Bifurcation diagrams of families of regularizable singular systems
under proportional and derivative feedback
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Abstract—In this work we consider differentiable families Structurally stable elements are those whose behavior does
of triples of matrices (&) = (E(&), A(€), B(€)) with the  not change when applying small perturbations. The concept
parameter vector £ € R°, representing families of regu- o styyctural stability, in the qualitative theory of dynamical
larizable singular linear time invariant systems in the form systems has been widelv studied by several authors in control
B(€)i(t) = A(€)x(t) + B(E)u(t), with E(€),A(¢) € Ma(C), Y y y
B(€) € Myxm(C) for eaché, under proportional and derivative  theory (see [3], [4], for example).
feedback. In the case where the system is not structurally stable, we

The knowledge of a complete system of invariants for are interested in the knowledge of the different kind of triples
;g?r;"ﬂzdaﬂgs?rfisggmzr?:rzg"ifta‘rjnsilitgs‘)bé?im”it%ncar;g“;ﬂl “Zeg“tchzd that we can find in a small neighborhood of the given system.
neighborhood of a given system sho?/ving bifl?rcation d)i/agrams It is well known that any algorithm for computation reduced
of a critical points. forms computes the exact structure of a nearby element. In

order to make the best decision during the computation of
. INTRODUCTION the reduced form it is important to know how the classes of
triples of the different structures are related to each other.
The Arnold technique of constructing a local canonical
rm, called versal deformation, of a differentiable family
. . of square matrices under conjugation [1] provide a special
n-square matrices, anl € Mx(C) a rectangular matrix para?metrization of matrix spatjzegs, whic[h]cre)m be effecr'zively
with n-rows andm-columns. . . . : .
. . . applied to perturbation analysis and investigation of com-
It is well know, in the case where the pendl + uA bE(Iicated objects like singularities and bifurcations in multi-

We denote byl the space of triples of matricé&’, A, B)
representing families of singular linear time invariant systemf%
in the form E%(t) = Axz(t) + Bu(t), with E; A € M,,(C)

IS regular 'the system 'has a unique _solut|on. SQ We Alrameter dynamical systems [1], [2], [3], [6]. This technique
mterest.ed In systems W'th regular pencil or regularlgable as been generalized by several authors to matrix pencils
prc_JportlonaI or c_ierlvatlve feedback, t_hat_ is to say, if ther%nder the strict equivalence [2], [3], pairs or triples of ma-
eX|srt]stha tptrr?portlonﬂe[ﬂ% a]r;(}zor a dj'va%V;FE.feedb?Ck trices under the action of the general linear group [8], pairs
such that the penc (E+BFp)+((A+BFy) is regu ar-  of matrices under the feedback similarity [6], among others.
We will write M the open and dense subset of regulanzablﬁr1 this paper we generalize the study to thelimensional

triples. multi-input linear dynamical systems, we obtain explicit

Different useful and interesting equivalence relations b‘?iersal deformation and we apply it to analyze bifurcation

twe(_an singular systerps rllav/e been defined. We deal with tH%grams in singular points of family of triples of matrices
equivalence reIatlan ,A',B") = (QEP+QBFg, QAP+ representing regularizable singular systems.

QBFa, @BR). with Q. P € Gl(n;C), R € GUm;C), |5 e sequel we identify triples of matricd¥, A, B)
Far Ip € Minxn(C), that is to say the equivalence relation,,;, rectangular matrice§E A B) in order to use matrix
accepting one or more, of the following standard tranSform%’xEressions.

tions: basis change in the state space, input space, feedbac

and derivative feedback. [I. COLLECTION OF INVARIANTS
This equivalence relation preserves the standardizability, First of all, we remember the equivalence relation consid-
regularizability and controllability characters. ered over the space of triples of matrices.

