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1 Introduction

) ) . o Disk clutches [Reik, 1994] and clutch actuation sys-

) Many techn'lcal systems .|nclude .rc_)tatl.ng friction tems [Zink, 2002] are both systems which live on fric-
disks. Assuming pure sticking or sliding in the con- tjon For these systems, friction is not an undesired sec-
tact is sometimes not satisfactory to render a precise onqary effect, as it is often the case. In fact their func-
system dynamics model. Here the plane motions of ajning is reliant on the formation of friction. To per-
simple pin-on-a-disk system and two rigid disks rotat- ¢, 5 system dynamics analysis on clutches and their
ing and contacting each other are examined. A nUMer- 5y at0rs sometimes a precise friction model is needed.
ical study is executed which covers both sticking and ag crycial features of such a model one should mention
sliding states of the frictional contact interface. The e yransitions from sticking to sliding and vice versa as
static indeterminacy of multiple contacts between rigid |\ o\l as contacts distributed along a plane surface.
bodies during sticking is circumvented by means of an Dynamics of friction disks have been examined by
elasto-visco-plastic regularization approach. Sliding many researchers. Examples can be found in [Ibrahim,
is regarded as plastic deformation of an infinitesimal 1994; Mottershead, 2004]. Common applications are
thick layer between the two disks. For higher rotational dynamics of computer harddisks, friction brakes and
speeds a limit cycle with intermittent phases of sticking a pin-on-disk testing apparatus in tribology (see ref-
and sliding is observed. Special attention is drawn to erences in [Ibrahim, 1994; Mottershead, 2004]). The
the transitions between this limit cycle and a pure stick- system at hand includes rather uncommon assumptions
ing solution. The transition is .id.e.ntified as sensitive to compared to the work found in literature: Only in-plane
the system'’s parameters and initial conditions. motions in radial directions of the two rigid disks (cf.
Fig. 1) are considered. The normal pressure is assumed
as equally distributed over the contact surface; axial or
tilting movement of both disks are ignored. The lower
disk in Fig. 1 is driven at constant angular speed and
has a rigid support. The upper disk is elastically sup-
ported in radial direction, which is interpreted as the
elasticity of a shaft. Such a system can be regarded as
a strongly simplified clutch model. This interpretation
clarifies the focus on radial motions: The frequency of
the rotation of clutches and the natural frequency of the
disk with elastic support can operate in the same range.

A separate study of this system but with assumed slid-
ing for the numerical simulations is contributed to the
conference by the same authors. In this study, for dif-
ferent parameters and initial conditions, the following
solutions were found: The driven disk can come to an
equilibrium in the vicinity of the rotation centre, which
is referred to as self-centering of the disk. Next, a
limit cycle solution with large oscillation amplitudes is
possible for higher rotational speeds. Under high fric-
tion a sticking solution can be found analytically. Fi-
nally, due to the coupling between the radial and the

master

Figure 1. The disk-on-a-disk system with a set of twelve acnt
points. At each contact point normal and tangential forcepkntted.



rotational motions, this second study reports a destabi-while one can think of colliding micro contacts with
lization of the limit cycle leading to another one with discontinuous friction force direction, this shouldn't be
slowly modulated amplitude. Out of these four basic the case for contacts on a macroscopic scale. The dis-
motions only two are taken into account in the cur- cretization of the contact surface into a finite set of con-
rent work: The sticking solution and the limit cycle, tact points, which will be done in this regularization
which will be shown to exist with alternating sticking approach, should lead to a single contact point repre-
and sliding. The contact modeling will allow us to lo- senting a sufficiently large number of micro contacts.
cate the transitions between these two solutions in pa-Itis therefore assumed that any discontinuities at micro
rameter space. scale will appear smoothed to an observer on a macro
The friction model proposed hereafter belongs to the scale.
class of penalty approaches, i.e. relative displace- On these preliminary thoughts the subsequent regu-
ments in contacts during sticking are constrained by larization is based. By means of a plastic element, all
means of a penalty force. It is based on an analogy contact force directions will change continuously. This
of friction and plasticity, whereat the simplest plastic- might be a very fast process still, depending on the tan-
ity model usual in continuum mechanics already suits gential contact stiffnesa In the limit case ot — oo
our needs. The analogy of friction and plasticity has the model degenerates taoGLoOMB friction.
formerly been used in structural mechanics [Laursen, Suppose we have discretized the two-dimensional
2002; Michalowski, 1978] and inspired other fric- frictional contact interface into a set aV contact
tion models in robotics and control theory [Canudas, points as e.g. in Fig. 1. Then for each contact point
1995]. Here it is applied in an intuitive and straightfor- a regularized friction law is formulated. It is based on
ward way to the field of nonlinear rigid body dynam- the simplest plasticity model suitable for this task, the
ics. There are at least two alternative possibilities to PRANDTL-REUSS material model or idealized time-
model systems with distributed contacts — classic rigid independent plasticity [Kachanov, 1971]. The deriva-
body mechanics does not belong to them due to thetion of the friction law will be roughly outlined in the
static indeterminacy of multiple contacts during stick- following.
ing. Firstly, one could consider all involved bodies as The displacemenk; of contact pointi,s = 1... N
elastic and perform a finite element analysis on them. during stickingand sliding is assumed to consist of
This certainly leads to a high number of degrees of free- elastic (reversible) and plastic contribution:
dom and long computation times which usually conflict
with the aims of any dynamics analysis. Secondly, sig-
nificant progress has been madenonsmooth dynam-
ics[Acary, Brogliato, 2008], where — under some geo-
metric restrictions which can be mostly fulfilled [Mc- Due to the serial connection of the visco-elastic and
Namara, 2006] — it is also possible to represent surface-plastic force elements (cf. Fig. 2) we have:
to-surface contacts between rigid bodies.

