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Abstract— In this work we consider differentiable families
of triples of matrices ϕ(ξ) = (E(ξ), A(ξ), B(ξ)) with the
parameter vector ξ ∈ Rk, representing families of regu-
larizable singular linear time invariant systems in the form
E(ξ)ẋ(t) = A(ξ)x(t) + B(ξ)u(t), with E(ξ), A(ξ) ∈ Mn(C),
B(ξ) ∈ Mn×m(C) for eachξ, under proportional and derivative
feedback.

The knowledge of a complete system of invariants for
regularizable systems permit us to obtain a canonical reduced
form and describe generic families permitting to analyze the
neighborhood of a given system showing bifurcation diagrams
of a critical points.

I. I NTRODUCTION

We denote byM the space of triples of matrices(E, A,B)
representing families of singular linear time invariant systems
in the form Eẋ(t) = Ax(t) + Bu(t), with E, A ∈ Mn(C)
n-square matrices, andB ∈ Mn×m(C) a rectangular matrix
with n-rows andm-columns.

It is well know, in the case where the pencilλE + µA
is regular the system has a unique solution. So we are
interested in systems with regular pencil or regularizable by
proportional or derivative feedback, that is to say, if there
exists a proportionalFA and/or a derivativeFE feedback
such that the pencilα(E + BFE) + β(A + BFA) is regular.
We will write MR the open and dense subset of regularizable
triples.

Different useful and interesting equivalence relations be-
tween singular systems have been defined. We deal with the
equivalence relation(E′, A′, B′) = (QEP +QBFE , QAP +
QBFA, QBR). with Q,P ∈ Gl(n; C), R ∈ Gl(m;C),
FA, FE ∈ Mm×n(C), that is to say the equivalence relation
accepting one or more, of the following standard transforma-
tions: basis change in the state space, input space, feedback
and derivative feedback.

This equivalence relation preserves the standardizability,
regularizability and controllability characters.

In this paper, we present a complete system of structural
invariants in terms of ranks of certain matrices associated
to the triple (E, A, B) ∈ MR, that permit us to give the
explicit form of reduced triple(E1, A1, B1) without knowing
the transformation matrices reducing the triple.

The knowledge of the complete system of invariants
permit us to study bifurcation diagrams for differentiable
families of triples of matricesϕ(ξ) = (E(ξ), A(ξ), B(ξ))
with the parameter vectorξ ∈ Rk in MR.
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Structurally stable elements are those whose behavior does
not change when applying small perturbations. The concept
of structural stability, in the qualitative theory of dynamical
systems has been widely studied by several authors in control
theory (see [3], [4], for example).

In the case where the system is not structurally stable, we
are interested in the knowledge of the different kind of triples
that we can find in a small neighborhood of the given system.
It is well known that any algorithm for computation reduced
forms computes the exact structure of a nearby element. In
order to make the best decision during the computation of
the reduced form it is important to know how the classes of
triples of the different structures are related to each other.

The Arnold technique of constructing a local canonical
form, called versal deformation, of a differentiable family
of square matrices under conjugation [1] provide a special
parametrization of matrix spaces, which can be effectively
applied to perturbation analysis and investigation of com-
plicated objects like singularities and bifurcations in multi-
parameter dynamical systems [1], [2], [3], [6]. This technique
has been generalized by several authors to matrix pencils
under the strict equivalence [2], [3], pairs or triples of ma-
trices under the action of the general linear group [8], pairs
of matrices under the feedback similarity [6], among others.
In this paper we generalize the study to then-dimensional
multi-input linear dynamical systems, we obtain explicit
versal deformation and we apply it to analyze bifurcation
diagrams in singular points of family of triples of matrices
representing regularizable singular systems.

In the sequel we identify triples of matrices(E, A,B)
with rectangular matrices(E A B) in order to use matrix
expressions.

II. COLLECTION OF INVARIANTS

First of all, we remember the equivalence relation consid-
ered over the space of triples of matrices.

