fig.

1) is replaced by a pin with a single contact point at
its tip (cf. Fig. 3). The driving disk (master) with
rigid support is driven at constant angular speedωm =
1.1 rad/s. The two springs and dampers confining the
pin’s motion in radial direction have a linear stiffness
of cs = 1 N/m and a damping coefficient ofβs =
0.1 Ns/m. The mass of the pin is set toms = 1 kg.
A total normal force ofFn = 1 N acts in the frictional
contact interface. The tangential contact stiffness2 has
been set toc = 253 N/mm.
Figure 4 depicts a typical trajectory of a solution with

outer limit cycle. Starting from the offset position
xms = 0.1 m with the elastic support of the pin at
rest, the pin follows the counterclockwise rotation of
the master disk with an increasing radius. In the lower
left segment of Fig. 4 we encounter a sticking regime.
Here the pin moves on a circular orbit prescribed by the
master disk. In the upper and right segment of Fig. 4
we find a sliding regime. Instead of a circular orbit the
distance between pin and rotation axis first increases
and then decreases again. In case of the limit cycle this
is shown in Figure 5. The amplitude of this deviation
from the circlea can be used to describe the shape of
the limit cycle. In Figure 6 the dependency of the limit
cycle shape on the frictional coefficient is shown. We

2the regularized contact parameters were selected accordingto
rules omitted here; basic ideas can be found in [Vielsack, 1996]
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Figure 3. The pin-on-a-disk system with a single contact point. The

small top view detail displays the offset between master disk and

slave pinxms at spring rest position and the initial spring deflection

x0.
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Figure 4. Typical trajectory of driven pin or disk leading toa limit

cycle with sticking (dark) and sliding (light) segments

observe a linear relationship betweenµ and the shape
measurea. However, an obvious reason for the linear
character of this relationship cannot be given.
Alongside with the described solution with alternat-

ing phases of sticking and sliding a solution character-
ized by permanent sticking exists. This solution can
be reached starting from the first one by just increas-
ing the frictional coefficientµ. After a short phase of
sliding created by the initial condition the pin remains
sticking on a circular orbit with the radius of the first
(innermost) sticking segment in Fig. 4. The transition
from limit cycle to sticking solution manifests itself in a
jump of the pin’s stationary oscillation amplitude. This
jump happens in a small range ofµ and is character-
ized by a topological change of the solution, hence it is
a bifurcation.
The location of the bifurcation is identified numeri-

cally by subsequent simulation runs. For each run the
simulation time is adjusted until the outer limit cy-
cle is reached or the low amplitudes of the sticking
solution remain constant. Then iteratively the fric-
tional coefficientsµ are modified until the jump be-

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

sticking sliding

circular shape

non-circular shape a

Figure 5. Limit cycle trajectory, circular shape during sticking and

non-circular during sliding
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Figure 6. Deviation from circlea during sliding for different fric-

tion coefficientsµ

tween limit cycle and sticking solution is found in an
interval∆µ = 10−4.
In Figure 7 one can see the dependency of the bifur-

cation on the axes misalignmentxms. As an additional
information the middle plot withxms = 0.1 m shows
the results of the single simulation runs as dots; it is
visible how the location of the jump has been iterated.
Thesize of the limit cyclewhich is plotted in Fig. 7 has
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Figure 7. Transitions from limit cycle to sticking solution for dif-

ferent offsets
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Figure 8. Transitions from limit cycle to sticking solution for dif-

ferent initial conditions

been measured the following way: For solutions with
high amplitudes the radius of the sticking segment on
the limit cycle (lower left in Fig. 5) and for the solu-
tions with low amplitudes the radius of the full (stick-
ing) circle has been employed as ‘size’. Note that for
different values ofxms you get also different limit cy-
cles.
A slightly different behavior is obtained when the axes

misalignmentxms is kept constant but instead the ini-
tial displacementx0 of the pin is modified. As depicted
in Figure 8, again the bifurcation can be shifted to the
left or right. The domain of attraction of the limit cycle
solution in phase space can be interesting for techni-
cal applications: The exact initial state of e.g. a clutch
system is usually unknown. Therefore, even when the
parameters of the system are well identified, the occur-
rence of the large limit cycle can only be precluded by
estimation of the initial state and comparing it to the
domain of attraction of this type of solution.