In this paper, we present a complete system of structural Definition 1: Two triples (E’, A’, B') and (E, A, B) in
invariants in terms of ranks of certain matrices associategy are called equivalent if, and only if, there exist matrices
to the triple (£, A, B) € Mg, that permit us to give the Q,P ¢ GI(n;C), R € GI(m;C), Fg,Fa € M;,xn(C),
explicit form of reduced tripl€ £, A;, B1) without knowing  such that
the transformation matrices reducing the triple. P

The knowledge of the complete system of invariants (B, A, B') = (QEP + QBFg, QAP + QBF4, QBR),
permit us to study bifurcation diagrams for differentiablegr in a matrix form

families of triples of matricesp(¢) = (E(), A(§), B(£)) P 0 0
with the parameter vectar € R* in Mx. ( E A B ) _ Q( E A B ) 0 P 0
Fr F4 R

M. Isabel Gar@-Planas is with Universitat Padditnica de . . A : .
Catalunya, C. Mineria 1, Esc. C, 1-3, 08038 Barcelona, Spain; It is easy to check that this relation is an equivalence

maria.isabel.garcia@upc.edu relation.



Now, we consider a list of ranks of a certain matrices 1) r} = rank ( AE' +puA’ B') =

associated to the matricés A, B in the triple(E, A, B) € P 0 _
M rank@ ( AE + pA B></\FE+,UFA R) =
Definition 2: We consider the following numbers rank( E B ) =rs,
1) ro =rankB 2) Obvious after equivalence relation definition.
2) ry=rank( \AE+puA B ), VA peC. 3) 11’ _ rank E: B’ 0 _
3) m=rank( E A B) A 0 B
4) r3=(ri,...,r§, ...), where Q 0 E B 0 F]’D ](33 8
1)r§:rankM§WithM§:(i§g>e <0Q><AOB> FjOR
Moy, s (maom (C E B 0 o
2nx (n+2m) (C) rank(A 0 B)—r5.
E B 0 0 0 O
. A 0 B E B 0
0 rk . B: . (r)ank0M§0 with M = Morank| 5 0 0 A o B _
A 0 B E B 0
0O 0 0 A 0 B c ; 1?2 (0)
00 0 0 0 0 9 =y
( ) pooe s
M(Z+1)n><(£n+2€m) (C) Q Fa 0 R
5 rqy=(r},...,74,...), where
3) i = rankMI  with M = rank M7 = 7.
_AOEJFA ? Ci’il 8 Analogously, we can prove the invariance for 4, 5, i
0 0 Crn-2 0 This collection of invariants constitutes a complete system
because they permit to deduce the canonical reduced form
E B Co 0 for regularizable systems.
\E 2B+ A 0 @ B The rg-numbers permit us to obtain controllability indices
—MNE+A if i=3j . . . . "
whereC; = { 0 if it for j = in the following manner. Calling9 = rankB, we define the
1,2,.... p-numbers (i)n the following manner
6) 5 = (ri,...,7t,...), where Po =75
j j ; j pr =Ty —Tr3—n
p) 11 = rankM;  with M = py =12—rl_p
A B ... 00 C/ 0 308
E 0
ps =rit—ri—n
Finally the controllability indicesk, ..., k, for singular
A B C 0 systems as the integeks > ... > k, such thatk, ..., k]
E ) 0 , Co B is the conjugate partition ofpg, p1,. .., ps]. Recall that if
whereC; = { ];J) z ;z’ , for j=1,2,....  the system is controllable thén + ...+ k, = n.
7) Each)g € C such that rank\oE — A) < rank(\E — For each\y,...,\s ino(E, A, B), thers-numbers permit
A B) <rank(AE + pA B). us to obtain the Segre characteristic in the following manner,

