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Abstract
In this paper, a development of randomized and multi-

agent algorithms is presented. The examples and their
advantages are discussed. Different combined algo-
rithms, which are applicable for the multi-sensor multi-
target tracking problem are shown. These algorithms be-
long to the class of methods used in derivative-free opti-
mization and has proven efficacy in the problems includ-
ing significant non-statistical uncertainties. The new al-
gorithm, which is an Accelerated consensus-based SPSA
algorithm is validated through the simulation.The main
feature of that algorithm, combining the SPSA tech-
niques, iterative averaging (“Local Voting Protocol”) and
Nesterov Acceleration Method, is the ability to solve dis-
tributed optimization problems in the presence of signals
with fully uncertain distribution; the only assumption is
the signal’s limitation.
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1 Introduction
An exact solution to any problem if the problem is for-

mulated fully and accurate, but connections and relation-
ships in the real world so complex and diverse that it
is almost impossible to describe many phenomena in a
strictly formalized way. A typical approach in theory is
the choice of a mathematical model close to real pro-
cesses and the inclusion of various perturbations (noise)
in it, related, on the one hand, to the roughness of the
mathematical models and, on the other hand, character-

izing uncontrolled external perturbations on an object or
system. Moreover, real systems are rarely exhaustively
described by limited mathematical models.

In this paper, two types of algorithms, which are ap-
plicable to the problem described above, are discussed:
randomized and multi-agent algorithms. It is important
to note that there is no strict difference between random-
ized and multi-agent algorithms. Many algorithms have
properties of both types, such as Ant colony algorithm,
DNA-computing, Gossip protocol and others, which are
discussed further.

The development of randomized and multiagent algo-
rithms is presented further.

1.1 Randomized Algorithms
The development and accessibility of computer tech-

nology also had an impact on the classical sections of
mathematical statistics, encouraging development and
giving priority to recurrent schemes evaluation. The ba-
sis of a fairly new approach to solving problems of esti-
mation and optimization in bad conditions (for example,
with a degenerate sequence of observations) is the use
of trial disturbances. If, when solving a problem through
the input channels of a system or algorithm, it is possible
to include in consideration some new perturbation with
experimenter-specified or good known statistical proper-
ties, then it can be used to “enrich” information in the
observation channel. Sometimes the role of a test pertur-
bation can be played by a present in system measurable
random process. In control systems, trials can be added
via the control channel, in other cases, a randomized de-
sign of the experiment may play the role of a trial ex-
posure. In the study of the updated system with a trial
perturbation, which is sometimes a problem written in
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a different form of the old one, even using traditional
methods, it is often possible to obtain encouraging re-
sults about the convergence and applicability of new al-
gorithms. One of their remarkable characteristics is the
consistency of assessments under “almost arbitrary” per-
turbations. Algorithms in which one or more steps are
based on a random selection of a rule are called random-
ized algorithms.

1.1.1 Manhattan Project and Monte Carlo
Method Randomized algorithms start with the Man-
hattan Project. The Manhattan Project is a secret US
research project that began during World War II on
August 13, 1942 to develop nuclear weapons [Smyth,
1945]. Before that, since 1939, research was conducted
in the “Uranium Committee” (S-1 Uranium Committee).
Scientists from the United States of America, Great
Britain, Germany and Canada took part in the project.
The project created three atomic bombs: the plutonium
“Thing” (Gadget) (exploded during the first nuclear
test), the uranium “Kid” (Little Boy) (dropped on
Hiroshima on August 6, 1945) and the plutonium “Fat
Man” (Fat Man) (dropped on Nagasaki on August 9,
1945).

It was during this project that a breakthrough occurred
in the development of computers. Before World War II,
computers were people who performed calculations. In
the 18th century, paper calculations provided the first ac-
curate predictions of comet returns and eclipses. Until
the 1940s, there was a small selection of office equip-
ment, adding machines, card sorters, and simple me-
chanical calculators available to assist human comput-
ers. The military needed ballistic tables, tide tables, and
many kinds of large-scale mathematical tables. At Los
Alamos, scientists and engineers needed more precision
than they could get with slide rules, so they called on
groups of people, mostly women, to do the math work.

Before the advent of modern digital computers, com-
plex analog computers were used to perform calcula-
tions. Although the word “computer” has come to mean
several things, analog and digital computers perform the
same basic task: calculating and manipulating numbers
using logical rules. Analog computers have been around
for hundreds of years and include such simple devices as
the slide rule. Analog computers were vital to the work
at Los Alamos. The Los Alamos project also used old
IBM punched-card computers. When the machines were
first brought to the lab, scientists were skeptical. A race
was organized between IBM machines and manually op-
erated computers. Although the two kept pace at first,
after about a day’s work, the manual operators began to
tire while the punch-card machines continued to operate.

First, Enrico Fermi in Italy in the 1930s, and then
John von Neumann and Stanislaw Ulam in the 1940s
at Los Alamos, suggested that the connection between
stochastic processes and differential equations “in re-
verse” could be used. They proposed to use the stochas-
tic approach for approximating multidimensional inte-

grals in the transport equations that arose in connec-
tion with the problem of neutron motion in an isotropic
medium.

The idea was developed by Ulam, who, while play-
ing solitaire while recovering from an illness, wondered
what was the probability that solitaire would work out.
Instead of using the usual combinatorics considerations
for such problems, Ulam suggested that one could sim-
ply run the experiment numerous times and, by counting
the number of successful outcomes, estimate the proba-
bility. But due to the need to conduct a large number of
the same type of experimental actions, the method was
not widely used.