Definition 1: Two triples (E′, A′, B′) and (E, A,B) in
M are called equivalent if, and only if, there exist matrices
Q,P ∈ Gl(n; C), R ∈ Gl(m;C), FE , FA ∈ Mm×n(C),
such that

(E′, A′, B′) = (QEP + QBFE , QAP + QBFA, QBR),

or in a matrix form

(
E′ A′ B′ )

= Q
(

E A B
)



P 0 0
0 P 0

FE FA R




It is easy to check that this relation is an equivalence
relation.



Now, we consider a list of ranks of a certain matrices
associated to the matricesE, A, B in the triple(E,A, B) ∈
M .

Definition 2: We consider the following numbers
1) r0 = rankB
2) r1 = rank

(
λE + µA B

)
, ∀λ, µ ∈ C.

3) r2 = rank
(

E A B
)

4) r3 = (r1
3, . . . , r

`
3, . . .), where

1) r1
3 = rankM1

3 with M1
3 =

(
E B 0
A 0 B

)
∈

M2n×(n+2m)(C)

...
`) r`

3 = rankM `
3 with M `

3 =


E B 0 0 0 0
A 0 B E B 0
0 0 0 A 0 B
0 0 0 0 0 0

. ..




∈

M(`+1)n×(`n+2`m)(C)
5) r4 = (r1

4, . . . , r
`
4, . . .), where

j) rj
4 = rankM j

4 with M j
4 =



E B Cn 0
−λ0E + A 0 Cn−1 0

0 0 Cn−2 0

. . .
E B C2 0

−λ0E + A 0 C1 B




whereCi =
{ −λ0E + A if i = j

0 if i 6= j
, for j =

1, 2, . . ..
6) r5 = (r1

5, . . . , r
`
5, . . .), where

p) rj
5 = rankM j

5 with M j
5 =



A B . . . 0 0 C` 0
E 0

.. .
A B C1 0
E 0 C0 B




whereCi =
{

E i = j,
0 i 6= j

, for j = 1, 2, . . ..

7) Eachλ0 ∈ C such that rank(λ0E −A) < rank(λE −
A B) ≤ rank(λE + µA B).

We denote byσ(E,A, B) = {λ0 | rank(λ0E − A B) <
rank(λE −A B)} and we will call spectra of the triple.

Remark 1:We are interested inr4 for each λ0 ∈
σ(E,A, B).

Proposition 1: In the setM of singular systems, theri

numbers as well allλ0 ∈ σ(E,A, B), are invariant under
the equivalence relation considered.

Proof: Let (E, A,B), (E′, A′, B′) be two equivalent
triples in M , then, there exist matricesQ,P ∈ Gl(n;C),
R ∈ Gl(m; C), FE , FA ∈ Mm×n(C) such that

(
E′ A′ B′ )

= Q
(

E A B
)



P 0 0
0 P 0

FE FA R




So,

1) r′1 = rank
(

λE′ + µA′ B′ )
=

rankQ
(

λE + µA B
)(

P 0
λFE + µFA R

)
=

rank
(

E B
)

= r3,
2) Obvious after equivalence relation definition.

3) r1
3
′ = rank

(
E′ B′ 0
A′ 0 B′

)
=

(
Q 0
0 Q

) (
E B 0
A 0 B

) 


P 0 0
FE R 0
FA 0 R


 =

rank

(
E B 0
A 0 B

)
= r1

5.

r`
3
′ = rank




E′ B′ 0 0 0 0
A′ 0 B′ E′ B′ 0
0 0 0 A′ 0 B′

. . .


 =

(
Q

. . .
Q

)
M `

3




P 0 0
FE R 0
FA 0 R

P 0 0
FE R 0
FA 0 R

. . .




=

rankM j
5 = rj

5.

Analogously, we can prove the invariance for 4, 5, 6.
This collection of invariants constitutes a complete system

because they permit to deduce the canonical reduced form
for regularizable systems.