We denote byo(E, A, B) = {)\o | rank(A\gE — A B) < for each eigenvalug; the Segre characteristic of this eigen-
rank(AE — A B)} and we will call spectra of the triple.  value is the conjugate partition of @ — vy, 1 — s, ....],
Remark 1:We are interested inr, for each \; € where

o(E, A, B).
Proposition 1:In the setM of singular systems, the; w=1"1=(n-1)n
numbers as well alhy € o(E, A, B), are invariant under
the equivalence relation considered. Analogously we prove thats-numbers describe theo-
Proof: Let (E, A, B), (E',A’,B’) be two equivalent poles.
triples in M, then, there exist matriceQ, P € Gli(n;C), Now, we are going to describe the canonical reduced forms
R € Gl(m;C), Fg,Fa € My,x»n(C) such that under this equivalence relation for multi-inputdimensional
P 0 0 standardizable generalized systems and the case wher2
(E A& B)=Q(E A4 B)| o P o andm = 1.
Fr Foa R

Proposition 2: Let (E, A, B) be an-dimensionaln-input
So, regularizable system. Then, it can be reducetfg A., B.)



with E, = L LA, = Az L) B, = Bl) Let G be a Lie group acting smoothly ol/. We denote

,_ N Ny, . the action ofg € G onxz € M by go z.
where (A7, By) is in its Kronecker canonical form and the  psinition 4: The deformationy(

1 . L u) of zq is calledversal
Kronecker indices, eigenvalues and Segre characteristic i?fany deformationy’ (¢) of zo, where¢ = (&1,...,&,) €
(A1, B1) are controllability indices, eigenvalues and Segrg — ¢ is the parameter vector, can be représen}ed in some
characteristic of E, A, B), as well thers-numbers gives us ngighborhood of the origin as '
the structure of nilpotent matri®;.
Remark 2:In general, let(E, A, B) be a singular not O'(&) =g(&) op(p(8), el cU, 4)

necessarily regularizable, it can be reduced to . .
y reg where¢ : U — C* andg : U} — G are differentiable

<< 0 > ( 0 > ( I. 0 )> mappings such that(0) = 0 andg(0) is the identity element
By )P\ A1 )7\ 0 0 of G. Expression means that any deformatipf{¢) of
and (E}, A) in its Kronecker canonical form as a pencilcan be obtained from the versal deformatiofi) of z by
/ / an appropriate smooth change of parameters ¢(¢) and
AE] + Al (see [5)]). . . .
an equivalence transformatigr{¢) smoothly depending on
I11. EQUIVALENCE RELATION AS A LIE GROUP ACTION parameters.
Let us consider the following Lie groug = Gi(n; C) x A versal deformation having minimal number of parame-
Gl(n; C) x GU(m; C) X Myyxn(C) X Mpxn(C), acting on  ters is calledminiversal

M. The productx in G is given by The following result was proved by Arnold [1], in the case

(Q1, Pr, R, Fpy, Fay) x (Q2, P2, R2, Fpy, Fay) = whereGl(n; C) acts onM,,(C). It provides the relationship
(Q2Q1, PPz, RiR2, FE1Py 4 R1Fp,, Fay Py 4+ R1Fa,) between a versal deformation of and the local structure
beinge = (I,,, I, I;n,0,0) its unit element. of the orbit. _ _
The actiona : G x M — M of the Lie groupG on M Theorem 1 (8): 1. A deformationy(\) of z( is versal
defined by if and only if it is transversal to the orbi®(z) at .
a((Q, P, R, F, Fa),(E,A,B)) = 2. Minimal number of parameters of a versal deformation
(QEP + QBFE,QAP + QBFa,QBR) is equal to the codimension of the orbit of in M,
give rise to the equivalence relations i in §1 which we ¢ = codim O(zo). _ ,
Let {v1,...,vx} be a basis of any arbitrary comple-

will call p-d-feedback-equivalence. N
From now on, we will make use of the following notation:mentaw subspactl, O(z0))” 10 T, O(x0) (for example,

1
g=(P,Q,R.U,V)€G, andz = (E, A, B) € M. (Troo(ﬁo)) ) e deformat
Given a triplexy = (Eyp, Ao, Bo) € M we define the maps Corollary 1: The deformation

k
Ao (9) = (g, o). @) iUy CF — M, () =x0+ Zuivi 5)
The equivalence class of the triplg with respect to thej- i=1

action, called thej-orbit of z, is the range of the function is a miniversal deformation.

oz, and is denoted by The Lie groupG act smoothly onM/. Thus we can apply
these results to deduce explicit miniversal deformations.