With the advent of the first electronic computer
ENIAC, which could generate pseudo-random num-
bers at high speed and use them in mathematical mod-
els, renewed interest in stochastic methods. Stanislav
Ulam discussed his ideas with John von Neumann, who
ended up using ENIAC for Ulam’s proposed statisti-
cal selection method for various neutron transport prob-
lems [Nicholas Metropolis and Stanislaw Ulam, 1949].
Due to the need to turn off ENIAC for a significant time
at the end of 1946, to continue research on the move-
ment of neutrons, Enrico Fermi even developed a spe-
cialized analog computer, which was given the name
FERMIAC (by analogy with ENIAC, but with an indi-
cation of Fermi’s authorship), which was also on a me-
chanical level, the Monte Carlo method is implemented.

After the beginning of the use of computers, there was
a big breakthrough, and the Monte Carlo method was
used in many problems, for which the stochastic ap-
proach turned out to be more effective than other math-
ematical methods. However, the use of such a technique
also had its limitations due to the need for a very large
number of calculations to obtain results with high accu-
racy.

The year of birth of the term “Monte Carlo method”
is considered to be 1949, when Metropolis and Ulam’s
paper “The Monte Carlo Method” [Nicholas Metropolis
and Stanislaw Ulam, 1949] was published. The name of
the method comes from the name of the commune in the
Principality of Monaco, widely known for its numerous
casinos, since roulette is one of the most widely known
random number generators. Stanislav Ulam writes in his
autobiography The Adventures of a Mathematician that
the name was suggested by Nicholas Metropolis in honor
of his uncle, who was a gambler.

In the 1950s, the method was used for calculations in
the development of the hydrogen bomb. The main merits
in the development of the method at this time belong to
the employees of the US Air Force Laboratories and the
RAND Corporation.

Currently, the main efforts of researchers are aimed
at creating efficient Monte Carlo algorithms for various
physical, chemical and social processes for parallel com-
puting systems.

Sergei Mikhailovich Ermakov [Ermakov S.M., 1971]
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has been studying the Monte Calo method at the Fac-
ulty of Mathematics and Mechanics of St. Petersburg
State University since 1956. One of the main areas of
his scientific interests is the theory of the Monte Carlo
method. Work on the evaluation of multidimensional
integrals, the study of pseudo-random number genera-
tors, the probabilistic solution of linear and nonlinear in-
tegral equations contributed to the transformation of this
computational method from a set of semi-empirical tech-
niques into a rather strictly defined branch of mathemat-
ics.

The Monte Carlo method has been developed not only
in optimization theory, but also in quantum theory. There
is a quantum Monte Carlo method [Moral and Doucet,
2004], which is widely used to study complex molecules
and solids. This name combines several different meth-
ods. The first of these is the variational Monte Carlo
method, which is essentially the numerical integration
of multidimensional integrals that arise when solving
the Schrödinger equation. To solve a problem involving
1000 electrons, 3000-dimensional integrals are required,
and in solving such problems, the Monte Carlo method
has a huge performance advantage over other numeri-
cal integration methods. Another variation of the Monte
Carlo method is the diffusion Monte Carlo method.

1.1.2 Random Search Method Many practical
problems in mathematical form are presented in the form
of problems about finding the root of some function or
about finding a minimum point. In this case, it is often
almost impossible to find an analytical solution. One of
the alternative approaches is the random search method,
in which a sequence of solution estimates is built itera-
tively, choosing a new estimate at each iteration based
on the shift of the old one in a randomly chosen direc-
tion. This method is a direct development of the well-
known trial and error method, when a solution is found
by chance and, if successful, is accepted, and if it fails, it
is rejected in order to immediately turn again to change
as a source of opportunity. Such random behavior is rea-
sonably based on the belief that randomness contains all
possibilities, including the desired solution in all its vari-
ants. The random search method with optimal design
makes it possible to determine the extremum of a func-
tion of a large number of variables with a relatively small
amount of computer time.

The advantage of this method is that, in addition to the
need for the existence of a single local extremum in the
area under consideration, it does not impose significant
requirements either on the type of the set of parameters
by which the optimal value is found, or on the type of de-
pendencies connecting the selected parameters with the
optimizing criterion and restrictions. It allows you to
find all local minima of a function of 10–20 variables
with a complex relief. It is also useful when studying a
function with a single minimum. This method has two
advantages. First, it is suitable for any objective func-
tion, whether it is unimodal or not. Secondly, the prob-

ability of success in attempts does not depend on the di-
mension of the space under consideration. Although this
method does not directly find the optimal solution, it cre-
ates suitable prerequisites for further application of other
search methods. Therefore, it is often used in combina-
tion with one or more other types of methods.

The disadvantage of the method is that it is necessary
to specify in advance the area in which random points
are selected. If we set a region that is too wide, then it
is more difficult to study it in detail, and if we choose a
region that is too narrow, then many local minima may
be outside of it.

A detailed description of the random variable method
can be found in Rastrigin’s book “Statistical Search
Methods” [Rastrigin L. A., 376]

1.1.3 Genetic Optimization Algorithm Another
example of a randomized algorithm is the genetic op-
timization algorithm. The first work on the simulation of
evolution was carried out in 1954 by Nils Barricelli on
a computer installed at the Institute for Advanced Study
at Princeton University [Barricelli, 1954]. His work did
not attract widespread public attention. Since 1957, the
Australian geneticist Alex Fraser has published a series
of papers simulating artificial selection among organ-
isms with multiple controls for measurable characteris-
tics. This groundbreaking allowed the computer sim-
ulation of evolutionary processes and the methods de-
scribed in books by Fraser and Barnell and Crosby to
become a more common activity among biologists from
the 1960s. Fraser’s simulations included all the essen-
tial elements of modern genetic algorithms. In addition
to this, Hans-Joachim Bremermann published a series of
papers in the 1960s that also took the approach of using a
decision population subject to recombination, mutation,
and selection in optimization problems. Bremermann’s
research also included elements of modern genetic algo-
rithms.