Ther3-numbers permit us to obtain controllability indices
in the following manner. Callingr0

3 = rankB, we define the
ρ-numbers in the following manner

ρ0 = r0
3

ρ1 = r1
3 − r0

3 − n
ρ2 = r2

3 − r1
3 − n

...
ρs = rs−1

3 − rs
3 − n

Finally the controllability indicesk1, . . . , kp for singular
systems as the integersk1 ≥ . . . ≥ kp such that[k1, . . . , kp]
is the conjugate partition of[ρ0, ρ1, . . . , ρs]. Recall that if
the system is controllable thenk1 + . . . + kp = n.

For eachλ1, . . . , λs in σ(E,A, B), ther4-numbers permit
us to obtain the Segre characteristic in the following manner,
for each eigenvalueλi the Segre characteristic of this eigen-
value is the conjugate partition of a[n − ν1, ν1 − ν2, ....],
where

νl = τn−1
l − (n− 1)n

Analogously we prove thatr5-numbers describe the∞-
poles.

Now, we are going to describe the canonical reduced forms
under this equivalence relation for multi-inputn-dimensional
standardizable generalized systems and the case wheren = 2
andm = 1.

Proposition 2: Let (E,A, B) be an-dimensionalm-input
regularizable system. Then, it can be reduced to(Ec, Ac, Bc)



with Ec =
(

I1

N1

)
, Ac =

(
A2

I2

)
, Bc =

(
B1

0

)

where(A′1, B
′
1) is in its Kronecker canonical form and the

Kronecker indices, eigenvalues and Segre characteristic of
(A1, B1) are controllability indices, eigenvalues and Segre
characteristic of(E, A, B), as well ther5-numbers gives us
the structure of nilpotent matrixN1.

Remark 2: In general, let(E, A, B) be a singular not
necessarily regularizable, it can be reduced to

((
0

E′
1

)
,

(
0

A′1

)
,

(
Ir 0
0 0

))

and (E′
1, A

′
1) in its Kronecker canonical form as a pencil

λE′
1 + A′1, (see [5]).

III. E QUIVALENCE RELATION AS A L IE GROUP ACTION

Let us consider the following Lie groupG = Gl(n; C)×
Gl(n;C)×Gl(m; C)×Mm×n(C)×Mm×n(C), acting on
M . The product? in G is given by

(Q1, P1, R1, FE1 , FA1) ? (Q2, P2, R2, FE2 , FA2) =
(Q2Q1, P1P2, R1R2, FE1P2 + R1FE2 , FA1P2 + R1FA2)

beinge = (In, In, Im, 0, 0) its unit element.
The actionα : G ×M −→ M of the Lie groupG on M

defined by

α((Q, P, R, FE , FA), (E, A, B)) =
(QEP + QBFE , QAP + QBFA, QBR)

give rise to the equivalence relations inM in §1 which we
will call p-d-feedback-equivalence.

From now on, we will make use of the following notation:
g = (P, Q,R, U, V ) ∈ G, andx = (E, A, B) ∈ M .

Given a triplex0 = (E0, A0, B0) ∈ M we define the maps

αx0(g) = α(g, x0). (1)

The equivalence class of the triplex0 with respect to theG-
action, called theG-orbit of x0, is the range of the function
αx0 and is denoted by

O(x0) = Imαx0 = {αx0(g) | g ∈ G}. (2)

The stabilizer ofx0 under theG-action is the null-space
of the functionαx0 − x0. We denote it by

Stab(x0) = {g ∈ G | αix0(g) = x0}. (3)

Remark 3:The mapsαx0 are clearly differentiable and
O(x0), Stab(x0) are smooth submanifolds ofM and G,
respectively.

IV. M INIVERSAL DEFORMATIONS

First, we recall the definition of versal deformations. Let
M be a smooth manifold.

Definition 3: Let U0 be a neighborhood of the origin of
Ck. A deformationϕ(µ) of x0 is a smooth mapping

ϕ : U0 −→ M

such thatϕ(0) = x0. The vectorλ = (µ1, . . . , µ`) ∈ U0 is
called the parameter vector.
The deformationϕ(µ) is also calleddifferentiable familyof
elements ofM .