F = F§' = F?' )

2 An Elasto-Visco-Plastic Regularization Model

Consider a regu|arization of sticking with on|y Spring The force in the elastic element is the reaction force of
and damper plus GuLomB friction in the case of  SPring and dashpot:
sliding. When detecting a transition from stick-
ing to sliding the friction force switches from a Fo = —cz; — Bz (3)
position-dependent quantity (spring reaction force) to a
velocity-dependent quantity @@JLoMB sliding force).

In a 2D-contact this would lead to an instantaneous
jump of the friction force direction, which is difficult to
handle in a numerical integration algorithm. Moreover, —\FP = W, 4)

The plastic deformation is defined as:

where),; controls the occurrence of plastic deformation

E slave § at each contact point. The multiplygy is introduced
. in the sense of a ‘yield criterion’
¢ :M]/HJ_I contact point
p i l
F| < FPH([[%il)

master i = . . .
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with the scalar-valued functiod’”*(||x;||) as a local
STRIBECK curve. The two cases of (5) read as fol-
lows: We havestickingif the regularized friction force

Figure 2. Spring, dashpot and plastic element of the regatéoin
approach



is below its current limit prescribed by ther8IBECK
curve and we havsliding until the plastic deforma-
tion rate (almost) vanishes. The absolute vd|sig||

is non-negative and any root-finding algorithm will not
locate the vanishing plastic deformation rate due to the
limits of numerical resolution. Hence, a small thresh-
old e which defines the onset of sticking is introduced.
Inserting (5) in (4) yields:

(6)

which describes the evolution of plastic deformation in
the form of an implicit differential equation with dis-
continuous right hand side. For a plane-to-plane con-
tactw; is two-dimensional. Thus for each contact point
i we add two degrees of freedom to the system.

Note that plastic deformatiois sliding within this
model. This can be seen from the second case in (6):
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The regularized contact forde”' opposes the velocity
of irreversible relative displacement. Furthermore it is
obvious that for low elastic deformation ratese are
approximating ©@uLowmB friction:

~
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After some calculus it is possible to obtain from (7) an
explicit form of the differential equations for the local
plastic deformations:

0, [F7| < Estisal
w; (B(Xz Wz) + Xz) (1 Hc(xi_wi)_’_ﬁxiﬂ) ;
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where the abbreviation

ki = c(x; — w;) + 0%; (10)

is used. Note that the quantitisg andx; are available

at all contact points as kinematic transforms of the sys-
tem’s rigid bodies degrees of freedom. The coupling
between the rigid body and friction subsystems is then
completed by the frictional forces (3) which act at the

3 Numerical Solutions

An event-based SENBROCK integration scheme
has been used to solve the coupled system of rigid body
motions and friction states. The algebraic constraints
were introduced as ANGRANGIAN multiplyers in the
well-known form of BAUMGARTE [Baumgarte, 1976].
Much attention has to be paid to the event detection al-
gorithm and computational efficiency, because the sys-
tems examined here can feature a high number of stick-
slip transitions (the number of observed transitions oc-
casionally exceeded 100.000 within the desired simula-
tion time). However, the challenging numerics of such
systems is not spotlighted here in order to maintain the
focus of this paper.