Olao) = Im azy = {0y (9) | g € G} ) Proposition 3: Letz, = (E, A, B) be a triple of matrices.
The stabilizer ofry under theG-action is the null-space Let {u4,...,ux}, be a basis of the vector subspace
of the functiona,, — zo. We denote it by T,,0(x0)t = {(X,Y,Z) € M | EX* + AY* + BZ* =0,
Stab(xo) ={g € G | ip,(9) = 20} 3 X*E+Y*A=0,X*B=0,Y*B=0,Z*B =0}

Remark 3: The mapsca,, are clearly differentiable and Then the maps defined by
O(xp), Stab(zy) are smooth submanifolds o/ and G, B
respectively. O(p1, .- k) = To + paus + ... + g
is a miniversal deformation with respect to tgeaction.

_ o _ Remark 4:If E = I,,, T,,O(x9)* = {(X,Y,2) | X* =
First, we recall the definition of versal deformations. Let y« Ay+ y*Ay1pBz* =0, X*B=0,Y*B=0,7*B =

IV. MINIVERSAL DEFORMATIONS

M be a smooth manifold. 0}, that corresponds with the miniversal orthogonal deforma-
Definition 3: Let U, be a neighborhood of the origin of {jgn of (A, B) under block-similarity T4 g O(A, B)* =
C*k. A deformationp(u) of x( is @ smooth mapping ((Y,Z) | AY* — Y*A + BZ* = O,X*B — 0,Y*B =
o Uy — M 0,Z*B =0}, (see [6]). N _
In order to describe the miniversal orthogonal deformation
such thatp(0) = zo. The vector\ = (u1,..., ) € Uy i for regularizable triples, we observe that we can consider
called the parameter vector. the triple in its canonical reduced form. So, partitioning

The deformationy() is also calleddifferentiable familyof . . X X5 . YT Y,
elements ofM/. the matricesX™ = X; Xy YT = Y; Y, )



7% = ( Z1 Zo ) following the blocks on the matriceE, depending on the size of the nilpotent submatrice¥jrand
A, B in its canonical reduced form, we obtain the followingN,.

independent systems And X2 = 0.
X+ AYi + B Zi =0 Remark 5:Given atnple(Ej A,B) € ME." in its qa_nomcal
_ reduced form, we can consider the minimal miniversal de-
X1+Y14, =0 0 0
X,B; =0 formation(E+ X, A+Y, B+ Z) with X = ( Y. X, )
YiB, =0 vi o 3 4
Z\B1 =0 V=179  Z = (21 0), (A +Y1,B1 + Zy)

according remark, this system corresponds to the miniversalminimal deformation of the paifA, B1), N1 + X4 a
orthogonal deformation to the standard systedmAs, B) miniversal deformation of the square matik and X3 =

NiXy+Yy =0 N N Xy =Yy ( ]) 0 0
X4N1+Yy =0 X4N1— N1 X4y =0
this system corresponds to the miniversal orthogonal defor- o
. ) Xij =
mation to the square matri¥; (see [1], 0 0
Nle-l-Y:g =0 rr ... In
Xs+Y34 =0
X3B, =0 0 0 0
YsB1 =0
having zero-solution, and Xij =
0 o ... 0
0 1 ... Ip