Let G be a Lie group acting smoothly onM . We denote
the action ofg ∈ G on x ∈ M by g ◦ x.

Definition 4: The deformationϕ(µ) of x0 is calledversal
if any deformationϕ′(ξ) of x0, whereξ = (ξ1, . . . , ξk) ∈
U ′0 ⊂ Ck is the parameter vector, can be represented in some
neighborhood of the origin as

ϕ′(ξ) = g(ξ) ◦ ϕ(φ(ξ)), ξ ∈ U ′′0 ⊂ U ′0, (4)

whereφ : U ′′0 −→ C` and g : U ′′0 −→ G are differentiable
mappings such thatφ(0) = 0 andg(0) is the identity element
of G. Expression means that any deformationϕ′(ξ) of x0

can be obtained from the versal deformationϕ(λ) of x0 by
an appropriate smooth change of parametersλ = φ(ξ) and
an equivalence transformationg(ξ) smoothly depending on
parameters.

A versal deformation having minimal number of parame-
ters is calledminiversal.

The following result was proved by Arnold [1], in the case
whereGl(n; C) acts onMn(C). It provides the relationship
between a versal deformation ofx0 and the local structure
of the orbit.

Theorem 1 (8): 1. A deformationϕ(λ) of x0 is versal
if and only if it is transversal to the orbitO(x0) at x0.

2. Minimal number of parameters of a versal deformation
is equal to the codimension of the orbit ofx0 in M ,
` = codimO(x0).

Let {v1, . . . , vk} be a basis of any arbitrary comple-
mentary subspace(Tx0O(x0))c to Tx0O(x0) (for example,
(Tx0O(x0))⊥).

Corollary 1: The deformation

x : U0 ⊂ Ck −→ M, x(µ) = x0 +
k∑

i=1

µivi (5)

is a miniversal deformation.
The Lie groupG act smoothly onM . Thus we can apply

these results to deduce explicit miniversal deformations.
Proposition 3: Let x0 = (E, A, B) be a triple of matrices.

Let {u1, . . . , uk}, be a basis of the vector subspace

Tx0O(x0)⊥ = {(X,Y, Z) ∈ M | EX∗ + AY ∗ + BZ∗ = 0,
X∗E + Y ∗A = 0, X∗B = 0, Y ∗B = 0, Z∗B = 0}

Then the maps defined by

ϕ(µ1, . . . , µk) = x0 + µ1u1 + . . . + µkuk

is a miniversal deformation with respect to theG-action.
Remark 4: If E = In, Tx0O(x0)⊥ = {(X, Y, Z) | X∗ =

−Y ∗, AY ∗−Y ∗A+BZ∗ = 0, X∗B = 0, Y ∗B = 0, Z∗B =
0}, that corresponds with the miniversal orthogonal deforma-
tion of (A,B) under block-similarityT(A,B)O(A, B)⊥ =
{(Y,Z) | AY ∗ − Y ∗A + BZ∗ = 0, X∗B = 0, Y ∗B =
0, Z∗B = 0}, (see [6]).

In order to describe the miniversal orthogonal deformation
for regularizable triples, we observe that we can consider
the triple in its canonical reduced form. So, partitioning

the matricesX∗ =
(

X1 X2

X3 X4

)
, Y ∗ =

(
Y1 Y2

Y3 Y4

)
,



Z∗ =
(

Z1 Z2

)
following the blocks on the matricesE,

A, B in its canonical reduced form, we obtain the following
independent systems

X1 + A2Y1 + B1Z1 = 0
X1 + Y1A2 = 0

X1B1 = 0
Y1B1 = 0
Z1B1 = 0





according remark, this system corresponds to the miniversal
orthogonal deformation to the standard system(I, A2, B1)

N1X4 + Y4 = 0
X4N1 + Y4 = 0

}
⇔ −N1X4 = Y4

X4N1 −N1X4 = 0

}

this system corresponds to the miniversal orthogonal defor-
mation to the square matrixN1 (see [1],

N1X3 + Y3 = 0
X3 + Y3A2 = 0

X3B1 = 0
Y3B1 = 0





having zero-solution, and

X2 + A2Y2 + B1Z2 = 0
X2N1 + Y2 = 0

}
.