Although Barricelli, in his 1963 paper [Barricelli,
1963], simulated the ability of a machine to play a simple
game, artificial evolution became a well-established op-
timization technique after the work of Ingo Rechenberg
and Hans-Paul Schwefel in the 1960s and early 1970s of
the twentieth century – the group Rechenberg was able to
solve complex engineering problems according to evolu-
tionary strategies. Another approach was the evolution-
ary programming technique of Lawrence J. Vogel, which
was proposed to create artificial intelligence.

With the growth of research interest, the computing
power of desktop computers has also grown signifi-
cantly, which made it possible to use new computer tech-
nology in practice. In the late 80s, General Electric be-
gan selling the world’s first genetic algorithm product.
They became a set of industrial computing tools. In
1989, another company, Axcelis, Inc. released Evolver,
the world’s first commercial genetic algorithm product
for desktop computers [Aldawoodi, 2008].
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The task is formalized in such a way that its solution
can be encoded as a vector (“genotype”) of genes, where
each gene can be a bit, a number, or some other object.
In classical implementations of the genetic algorithm, it
is assumed that the genotype has a fixed length. How-
ever, there are variations of the genetic algorithm that are
free from this limitation. In some, usually random, way,
many genotypes of the initial population are created.
They are evaluated using a “fitness function” whereby
each genotype is associated with a specific value (“fit-
ness”) that determines how well the phenotype it de-
scribes performs the task.

From the resulting set of solutions (“generations”),
taking into account the value of “fitness”, solutions are
selected (usually the best individuals have a higher prob-
ability of being chosen), to which “genetic operators”
are applied (in most cases, “crossover” - crossover and
“mutation” - mutation ), resulting in new solutions. For
them, the fitness value is also calculated, and then the
best solutions are selected (“selection”) for the next gen-
eration.

This set of actions is repeated iteratively, in this way
an “evolutionary process” is modeled, lasting several life
cycles (generations), until the algorithm’s stopping crite-
rion is met. This criterion could be:

1. finding a global or suboptimal solution,
2. exhaustion of the number of generations released for

evolution,
3. exhaustion of time allotted for evolution.

1.1.4 Gossip Protocol The gossip protocol also
applies to randomized algorithms. The origin of this pro-
tocol is related to the epidemic replication algorithms
described by Alan Demers, Dan Green, Carl Houser,
Irish Wes, John Larson, Schenker Scott, Sturgis Howard,
Swinhart Denm, and Terry Doug in their 1987 study Epi-
demic Algorithms for Replicated Database Maintenance.
[Demers et al., 1987]. Since the appearance of this study,
the spread of the epidemic has generated a lot of interest
in computing. In fact, the first practical use of protocols
like Gossip can be seen in the network routing systems
that were the “preamble” of the Internet.

Suppose we want to find the object that most closely
matches some search pattern in a network of unknown
size, but where the nodes of the network are connected
to each other and where each node runs a small agent
program that implements the gossip protocol.

1. To start a search, the user had to ask the local agent
to gossip about the search string.

2. Periodically, at some rate, each agent randomly se-
lects another agent and gossips with him.

3. The first time a search string is received, each agent
checks its local machine against documents.

4. Agents also gossip about the best match. Thus,
if A gossips with B, after the interaction, A will
learn about the best matches known to B, and vice
versa. The best matches will “spread” through the

network.

The gossip protocol has the following advantages:

1. the system can easily scale up to millions of pro-
cesses,

2. restarting or downtime of any node on the network
will not affect the operation of the gossip protocol,

3. any node can join or leave at any time without af-
fecting the overall quality of service of the system,

4. The Gossip protocol provides exponentially fast in-
formation propagation, so when new information
needs to be propagated, a message can be quickly
sent to the global node and all nodes can have the
latest data in a limited amount of time.

the system can easily scale up to millions of processes,
a restart or downtime of any node on the network will
not affect the operation of the gossip protocol, any node
can join or leave at any time without affecting the overall
quality of service of the system, the gossip protocol pro-
vides exponentially fast information dissemination, so
when new information needs to be distributed, a mes-
sage can be quickly sent to a global node and all nodes
can have the latest data in a limited amount of time.

1.1.5 Ant Colony Algorithm The original idea
comes from observing ants as they find the shortest path
from colony to food source [Dorigo et al., 1996].

Figure 1. Ant algorithm

The first ant finds a food source (F) by any means (a)
and then returns to the nest (N), leaving behind a trail of
pheromones (b) 1. Then the ants choose one of the four
possible paths, then strengthen it and make it attractive.
Ants take the shortest route, as pheromones from longer
paths evaporate faster. Among experiments on choos-
ing between two paths of unequal length leading from a
colony to a food source, biologists have noticed that ants
tend to take the shortest route [Dorigo et al., 1996]. The
model for this behavior is as follows:
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The ant passes randomly from the colony. If it finds a
food source, it returns to the nest, leaving a pheromone
trail behind it. These pheromones attract other nearby
ants that are more likely to take that route. Once back in
the nest, they will reinforce the pheromone trail. If there
are 2 routes, then more ants will have time to pass along
the shorter one than along the long one. The short route
will become more attractive. Long paths will eventually
disappear due to the evaporation of pheromones. Ants
use the environment as a means of communication. They
exchange information indirectly, through pheromones,
in the course of their “work”. The exchange of informa-
tion is local in nature: only those ants that are in the im-
mediate vicinity of the pheromone trails can learn about
them. Such a system is called stigmergy and is true for
many social animals (it has been studied for the case of
building pillars in termite nests). Such a mechanism for
solving the problem is very complex and is a good exam-
ple of the self-organization of the system. Such a system
is based on positive (other ants strengthen the pheromone
trail) and negative (evaporation of the pheromone trail)
feedback. Theoretically, if the number of pheromones
remains the same over time across all routes, then it will
be impossible to choose a path. However, due to feed-
back, small fluctuations will force one of the paths and
the system will stabilize towards the shortest path.