In the following subsections the results of a high num-
ber of simulation runs on a pin-on-a-disk system and a
disk-on-a-disk system are presented. They complement
the mentioned separate study with the assumption of
pure sliding in the contact, which is also contributed to
this conference. From this study it is known that both
systems reveal a limit cycle with large oscillation am-
plitudes for higher angular speeds. It is also known that
for higher frictional forces a sticking solution exists.

All system parameters have been chosen arbitrarily,
often close to their Sl-unit. It is possible to identify the
same phenomena for a set of more realistic parameters,
as the topology of the solution space is unaffected by
the parameters’ absolute values.

3.1 Pin-On-a-Disk System With Single Contact

As a first simplification the driven dislslavein Fig.

1) is replaced by a pin with a single contact point at
its tip (cf. Fig. 3). The driving disk rhaste) with
rigid support is driven at constant angular spegd=

1.1 rad/s. The two springs and dampers confining the
pin’s motion in radial direction have a linear stiffness
of ¢, = 1 N/m and a damping coefficient af,
0.1 Ns/m. The mass of the pin is setto, = 1 kg.

A total normal force off" = 1 N acts in the frictional
contact interface. The tangential contact stiffiesss
been sette = 253 N/mm.

Figure 4 depicts a typical trajectory of a solution with
outer limit cycle. Starting from the offset position
Tms = 0.1 m with the elastic support of the pin at
rest, the pin follows the counterclockwise rotation of
the master disk with an increasing radius. In the lower
left segment of Fig. 4 we encounter a sticking regime.
Here the pin moves on a circular orbit prescribed by the
master disk. In the upper and right segment of Fig. 4
we find a sliding regime. Instead of a circular orbit the
distance between pin and rotation axis first increases
and then decreases again. In case of the limit cycle this

contacting bodies. Thus the equations of motions areiS shown in Figure 5. The amplitude of this deviation

augmented by a set &fN equations for the internal
friction variables.

Lwhich we would have to caljross slidingto concur with other
friction models

from the circlea can be used to describe the shape of
the limit cycle. In Figure 6 the dependency of the limit
cycle shape on the frictional coefficient is shown. We

2the regularized contact parameters were selected accoimling
rules omitted here; basic ideas can be found in [Vielsack61L99



— top view, initial position

Figure 3. The pin-on-a-disk system with a single contaatpdihe
small top view detail displays the offset between master digk a
slave pinx,,, s at spring rest position and the initial spring deflection
Zo.

0.3

Figure 4. Typical trajectory of driven pin or disk leadingadimit
cycle with sticking (dark) and sliding (light) segments

observe a linear relationship betwegrand the shape
measure:. However, an obvious reason for the linear
character of this relationship cannot be given.

Alongside with the described solution with alternat-
ing phases of sticking and sliding a solution character-
ized by permanent sticking exists. This solution can
be reached starting from the first one by just increas-
ing the frictional coefficienj:. After a short phase of
sliding created by the initial condition the pin remains
sticking on a circular orbit with the radius of the first
(innermost) sticking segment in Fig. 4. The transition
from limit cycle to sticking solution manifests itselfin a
jump of the pin’s stationary oscillation amplitude. This
jump happens in a small range pfand is character-
ized by a topological change of the solution, hence it is
a bifurcation.

The location of the bifurcation is identified numeri-
cally by subsequent simulation runs. For each run the
simulation time is adjusted until the outer limit cy-
cle is reached or the low amplitudes of the sticking
solution remain constant. Then iteratively the fric-
tional coefficientsy are modified until the jump be-

non-circular shape/ a

—

Figure 5. Limit cycle trajectory, circular shape during kiingy and
non-circular during sliding
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Figure 6. Deviation from circle during sliding for different fric-
tion coefficients

tween limit cycle and sticking solution is found in an
interval Apy = 1074,

In Figure 7 one can see the dependency of the bifur-
cation on the axes misalignmeny,,. As an additional
information the middle plot with:,,; = 0.1 m shows
the results of the single simulation runs as dots; it is
visible how the location of the jump has been iterated.
Thesize of the limit cyclavhich is plotted in Fig. 7 has
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Figure 7. Transitions from limit cycle to sticking solutioarfdif-
ferent offsets
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Figure 8. Transitions from limit cycle to sticking solutioarfdif-

ferent initial conditions Figure 9. Bifurcation plot with axes offset and frictionalefficient