In order to solve the last system, we partition the systems
into independent subsystems corresponding to the blocks

in the matrix A2 =
(

N2

J

)
, so B1 =

(
B11

0

)
,

obtaining
X2

1 −N2X
2
1N1 + B1Z2 = 0}

and
X2

2 − JX2
2N1 = 0}

with solutions

X2
2 =




X11 . . . X1r

...
...

Xs1 . . . Xsr


 ,

Xij =




0 . . . 0 x1 . . . xm

0 . . . x1 x2 . . . xm+1

... ... ...

x1 . . . . . . xn




Xij =




0 . . . 0 x1

0 . . . x1 x2

...

x1 . . . n−1 xn




or

Xij =




0 . . . 0 0
...

...
0 . . . 0 0
0 . . . 0 x1

0 . . . x1 x2

... ...

x1 . . . xn−1 xn




depending on the size of the nilpotent submatrices inN1 and
N2.
And X2

2 = 0.
Remark 5:Given a triple(E, A, B) ∈ MR in its canonical

reduced form, we can consider the minimal miniversal de-

formation(E +X, A+Y,B +Z) with X =
(

0 0
X3 X4

)
,

Y =
(

Y1 0
0 0

)
, Z =

(
Z1 0

)
, (A2 + Y1, B1 + Z1)

a minimal deformation of the pair(A1, B1), N1 + X4 a
miniversal deformation of the square matrixN and X3 =
(Xij) with

Xij =




0 . . . 0
...

...

0 . . . 0
x1 . . . xn




Xij =




0 . . . 0 . . . 0
...

...
...

0 . . . 0 . . . 0
0 . . . x1 . . . xn




corresponding to size in the nilpotent submatricesN1 and
N2.

V. THE STRATA

The spaceMR of all regularizable triples of matrices is
formed by the disjoint union of all orbits of the triples and
the frontier of each orbit is formed by orbits of strictly lower
dimension. Given two triples(Ei, Ai, Bi) in M , we can ask
when the closure ofO(E1, A1, B1) includes the closure of
O(E2, A2, B2).

There are infinitely orbits having the same discrete invari-
ants varying only in the values of the continuous ones.

In order to obtain a finite partition preserving the orbit
structure, we group the orbits with the same type, we call
this set stratum inMR and we will writeSt(E, A,B). There
are only finitely many strata, each an uncountable union of
orbits or a unique orbit partitioningMR.

Proposition 4: Any stratum is a constructible and con-
nected subset ofMR.

Proof: Let (E,A, B) in its canonical reduced form with
parametersλ1, . . . , λs ∈ C, andC ′ = {(λ1, . . . , λs} ⊂ C |
λi 6= λj ,∀1 ≤ i, j ≤ s}. We consider the mapρ : G ×
C ′ −→ M such thatρ((P,Q, R, FE , FA), (λ1, . . . , λs)) =
α((P, Q,R, FE , FA), (E, A,B)). The domainG×C ′ is con-
structible inC2n2+m2+2nm×C ′, and the mapping is regular
rational, so by Chevalley’s theorem its image (stratum) is
constructible.

Note also that this stratum is connected since the setG×C ′

is connected andρ is continuous.

Lemma 1:Let ϕ1 : Λ −→ MR be a de-
formation of (E, A,B) minitransversal to the orbit



O(E,A, B). Let V ⊂ G a subvariety minitransver-
sal to Stab(E, A,B) = {(Q,P, R, FE , FA) ∈ G |
α((Q,P, R, FE , FA), (E, A,B)) = (E, A, B)}. Then:

β : Λ× V −→ MR

(µ, (Q, P, R, FE , FA)) −→ Q(E(µ) A(µ) B(µ))

(
P 0 0
0 P 0

FE FA R

)

with µ = (µ1, ..., µs) and (E(µ), A(µ), B(µ)) = ϕ1(µ), is
a diffeomorphism at(0, I).