There are various variations of the ant colony algo-
rithm:

1. elite ant system,
2. MMAS (Max-Min ant system),
3. ant ranking system (ASrank),
4. long-term orthogonal ant colony (COAC).

1.1.6 DNA-computing An example of another
randomized algorithm is DNA computing. In 1994,
Adleman showed [Adleman, 1994] how the solution to
the problem of finding a Hamiltonian path in a graph can
be reproduced using standard DNA operations already at
that time: ligation, polymerase chain reaction, gel elec-
trophoresis, biotin-streptavidin purification. All stages
of DNA calculations are comparable to the steps in the
enumeration method, although they are performed in a
laboratory, and not on a computer: instead of the classi-
cal binary system, Adleman proposed using a four-letter
code format corresponding to the four bases of DNA.
In [Sergeenko et al., 2020], it was shown that the time
required to perform DNA calculations for solving the
problem of finding a Hamiltonian path in a graph is less
than when solving the same problem using the branch
and bound method, starting from a certain number of
vertices and with sufficient sparseness of the connectiv-
ity matrix of the graph.

Another essential application of self-organization
arises in DNA computing. Aiming to explain the con-
cept of DNA computing, we consider a known combi-
natorial problem of determining a Hamiltonian path in
a graph. As well known, the Hamiltonian Path prob-
lem consists of discovering a path in an undirected or di-

rected graph precisely visiting each node once and start-
ing with a given vertex and ending with another speci-
fied one. The most popular branch-and-bound method
can hardly be used in many situations due to its expo-
nentially growing complexity. The DNA computations
based on the principles of self-organization inherent in
nature [Adleman, 1994] are able to resolve such prob-
lems in linear time-consuming.

We remind that the DNA molecules usually form a
double helix consisting of nucleotides containing a phos-
phate group, a sugar group, and a nitrogen base. There
are four different nucleotides: adenine (“A”), thymine
(“T”), guanine (“G”), cytosine (“C”). In the helix, the
nucleotides join in pairs according to a fundamental
complementarity rule: “A” is always opposite to “T”, and
“G” is always opposite to “C” [Watson and Crick, 1953].
DNA computing allows modeling in a biological labora-
tory dealing with double-stranded DNA, which are able
to “split” into two separate strands (by heating) or to do
reverse action (ligation) with the help of the particular
enzyme ligase.

Let us consider a directed graph G = (N , E) with
|N | = n nodes. Random DNA sequences consisting of
20 nucleotides represent nodes (vertexes). An edge is
associated with DNA sequence obtained as a concatena-
tion of the complement of the second half of the starting
node and the complement of the first half of the finishing
node.

For example, if the first node has the DNA code

TCAGTACCAG TACAGTCACA

complement : (AGTCATGGTC ATGTCAGTGT ),

where A is adenine, T is thymine, G is guanine, C is
cytosine, the second node has the DNA code

TAGGTATGCT CAGATAAAGG

complement : (ATCCATACGA GTCTATTTCC),

and there is an edge from the first node to the second,
then that edge is coded by

ATGTCAGTGT ATCCATACGA.

This procedure is repeated with every available edge.
Note that the directions of DNA strands are ignored for
simplicity.

Further, all described DNA representations are created
in a lab and mixed in a single ligation reaction con-
necting the molecules according to the complementary
rule. All available pathways are simultaneously in paral-
lel created in one probe. An example of a short molecule
is shown in Figure 2.

An analogy with multiagent technologies is undoubt-
edly evident in this process. By forming strands and
units into massive DNA molecules, as if they were
agents within a cascade process, nucleotides provide a
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Figure 2. An example of a molecule after ligation reaction

solution to the problem. The subsequent steps intend to
check if the molecules encoding the Hamiltonian path
are within the strand or not. The time consumption of
DNA computing results from local interactions and clus-
tering growing linearly as the number of nodes. Subse-
quently, in [Sergeenko et al., 2020], this characteristic
is compared with the same one appearing in the branch-
and-bound method. It is turned out that that DNA com-
puting performs much better for the adjacency matrix
sparsity parameters equaling 0.85, 0.9, 0.8 of and the
number of graph nodes rising from 37, 43, 45, respec-
tively.

1.1.7 Simultaneous Perturbation Stochastic Ap-
proximation Problem of function minimization is be-
ing solved in many applications. Sometimes the extreme
values of a function can be found theoretically. In gen-
eral, engineering systems have to deal with unknown
functions, and it is only possible to measure its values
in some points.

Let F (x,w) : Rq × Rp ⇒ R1 be the differentiable
on the first argument function, x1, x2, . . . be a sequence
of arguments of F chosen during optimization proce-
dure at each iteration n = 1, 2, . . . (the design of an
experiment),{wn} is an uncontrollable sequence of ran-
dom values from Rp with identical but unknown distri-
bution Pw(·) which has the finite support. The func-
tion F (·, wn) can be observed with the added noise vn:
yn = F (xn, wn) + vn. The problem is to minimize the
function f(x) = EwF (x,w) =

∫
Rp F (x,w)Pw(dw)

based on observations y1, y2, . . .. This means to build
the sequence of estimates θ̂n of unknown vector θ⋆,
which minimizes f(x).

Various gradient methods can be used. However, we
would like to introduce one optimization method that
has attracted considerable international attention, which
is Simultaneous Perturbation Stochastic Approximation
(SPSA) Unlike other methods, which requires direct
measurements of the gradient of the objective function
(which are often difficult or impossible to obtain), SPSA
needs only two objective function measurements per it-
eration regardless of the dimension of the optimization
problem. Further, SPSA is especially efficient in high-
dimensional problems in terms of providing a good so-
lution for a relatively small number of measurements of
the objective function. If the number of terms being op-
timized is p, then the finite-difference method takes 2p
measurements of the objective function at each iteration
(to form one gradient approximation) while SPSA takes
only two measurements.