3.2 Two Friction Disks
In the last section, the single contact point at the pin’s

tip did not transmit a friction torque. Now, by re-
placement of the pin with theslavedisk, this friction
torque is transmitted and therefore an additional degree
of freedom is introduced: the rotation of theslavebody
around its central axis. With the viscous dampingβb a
braking torque can be generated. Of course, by increas-
ing βb one can obtain permanent slip between the two
disks. Hereβb was kept small in order to allow stick-
ing and to examine the transitions from the limit cycle
solution to the sticking solution as with the previous
system.
Firstly, βb was set to zero and the moment of iner-

tia of slave was given a comparably small value of
Js = 0.02 kg m2, so it can rotate easily. All other
parameters were copied from the pin-on-disk system.
As one would expect, the pin-on-disk and the disk-on-
disk system behave almost identical now. Figure 7 is
not repeated here, instead only the location of the jump

0.08 0.09 0.1 0.11 0.12 0.13
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

pure sticking

outer limit cycle

fr
ic

ti
o
n
a
l
c
o
e
ffi

c
ie

n
t

µ

offset xms

Figure 9. Bifurcation plot with axes offset and frictional coefficient

as bifurcation parameters

is plotted in the(xms, µ)-parameter plane. The result
is given in Figure 9. For each of the points in the bi-
furcation diagram many numerical simulations have to
be run in order to locate the jump with a precision of
∆µ = 10−4. Therefore only five data points are given
in the diagram. Perhaps the obtained linear relation-
ship is not surprising, as the centripetal acceleration
(a = ω2r) depends linearly on the offsetr = xms.
The two regionspure stickingandouter limit cyclead-

jacent to the line in Figure 7 can be seen as follows: for
a givenµ one can either ‘stabilize’ the system by de-
creasingxms and herewith enforce a sticking solution
or ‘destabilize’ the system by increasingxms.
Analogous to the pin-on-disk system the initial con-

dition x0 was chosen as another bifurcation parameter
(the remaining initial conditionsy0 = ẋ0 = ẏ0 =
0 kept natural). Again Fig. 8 is not repeated for
the disk-on-disk system, instead only the bifurcation
in the (x0, µ)-plane is plotted in Figure 10, a two-
dimensional cross section of the domain of attraction
of the large limit cycle solution in a multidimensional
parameter and phase space of the system. For a con-
stant value ofµ we can ‘stabilize’ the system with the
sticking solution by placing the elastic supported body
slave initially closer to the rotation centre ofmaster.
We can ‘destabilize’ the system by initial placement of
slavein a distant position from the rotation centre.
As a last result, the brake coefficientβb was taken as

a bifurcation parameter. The corresponding bifurcation
diagram in the(βb, µ)-parameter plane is presented in
Figure 11. It can be seen clearly, that for a given fric-
tional coefficientµ one can migrate from a sticking so-
lution with low amplitudes to a sticking/sliding limit
cycle solution with high amplitudes by increasing the
brake load. Recall that for the assumption of pure slid-
ing in the contact interface a similar limit cycle with
high amplitudes is obtained. Therefore it is not surpris-
ing to arrive at the limit cycle as we enforce more slip
by increased brake torque.
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Figure 10. Bifurcation plot with initial condition and frictional co-
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4 Conclusions
The reported regularization approach is based on the

analogy of friction and plasticity, applied to rigid body
dynamics. It is used here for both a single con-
tact situation and multiple contacts distributed along
a two-dimensional surface3. Desirable features of any
friction model such as local STRIBECK curves or re-
versible, true stiction are represented. Despite the
event-based integration scheme, where computational
resources have to be spent on the location of disconti-
nuities, the contact modeling is suitable for simulating
radial dynamics of friction disks.
With the friction model it is possible to perform a nu-

merical parameter study and locate bifurcations in the
systems’ parameter and phase spaces. The dependency
of the sudden jump from one solution to another on a
couple of control parameters has been demonstrated.

3for the single contact point the penalty approach is not crucial.
One could calculate the friction force during sticking froma static
equilibrium.

The results obtained here encourage us to apply the
contact model to a real-world system in the future, e.g.
a disk clutch.
Radial dynamics of the disk-on-disk system and the

pin-on-disk system are similar in terms of limit cycle
to sticking transition. In both cases the bifurcation can
be shifted qualitatively the same way by the selected
control parameters. Significant differences between the
two sample systems occur when either a brake torque is
applied at the driven disk or – not reported in the results
section but similar to the effect of the brake torque – the
moment of inertiaJs of slaveis increased.
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