as bifurcation parameters

been measured the following way: For solutions with

high amplitudes the radius of the sticking segment on jg plotted in the(z,,, 11)-parameter plane. The result
the limit cycle (lower left in Fig. 5) and for the solu- s given in Figure 9. For each of the points in the bi-
tions with low amplitudes the radius of the full (stick- fyrcation diagram many numerical simulations have to
ing) circle has been employed as ‘size’. Note that for pe yun in order to locate the jump with a precision of
different values ofz,,; you get also different limitcy- A, — 10—, Therefore only five data points are given
cles. in the diagram. Perhaps the obtained linear relation-
A slightly different behavior is obtained when the axes ship is not surprising, as the centripetal acceleration
misalignmentz,,, is kept constant but instead the ini- (4 = w2r) depends linearly on the offset= z,,,.
tial displacement;, of the pin is modified. As depicted  The two regiongpure stickingandouter limit cyclead-
in Figure 8, again the bifurcation can be shifted to the ;5cent to the line in Figure 7 can be seen as follows: for
left or right. The domain of attraction of the limit cycle 5 giveny one can either ‘stabilize’ the system by de-
solution in phase space can be interesting for teCh”i'creasingrms and herewith enforce a sticking solution
cal applications: The exact initial state of e.g. a clutch . «qastabilize’ the system by increasing,..
system is usually unknown. Therefore, even when the Analogous to the pin-on-disk system tﬁe initial con-
parameters of the system are well identified, the occur- dition xg was chosen as another bifurcation parameter
rence of the large limit cycle can only be precluded by (the remaining initial conditiongy, = o = go =
estimation of the initial state and comparing it to the 0 kept natural). Again Fig. 8 is not repeated for

domain of attraction of this type of solution. the disk-on-disk system, instead only the bifurcation
in the (zo, 1)-plane is plotted in Figure 10, a two-
3.2 Two Friction Disks dimensional cross section of the domain of attraction
In the last section, the single contact point at the pin’s of the large limit cycle solution in a multidimensional
tip did not transmit a friction torque. Now, by re- parameter and phase space of the system. For a con-
placement of the pin with thelavedisk, this friction stant value of: we can ‘stabilize’ the system with the
torque is transmitted and therefore an additional degreesticking solution by placing the elastic supported body
of freedom is introduced: the rotation of teklavebody slaveinitially closer to the rotation centre aghaster
around its central axis. With the viscous dampihca We can ‘destabilize’ the system by initial placement of
braking torque can be generated. Of course, by increas-slavein a distant position from the rotation centre.
ing 0, one can obtain permanent slip between the two As a last result, the brake coefficiefyf was taken as
disks. Hereg, was kept small in order to allow stick-  a bifurcation parameter. The corresponding bifurcation
ing and to examine the transitions from the limit cycle diagram in thg(8,, u)-parameter plane is presented in
solution to the sticking solution as with the previous Figure 11. It can be seen clearly, that for a given fric-
system. tional coefficientu one can migrate from a sticking so-
Firstly, 8, was set to zero and the moment of iner- lution with low amplitudes to a sticking/sliding limit
tia of slavewas given a comparably small value of cycle solution with high amplitudes by increasing the
Js = 0.02 kg m?, so it can rotate easily. All other brake load. Recall that for the assumption of pure slid-
parameters were copied from the pin-on-disk system.ing in the contact interface a similar limit cycle with
As one would expect, the pin-on-disk and the disk-on- high amplitudes is obtained. Therefore it is not surpris-
disk system behave almost identical now. Figure 7 is ing to arrive at the limit cycle as we enforce more slip
not repeated here, instead only the location of the jump by increased brake torque.
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4 Conclusions

The reported regularization approach is based on the
analogy of friction and plasticity, applied to rigid body

It is used here for both a single con-
tact situation and multiple contacts distributed along
a two-dimensional surfaée Desirable features of any
friction model such as local ' ®RIBECK curves or re-
versible, true stiction are represented.

dynamics.

Despite the

The results obtained here encourage us to apply the
contact model to a real-world system in the future, e.g.
a disk clutch.

Radial dynamics of the disk-on-disk system and the
pin-on-disk system are similar in terms of limit cycle
to sticking transition. In both cases the bifurcation can
be shifted qualitatively the same way by the selected
control parameters. Significant differences between the
two sample systems occur when either a brake torque is
applied at the driven disk or — not reported in the results
section but similar to the effect of the brake torque — the
moment of inertiaJ, of slaveis increased.
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event-based integration scheme, where computational

resources have to be spent on the location of disconti-
nuities, the contact modeling is suitable for simulating

radial dynamics of friction disks.

With the friction model it is possible to perform a nu-
merical parameter study and locate bifurcations in the

systems’ parameter and phase spaces. The dependency

of the sudden jump from one solution to another on a

couple of control parameters has been demonstrated.

3for the single contact point the penalty approach is notiatuc
One could calculate the friction force during sticking frarstatic

equilibrium.