Let the trial simultaneous perturbation ∆n, n =
1, 2, . . ., be a random sequence of zero-mean indepen-
dent vectors from Rq with distributions Pn(·), n =
1, 2, . . ., which have a uniformly bounded finite support
and independent components. Consider sequences of
real positive numbers {αm} and {βn}. Choose some
initial vector θ̂0 ∈ Rq . In [Granichin and Polyak, 2003]
the algorithm with two simultaneous perturbations was
proposed for construction of sequences of measurement
points and estimates:


x±n = θ̂n−1 + βn∆n,

y±n = F (x±n , w
±
n ) + v±n ,

θ̂n = θ̂n−1 = αn∆n
y+
n−y−

n

2βn
.

(1)

In [Granichin and Amelina, 2015], the SPSA algorithm
has been applied to an unconstrained problem of (mean-
square) optimal target tracking. It has been shown that
SPSA converges even in the presence of an arbitrary
unknown-but-bounded noise (typically, tracking algo-
rithms are suitable only for noises with zero mean [Zhu
and Spall, 2018]).

1.2 Multi-agent Algorithms
There is a whole class of algorithms inspired by na-

ture. In recent years, such optimization algorithms
have gained recognition in the field of machine learn-
ing for finding optimal solutions to complex problems
in science and technology. To solve the problems of
traditional optimization algorithms, recent trends tend
to apply nature-inspired optimization algorithms, which
are a promising approach to solving complex optimiza-
tion problems. Recent such algorithms include: Ge-
netic Bee Colony Algorithm (GBC), Fish Swarm Al-
gorithm (FSA), Cat Swarm Optimization Algorithm
(CSO), Whale Optimization Algorithm (WOA), Arti-
ficial Algae Algorithm (AAA), Elephant Search Al-
gorithm (ESA), chicken swarm optimization (CSOA),
moth flame optimization (MFO), and gray wolf opti-
mization (GWO) algorithm. The ant colony algorithm
belongs to the same type of algorithms.

All algorithms inspired by nature have one thing in
common: numerous living beings or “agents” whose
task is to find the optimal solution. On the other hand,
a multi-agent system is a system formed by several in-
teracting intelligent agents. Thus, we can conclude that
nature-inspired algorithms are multi-agent algorithms.

The main advantage of multi-agent systems is flexibil-
ity. The multi-agent system can be supplemented and
modified without rewriting a significant part of the pro-
gram. Also, these systems have the ability to self-heal
and are resistant to failures, thanks to a sufficient supply
of components and self-organization.

Consider one of the examples of multi-agent al-
gorithms. A recent scientific breakthrough has
shown [Rutherford and Bassler, 2012] that bacteria can
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communicate with each other. This fact has fundamen-
tally changed the general idea of the existence of sim-
ple organisms inhabiting the world. Bacteria use signal-
ing molecules to measure population concentration. The
current term “quorum sensing” (QS) describes the sig-
naling molecule process that allows a single cell to sense
bacterial activity at the expense of cell density. In na-
ture, different types of bacteria in the same environment
use a variety of signaling molecules that allow interac-
tion with other different types of bacteria. Today, these
quorum systems are being intensively studied for various
categories of bacteria. Recently, extraordinary advances
in understanding genetics, genomics, biochemistry and
QS signal diversity, including information on links be-
tween QS and bacterial sociality. The behavior and evo-
lution of these bacterial communities are perceived as
natural examples of multi-agent systems, since interac-
tion between bacteria occurs locally and the density of
bacteria can be measured without having to collect all
the data in one data center. These bacteria decide the
global task (measurement of population density) using
only local communication and, so this is an example of
multi-agent technologies.

Multi-agent algorithms also appear in social net-
works [Proskurnikov and Tempo, 2018].

1.2.1 Local Voting Protocol (LVP). Another ex-
ample of multi-agent algorithm is the Local Voting Pro-
tocol. It was studied in [Amelina et al., 2015a] and
in [Amelina et al., 2013], where the applicability of the
local voting protocol with nonvanishing step-size for de-
centralized stochastic network load balancing was stud-
ied under non-stationary problem formulation. It was
shown that LVP working on the principles of the multi-
agent algorithms proves its flexibility even if the network
is considered to have a switched topology, and the con-
trol strategy uses noisy and delayed measurement

2 Multi-sensor Multi-target Problem
2.1 Preliminaries

Let (Ω,F , P ) be the underlying probability space cor-
responding to sample space Ω, set of all events F , and
probability measure P . E denotes mathematical expec-
tation.

Let [·]T be vector or matrix transpose operation, [·]−1

be matrix inversion. ∥A∥ is the Frobenius norm: ∥A∥ =√∑
i

∑
j(a

i,j)2. 1d = [1, . . . , 1]T ∈ Rd is the vector

of all ones. ei = [. . . , 0, 1, 0, . . .]T ∈ Rd is the canoni-
cal basis vector from Rd, where i-th entry is equal to 1.
Id ∈ Rd×d is the identity matrix, Jd = 1d1

⊤
d ∈ Rd×d is

the matrix of all ones. A ⊗ B is the Kronecker product
defined for any matrices A and B. The following nota-
tion A ≤ B means that matrices are ordered in the sense
of quadratic forms.

For a sequence of column vectors x1, . . . , xk, let
col{x1, . . . , xk} denote the column vector obtained by

stacking xi on top of one another.
A network consisting of n nodes is described by a di-

rected graph GA = (N , E), where N = {1, . . . , n} is a
set of vertices and E ⊆ N × N is a set of edges. De-
note by i ∈ N an identifier of i-th node and (j, i) ∈ E if
there is a directed edge from node j to node i. The lat-
ter means that node j is able to transmit data to node i.
For a node i ∈ N , the set of neighbors is defined as
N i = {j ∈ N : (j, i) ∈ E}. The in-degree of i ∈ N
equals |N i|. Hereinafter, | · | is the cardinality of a set,
and superscripts stand for agents’ indices.