Proof: The inverse function theorem ensures thatβ is
a local diffeomorphism at(0, I), if and only if dβ(0,I) is a
diffeomorphism.

Taking into account thatdim(V × Λ) = 2n2 + mn =
dim M , it suffices to observe thatdβ is surjective.

Lemma 2:Let (E, A, B) be a triple inM , O(E,A, B) its
orbit, St(E, A, B) its stratum, andΓ the variety transversal
to the orbit considered in remark 4. Then, in a neighbor-
hood of (E, A,B), St(E, A,B) is a subvariety regular en
(E, A,B) if and only if St(E,A, B) ∩ Γ is.

Proof: SupposeSt(E, A,B) regular at (E, A,B).
Taking into account thatΓ is transversal toO(E, A, B), it
also is transversal toSt(E,A, B). Then,St(E,A, B)∩Γ is
regular at(E, A,B).

Conversely, supposeSt(E, A,B)∩Γ regular at(E, A,B).
The local triviality given in lemma 2, we have

St(E,A, B) = β((St(E,A, B) ∩ Γ)× V )

locally in (E, A, B). Then St(E, A, B) is regular at
(E, A,B).

Now we analyzeSt(E,A, B) ∩ Γ.
Proposition 5: Let (Ec, Ac, Bc) ∈ St(E, A, B) for some

stratum.

i) If (X, Y, Z) 6= (0, 0, 0), then(Ec, Ac, Bc)+(X, Y, Z) /∈
O(E, A, B).

ii) (Ec, Ac, Bc) + (X, Y, Z) ∈ E(E, A,B) if and only

if X = 0, Z = 0, Y =
(

Y1 0
0 0

)
, A1 + Y1 =

(
N2

J2

)
+

(
0

Y14

)
and J + Y14 have the

same Segre symbol thanJ (that is to say having the
same Jordan form varying at the most in the values of
eigenvalues).
Proof: It suffices to compute the collection of invariants

for a minimal deformation of the triple.
Theorem 2:The strata are submanifolds ofMR.

Proof: Let (E, A,B) ∈ MR.
It is obvious for strataSt(E, A, B) that they are orbits
We are going to proof for the other strata. By the homo-

geneity of the orbits we can suppose the triples(E,A, B) in
its canonical reduced form.

By lemma 2 it suffices to prove thatSt(E,A, B) ∩ Γ, is
regular at(E,A, B). We denote byr the size of the matrix
J in Ac, notice that if the stratum is not an orbitr 6= 0.

For eachSt-stratum we define the map:
φ : Mr(C) −→ MR

C −→ (E, A,B)

with E = Ec, A =




N2

J + C
I2


, B = Bc.

This map is an embbebding such thatφ(St(J) ∩ Γ(J) =
St(E, A, B), whereSt(J) corresponds to the Segre stratum
in the space of square matrices andΓ(J) the variety transver-
sal to the orbit ofJ .

Taking into account thatSt(J)∩Γ(J) is regular (see [7]),
we have thatSt(E, A,B) ∩ Γ is regular henceSt(E, A,B)
is regular.

VI. B IFURCATION DIAGRAMS

The knowledge of the versal deformation of a triple
(E,A, B) gives us a method for investigating the possible
canonical reduced form of a perturbation of(E, A,B).

A local perturbation of a triple of matrices(E,A, B), is
a family of triples of matrices depending differentiable on
parameters defined in a neighborhood of(E,A, B), and it is
induced by a versal deformation. Taking into account that the
miniversal deformation of a triple is transversal to its orbit so
transversal to its stratum, the miniversal families are generic
in the sense that in the space of differentiable families of
triples of matrices, the transverse families constitutes a dense
set. So we are going to analyze generic families with few
parameters.

Given a triple of matrices the homogeneity of the orbit
permit us to consider it in its canonical reduced form.

We can analyze for example, the case of 2-dimensional
1-input generalized systems, we have.