Xo+AYo+B1Zy, =0
XoNi1+Yy, =0 |-

. corresponding to size in the nilpotent submatriéés and
In order to solve the last system, we partition the systemg,

into independent subsystems corresponding to the blocks
in the matrix 4, = ( N J ) so By = ( BOH , V. THE STRATA
obtaining The spaceMg of all regularizable triples of matrices is
X2 — Ny,X2N, + B1Z, = 0} formed by the disjoint union of all orbits of the triples and
the frontier of each orbit is formed by orbits of strictly lower
and dimension. Given two triple$F;, A;, B;) in M, we can ask
X3 — JXIN, =0} when the closure 0©(FE, A1, B;) includes the closure of
with solutions O(Ey; Az, By).
There are infinitely orbits having the same discrete invari-
X ... Xir ants varying only in the values of the continuous ones.
X2 = . . In order to obtain a finite partition preserving the orbit
' ' structure, we group the orbits with the same type, we call
this set stratum in/z and we will writeSt(E, A, B). There
0 ... 0 =z ... Tm are only finitely many strata, each an uncountable union of
Y 0 ... 1 T2 ... Tyl orbits or a unique orbit partitioning/g.
v o Proposition 4: Any stratum is a constructible and con-
Ty ... R nected subset al/y.
Proof: Let (E, A, B) in its canonical reduced form with
0 ... 0 = parameters\y,..., A\, € C, andC’ = {(\1,..., A} C C'|
Xy = 0 T T2 Ai # A, V1 < 4,5 < s}. We consider the map : G x
: C' — M such thatp((P,Q, R, Fr, Fa),(A1,...,s)) =
rro.e. M1 Tn a((P,Q, R, Fg,Fa),(E, A, B)). The domairg x C’ is con-
or structible inC2n°+m*+2nm o 7 and the mapping is regular
rational, so by Chevalley’s theorem its image (stratum) is
: : constructible.
0o ... 0 0 Note also that this stratum is connected since th¢€ sef’
Xij = 0o ... 0 x1 is connected ang is continuous.
0o ... T To |
: - Lemma l:iLet ¢y : A — Mg be a de-
T1 ... Tp_1 Tn formation of (F,A,B) minitransversal to the orbit




O(E,A,B). Let V C G a subvariety minitransver- N2

sal to Stab(E,A,B) = {(Q,P,R,Fg,Fa) € G | WthE=E, A= J+C ) B = B..
. P,R,Fp,F.),(E,A B)) = (E,A,B)}. Then: , , , 2
(@ 22 Fa), ( )= } This map is an embbebding such thdSt(J) NT'(J) =
B:AXV — Mg St(E, A, B), whereSt(J) corresponds to the Segre stratum

P 0 0 in the space of square matrices d&hd) the variety transver-
(1:(Q, P, R, Fig, Fa)) — Q(E(u) A(n) B(n)) (P?E ;1 1%) sal to the orbit ofJ.
Taking into account thaf¢(.J)NT'(J) is regular (see [7]),
with u = (u1, ..., pus) and (E(p), A(n), B(p)) = ¢1(n), is  we have thatSt(E, A, B) NT is regular henc&St(E, A, B)
a diffeomorphism ato, I). is regular. [ |
Proof: The inverse function theorem ensures that

a local diffeomorphism ato, I), if and only if d3(o ;) is a VI. BIFURCATION DIAGRAMS

diffeomorphism. The knowledge of the versal deformation of a triple
Taking into account thatim(V x A) = 2n2 + mn = (E, A, B) gives us a method for investigating the possible
dim M, it suffices to observe that3 is surjective. m canonical reduced form of a perturbation (@, A, B).

Lemma 2:Let (E, A, B) be a triple inM, O(E, A, B) its A chal per_turbation of a triple of mgtrice(;E,A,B), is
orbit, St(E, A, B) its stratum, and” the variety transversal @ family of triples of matrices depending differentiable on
to the orbit considered in remark 4. Then, in a neighbo@rameters defined in a neighborhood bt A, B), and it is
hood of (E, A, B), St(E, A, B) is a subvariety regular en induced by a versal deformation. Taking into account that the
(E, A, B) if and only if St(E, 4, B)NT is. miniversal deformation of a triple is transversal to its orbit so

Proof: SupposeSt(E, A, B) regular at(E, A, B). transversal to its stratum, the miniversal families are generic