Let ai,j > 0 be the weight associated with the edge
(j, i) ∈ E and ai,j = 0 whenever (j, i) /∈ E . Let
A = [ai,j ] be the weighted adjacency matrix, or sim-
ply connectivity matrix, associated with graph GA. The
weighted in-degree of i ∈ N is defined as deg+i (A) =∑n

j=1 a
i,j , the maximum in-degree among all nodes

contained in graph GA as deg+max(A). Introducing the di-
agonal matrix D(A) = diagn(deg

+
1 (A), . . . ,deg

+
n (A)),

matrix L(A) = D(A)−A is referred to as the Laplacian
of graph GA.

Definition 1. A directed graph GA is said to be strongly
connected if for every pair of nodes j, i ∈ N , there exists
a path of directed edges that goes from j to i.

Denote the eigenvalues of Laplacian L(A) by
λ1, . . . , λn and arrange them in ascending order of real
parts: 0 ≤ Re(λ1) ≤ Re(λ2) ≤ . . . ≤ Re(λn). It
is known, that if the graph is strongly connected then
λ1 = 0 and all other eigenvalues of L are in the open
right half of the complex plane (see, e.g., [Lewis et al.,
2013]). The eigenvalue of matrix A with maximum ab-
solute magnitude is defined as λmax(A).

2.2 Problem Statement
We consider a network of n spatially-distributed sen-

sors in a field, namely, agents, capable of measuring pa-
rameters (e.g., distance, heading, etc), performing local
computations, and exchange information with neighbor-
ing nodes. In this field, there aremmoving targets. Each
sensor i ∈ N = {1, . . . , n} has its own hypothesis re-
garding the state of the targets (i.e., their positions) or
more simply an estimate of the states. The goal of the
network is to accurately estimate the unknown parame-
ters of the targets. The sensors must also act together as
a team to achieve this goal.

Let sit = [si,1t , . . . , si,dt ]T ∈ Rd be the state of sen-
sor i at time instant t, rlt = [rl,1t , . . . , rl,dt ]T ∈ Rd be
the state of target l ∈ M = {1, . . . ,m}, and θt =
col{r1t , . . . , rmt } be the vector consisting of all states to
be estimated. Suppose that each sensor measures a scalar
quantity, which is the distance between its own position
and position of a target:

ρ(sit, r
l
t) = ||rlt − sit||2, ∀i ∈ N , l ∈ M. (2)

Note that the proposed approach can be used for other
types of measuring parameters (e.g., bearing/azimuth).
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In general, the problem is to find an estimate θ̂t of an
unknown parameter θt:

θ̂⋆t = argmin
θ̂t

||θ̂t − θt||2. (3)

3 Consensus-based Distributed SPSA Algorithm
In section 1, many pluses of randomized and multi-

agent algorithms were proposed. In order to use advan-
tages of both algorithms, they need to be combined. So,
this idea was implemented for SPSA and Local Voting
Protocol in [Amelina et al., 2020], where a consensus-
based distributed SPSA algorithm for multi-target track-
ing was proposed.

3.1 Basic Requirements for the Algorithm
In [Amelina et al., 2020], a more difficult problem set-

ting was considered than the one presented in section 2.2.
The following requirements for the new algorithm were
introduced:

1. the solution of the optimization problem (3) needs
to be found in a distributed way;

2. the following communication constraints are im-
posed: at time instant t, each sensor i ∈ N is able
to measure the squared distance to not more than
one target. In practice, due to certain constraints,
the number of communication channels that can be
used is usually less than the dimension of space or
equal to it. Without loss of generality, in this paper,
we assume that each sensor is able to collect data
only from d neighbors. In this case, and if there is
no noise, we can use standard triangular approaches
to determine the target position. However, if posi-
tions of all m targets need to be computed, then we
have to simultaneously collect m(d − 1) measure-
ments, and it is often impossible in practice;

3. the unknown-but-bounded noise is considered to be
involved in the measuring process.

3.2 Strong Communication Constraints
In [Sergeenko et al., 2020], stronger communication

constraints were introduced, and parameter optimization
was provided.

In that paper, the problem setting of [Amelina et al.,
2020] was generalized and a situation in which the
number of neighboring agents may be less than the di-
mension of space (it was strictly equal in [Amelina
et al., 2020]) was considered. The following point was
changed in the requirements:

2*. each sensor is able to collect data only from p neigh-
bors, where p ≤ d. In this case, communication
channels become even less loaded, which is essen-
tial for using this algorithm in a real life.

More formal problem setting for the requirements
1, 2∗, 3 is presented further.

3.2.1 Measurements We assume that at time in-
stant t sensor i is able to measure the squared distance

ρ(sit, r
l
t) = ∥rlt − sit∥2 =

d∑
d′=1

(
rl,d

′

t − si,d
′

t

)2
to moving target rlt. Note, the proposed approach
can be used for other sensing modalities (e.g., bear-
ing/azimuth). Consider that sensor i gets similar data
from p other sensors j1, . . . , jp ∈ N i, which are its
neighbors, about the state rlt. For each such column
u = col{i, j1, . . . , jp, l} of (p + 2) naturals denote
ρ̄qt (u) = ρ(sit, r

l(u)
t )− ρ(s

jq
t , r

l(u)
t ), q = 1, . . . , p. Here

and after, l(u) is the map defining the last component of
u. In this case, there are p equations

ρ̄qt (u) =

d∑
d′=1

(s
jq,d

′

t − si,d
′

t )(2r
l(u),d′

t − s
jq,d

′

t − si,d
′

t ),

q = 1, . . . , p, which allow us to derive

Cu
t r

l(u)
t = Du

t ⇒ Cu
t
TCu

t r
l(u)
t = Cu

t
TDu

t ⇒

Iut r
l(u)
t = Hu

t , (4)

where Iut = [Cu
t
TCu

t ]
′Cu

t
TCu

t , H
u
t =

[Cu
t
TCu

t ]
′Cu

t
TDu

t ,

Cu
t = 2

(sj1t − sit)
T

· · ·
(s

jp
t − sit)

T

, Du
t =

ρ̄1t (u) + ∥sj1t ∥2 − ∥sit∥2
· · ·

ρ̄pt (u) + ∥sjpt ∥2 − ∥sit∥2

.