1) If the triple (E, A, B) is in the stratumSt(1) ={((
1 0
0 1

)
,

(
0 1
0 0

)
,

(
0
1

))}
, the miniver-

sal deformation is(E, A, B), then any triple in a neigh-
borhood is equivalent to it. So the triple is structurally
stable.

2) Let (E, A, B) be a triple in St(2) ={((
1 0
0 1

)
,

(
0 0
0 a

)
,

(
1
0

))}
, in a

neighborhood of this triple, a generic family is
the one-parametric:

((
1 0
0 1

)
,

(
0 0
y1 a

)
,

(
1
0

))

Computing the controllability indices, eigenvalues and
Segre characteristic for all different values of parame-
ters we have that the bifurcation diagram is:

{
if y1 6= 0 the triple is inSt(1)
if y1 = 0 the triple is inSt(2)

3) Let (E,A, B) in St(3) ={((
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0
1

))}
, in this

case the triple is not regularizable but it is easy to
compute the minimal miniversal deformationΓ as
well St(3) ∩ Γ. In a neighborhood of this triple, a
generic family is the two-parametric:

((
0 0
x2 x4

)
,

(
1 0
0 1

)
,

(
1
0

))



Computing the invariants we have that the bifurcation
diagram is:





if x2 6= 0 the triple is inSt(1)
if x4 6= 0, x2 = 0 the triple is inSt(2)
if x4 = 0, x2 = 0 the triple is inSt(3).

4) There are not three-parametric generic families

In the case of 3-dimensional 1-input generalized systems,
we present the following example

Let (E, A,B) be a triple with E =




5 8 3
1 4 2
1 −1 2




A =




5 8λ 8 + 3λ
1 4λ 4 + 2λ
−1 −λ −1 + 2λ


, B =




5
1
−1


 computing

the invariants given in proposition 1, we obtain that the
continuous invariants areλ and the discrete onesk1 = 1,
ν1 = 2, ν2 = 1, so its canonical reduced form isE1 = I3

A1 =




0 0 0
0 λ 1
0 0 λ


, B1 =




1
0
0


 ∈ M3×1(C).

A generic family in a neighborhood of the triple is
the equivalent family of the following three-parametric

(E1, A1, B1) + {(0, Y, 0)} with Y =




0 0 0
y21 0 0
y31 y32 0


.

The family contains the same type of triples than
(E1, A1, B1 + {(0, Y, 0)}, so we analyze this one, and that
it contain the following types of triples

a) if y32y
2
21 +y21y31y33−y2

31 6= 0 the triple is equivalent

to (E′, A′, B′) with E′ = I3, A′ =




0 1 0
0 0 1
0 0 0


,

B′ =




0
0
1


 ∈ M3×1(C).

b) if y32y
2
21 + y21y31y33 − y2

31 = 0 If we make a change
of coordinates defined byy21 = x, y32 = z − t2

4 ,
y31 = y + x t

2 , y33 = t, the above equation become
x2z − y2 = 0. This is the Whitney umbrella surface
along thet axis. In this case we can find the following
triples

a) x = y = z = 0 for all t, the triple is
equivalent to(E′, A′, B′), with E′ = I3 A =


0 0 0
0 λ′ 1
0 0 λ′


, B′ =




1
0
0


 ∈ M3×1(C).

b) x = y = 0, z 6= 0 for all t, the triple is
equivalent to(E′, A′, B′), with E′ = I3 A =


0 0 0
0 λ′ 0
0 0 λ′′


, B′ =




1
0
0


 ∈ M3×1(C).

c) x2z− y2 = 0, x 6= 0 or y 6= 0 for all t, the triple
is equivalent to(E′, A′, B′), with E′ = In A =


0 1 0
0 0 0
0 0 λ′


, B′ =




0
1
0


 ∈ M3×1(C).

VII. C ONCLUSIONS

Knowing a complete system of invariants for triples of
matrices representing regularizable singular linear systems
under proportional and derivative feedback, we can explicit
a miniversal deformation that permit us to analyze the bifur-
cation diagrams of singular points of differentiable family of
triples.
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