Taking into account thaF is transversal t@)(E, A, B), it in the sense that in the space of differentiable families of
also is transversal t6t(E, A, B). Then,St(E, A, B)NT is triples of matrices, the transverse families constitutes a dense

regular at(E, A, B). set. So we are going to analyze generic families with few
Conversely, suppos8t(E, A, B)NT regular at(E, A, B). ~Parameters.. . _ _
The local triviality given in lemma 2, we have Given a triple of matrices the homogeneity of the orbit
permit us to consider it in its canonical reduced form.
St(E,A,B) = B((St(E,A,B)NT) x V) We can analyze for example, the case of 2-dimensional

1-input generalized systems, we have.

I(cg:alléllyBBn (E,A,B). Then SH(E,A,B) s regular -at 1) If the triple (E, A, B) is in the stratumSt(1) =
Now we analyzeSt(E, A, B)NT. {(( (1) (1) ), 8 (1) ),( (1) , the miniver-
Proposition 5: Let (E¢, A, Be) € St(E, A, B) for some sal deformation I$E, A, B), then any triple in a neigh-

stratum. borhood is equivalent to it. So the triple is structurally
) If (X,Y,Z) #(0,0,0), then(E,, Ac, Bo)+(X.Y, Z) ¢ stable.

O(E, A, B). 2) Let (E,A,B) be a triple in St(2) =
i) (E.,A.,B.) + (X,Y,Z) € E(E,A,B) if and only { < 1 0 0 0 1 in
i _ _ _ (" 0 _ 01/)°\0 a) 0 ’
FX=02=0Y= ( 0 0 ) Avtn = neighborhood of this “triple, a” generic family is
No n 0 and J + Yy, have the the one-parametric:
Jo Yi4 , . 10 0 0 1
same Segre symbol thah (that is to say having the (( 01 ) ) ( ) , ( 0 ))
same Jordan form varying at the most in the values of hroa
eigenvalues). Computing the controllability indices, eigenvalues and
Proof: It suffices to compute the collection of invariants Segre characteristic for all different values of parame-
for a minimal deformation of the triple. [ ] ters we have that the bifurcation diagram is:
Theorem 2:The strata are submanifolds 81 5. if 41 # 0 the triple is inSt(1)
Proof: ‘Let (E, A, B) € Mg. . { if 4, = 0 the triple is inS(2)
It is obvious for strataSt(E, A, B) that they are orbits _
We are going to proof for the other strata. By the homo- 3) Let (E, A, B) in St(3) =
geneity of the orbits we can suppose the trigl€s A, B) in { 0 0 7 10 7 0 . in this
its canonical reduced form. 0 0 0 1 1 o
case the triple is not regularizable but it is easy to

By lemma 2 it suffices to prove tha&t(FE, A, B)NT, is
regular at(F, A, B). We denote by the size of the matrix _ o
J in A, notice that if the stratum is not an orhit£ 0. well S.t(?’) m F'. In a ne|ghborhoo<_j of this triple, a

For eachSt-stratum we define the map: generic family is the two-parametric:

¢:MT(CC)Y :%?A,B) ((;32 1?4)’<(1) ?)’(é))

compute the minimal miniversal deformation as



Computing the invariants we have that the bifurcation VII. CONCLUSIONS

diagram is: Knowing a complete system of invariants for triples of
if 25 # 0 the triple is inSt(1) matrices reprgsenting regqlari_zable singular linear systgms
if 24 # 0,25 = 0 the triple is INSt(2) undgr. proportional an'd derivative fgedback, we can expllcn
if 24 = 0,25 = 0 the triple is INSt(3). a rr_umve_rsal deforma_ltlon that perm|t us to anglyze the_blfur-
cation diagrams of singular points of differentiable family of
4) There are not three-parametric generic families triples.

In the case of 3-dimensional 1-input generalized systems,
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00 0 |, B=[1]ecMa).
0 0 X 0