Using the introduced notations, the measurements of
sensor i ∈ N at time instant t are defined as follows:

yit = F i
t (u

i
t,x

i
t) + vit = ∥r̂h(u

i
t)

t − r
h(ui

t)
t ∥2 + vit, (5)

where vit is the unknown-but-bounded additive noise, xi
t

is the measurement point depending on currently avail-
able estimate r̂

l(ui
t)

t at time instant t. For example,

xi
t = r̂

l(ui
t)

t .

3.2.2 Distributed Optimization Denote by Ft−1

the σ-algebra of all probabilistic events, which happened
up to time instant t. EFt−1

denotes the conditional ex-
pectation with respect to the σ-algebra Ft−1. This σ-
algebra is generated by the values of all random variables
(i.e., position of targets, noise, changes in communica-
tion topology) at time instants τ = {1, 2, . . . , t}.

Let ut = [u1
t , . . . ,u

n
t ]

T be the common vector defin-
ing the sets of neighbors used to collect measurements
from each sensor. The multi-sensor multi-target problem
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Figure 3. Communication graph GA, which describes all possi-
ble connections between sensors, and randomly chosen subgraphs
GBt

, t = {t1, t2}, where each sensor has a limited number of
neighboring sensors. As it seen, the connections may change with time.

can be formulated as the following minimization prob-
lem: to find estimate θ̂t = col{r̂l(u

1
t )

t , . . . , r̂
l(um

t )
t } that

minimizes the following loss function

F̄t(θ̂t,ut) = EFt−1

∑
i∈N

F i
t (u

i
t, r̂

l(ui
t)

t ) → min
θ̂t

. (6)

Usually, during optimization, each sensor fuses the
needed information from all available neighboring
nodes. In this problem setting, the communication con-
straint that prohibit such communication strategy of the
sensors were mentioned. These communication con-
straints arise due to hardware and physical limitations
since the bandwidths of communication channels are not
unlimited. When a large number of sensors send and
receive messages at the same time, communication be-
comes a bottleneck. To deal with this, communication
links between sensors were chosen randomly. More for-
mally, for each sensor i ∈ N , the communication topol-
ogy described by graph GA was randomized at each time
instant t to satisfy topology constraints such as the max-
imum number of links equals to p. A randomly cho-
sen subgraph GBt ⊂ GA associated with adjacency ma-
trix Bt = [bi,jt ] was used, where the rows contain no
more than p nonzero entries (see Figure 3). Afterwards,
the observable target at time instant t contained in ui

t is
generated from a uniform distribution independently for
each sensor i ∈ N as in gossip algorithm, described in
section 1.1.4. The communication topology described
by graph GA was randomized based on the strategy sim-
ilar to one presented in [Amelina et al., 2014].

3.3 Weighted Version of the Algorithm
In [Erofeeva et al., 2021], a weighted version of the

consensus-based distributed SPSA algorithm was pro-
posed, taking into account the heterogeneity of targets.
In practice, one may need to track a group of targets con-
sisting of fixed-wing drones and rotor ones, which have
different dynamics and speed. Furthermore, the covari-
ance matrix of the residuals was evaluated, extending the
approaches proposed in [Polyak, 1977,Granichin, 2004].

Let ui
k and ∆i

k ∈ Rd, k = 1, 2, . . . , i ∈ N , be inde-
pendent random variables. We generate ∆i

k called the si-
multaneous test perturbation from Bernoulli distribution
with each component independently taking values ± 1√

d

with probabilities 1
2 . Let el(ui

k)
∈ Rm be the sparse vec-

tor corresponding to the current target that sensor i ob-
serves, then ∆̂i

k = el(ui
k)

⊗∆i
k. In this case, ∆̂i

k is the
vector of all zeros except for the rows that corresponds
to l(ui

k).
Let Ui,l be a set containing all possible subsets N̄ i

t for
target l. The neighborhood of sensor i at time instant t
is defined by the i-th row of matrix Bt associated with
graph GBt . This row is defined by subset N̄ i

t generated
from the uniform distribution on the set Ui,l.

Next, a weighted version of consensus-based SPSA
distributed algorithm is presented. Let us choose the di-
agonal matrix Ψ = [ψij ], where ψij > 0 if i = j and
ψij = 0 otherwise. At initialization step, for each i ∈ N ,
we choose initial vector θ̂i0 ∈ Rmd, positive step-size α,
matrix Ψ, gain coefficient γ, and the scale of perturba-
tion β > 0.

In order to get estimates {θ̂it} of overall state vectors
{θit} based on measurement points {xi

t}, the weighted
algorithm with two measurements of distributed sub-
functions F i

t (u
i
t,x

i
t) was proposed:

xi
2k = θ̂i2k−2 + β∆̂i

k, x
i
2k−1 = θ̂i2k−2 − β∆̂i

k,

θ̂i2k−1 = θ̂i2k−2,

θ̂i2k = θ̂i2k−1 − αΨ
[
∆̂i

k

yi
2k−yi

2k−1

2β +

γ
∑

j∈N̄ i
2k−1

bi,j2k−1(θ̂
i
2k−1 − θ̂j2k−1)

]
.

(7)

Consider the last equation of the algorithm (7): the first
part is similar to SPSA-like algorithm from [Granichin
and Amelina, 2015] (section 1.1.7) and the second
one coincides with Local Voting Protocol (LVP) from
[Amelina et al., 2015b] (section 1.2.1), where it was
studied for stochastic networks in the context of load bal-
ancing problem. The SPSA part represents a stochastic
gradient descent of sub-functions F i

t (u
i
t,x

i
t), and LVP

part is determined for each agent i by the weighted sum
of differences between the information about the current
estimate θ̂i2k−1 of the agent i and available information
about the estimates of its neighbors. Thus, the algorithm
is the combination of randomized and multi-agent ap-
proaches.

3.4 Acceleration of SPSA
In [Erofeeva et al., 2022], the line of the previous

works was continued. One of the biggest disadvantage
of all stochastic algorithms, which include SPSA, is the
slow convergence. So, the accelerated version of SPSA
was introduced in [Erofeeva et al., 2022], where SPSA
is combined with Nesterov acceleration method [Kosaty
et al., 2019].

The advantages of such combination are the following:
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1. it has faster convergence than the original SPSA al-
gorithm;

2. it is applicable for the non-stationary problem state-
ment;

3. the convergence does not depend on the type of
noise, as long as it is bounded.

Let ∆n ∈ Rd, n = 1, 2, . . . be independent random
variable, i.e., simultaneous test perturbation, drawn from
Bernoulli distribution. Each component of the vector in-
dependently takes value ± 1√

d
with probability 1

2 . Let us

choose initial estimate θ̂0 ∈ Rd, and parameters γ0 > 0,
h > 0, β > 0, η ∈ (0, µ), α0 ∈ (0, 1). Also, let us de-
fine z0 = θ̂0 andH = h− h2L

2

[
( a
2β + 1)2 + ϵ2

2

]
, where

ϵ > 0. At each n, αn can be found using the equation

α2
n = 2(

2βH

a
− ϵ

2
)((1− αn)γn + αn(µ− η))

and γn = (1− αn−1)γn−1 + αn−1(µ− η).
The algorithm with two observations of functions

fξt(·) is considered for constructing sequences of mea-
surement points {xt} and estimates {θ̂t} at n ≥ 1:



x̃2n−2 = 1
γn−1+αn(µ−η)

(
αnγn−1z2n−2 + γnθ̂2n−2

)
,

x2n = x̃2n−2 + β∆n, x2n−1 = x̃2n−2 − β∆n,

x̃2n−1 = x̃2n−2, θ̂2n−1 = θ̂2n−2,

g2n = ∆n
y2n−y2n−1

2β ,

θ̂2n = x̃2n−1 − hg2n,

z2n = γ−1
n

[
(1− αn)γn−1z2n−2+

αn(µ− η)x̃2n−1 − αng2n)
]
.

(8)

4 Simulation
In this section, we present a numerical experiment,

which illustrates the performance of the algorithm (8)
combined with the Local Voting Protocol as in (7)
to make Accelerated consensus-based SPSA algorithm
which has advantages of both randomized and multi-
agent algorithms but also converges faster.

We define a distributed network of 9 sensors tracking
20 moving targets. Each sensor may have only one active
communication channels for the information exchange.
Each sensor also choose a random target that it tracks at
the current time instant.

Let θt = col(r1t , . . . , r
20
t ) ∈ R40 be the common state

vector of all targets, θ̂t = col(r̂1t , . . . , r̂
9
t ) ∈ R18 be a

common vector of estimates. Each target l ∈ M changes
the position according to the following dynamics:

rlt = rlt−1 + ζlt−1, l ∈ M, (9)

where ζlt−1 are random vectors uniformly distributed in
a ball. We’ve defined ζlt as a random vector uniformly

distributed on the ball of radius equal to 0.2 for tar-
gets with odd identifiers and 0.6 for targets with even
identifiers. This means that the targets are heteroge-
neous and behave differently. The targets start their
motion at a position randomly chosen from the inter-
val [100; 300]. The sensors are stationary and their co-
ordinates are random values uniformly distributed in in-
terval [20; 25]. We consider random type of noise, i.e.
uniformly distributed random variable falling within the
interval [−1; 1]. We have set the following parameters
of the algorithm: h = 0.08, β = 0.1, η = 0.95, αx =
0.1, γ0 = 2.0, L = 2, µ = 2, a = 2, b = 2, c = 1, γ =
1,Ψ = diag20(col{2, 10, . . . , 2, 10}).

We consider three types of noise: uniformly distributed
random variable falling within the interval [−1; 1] (1),
an unknown constant (2), and hybrid noise which is
uniformly distributed around constants that change with
time, e.g. vik = ±1 + 0.1 ∗ sin(k), where the sign in
front of 1 switches each 50-th iteration (3).

In the simulation, the new algorithm is compared with
the previous one from [Erofeeva et al., 2021]. Figure 4
shows the behavior of the residual obtained by the Ac-
celerated consensus-based SPSA algorithm and by the
consensus-based SPSA algorithm for various types of
noise. Both presented algorithms have the same initial
parameters, random values of targets and noises at each
iteration. The only difference is the algorithm itself. It
is well seen that the new algorithm converges faster than
the previous one: while the new algorithm is converged
approximately by step 100, the old one converges ap-
proximately by step 400. Moreover, the convergence
does not depend on the noise.
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Figure 4. Typical behavior of the residuals. The blue lines indicate
random noise, red – unknown constant, yellow – oscillations. The solid
line is the algorithm from [Erofeeva et al., 2021], the red one shows the
proposed new accelerated version.
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5 Conclusion
In this paper, a description of randomized and multi-

agent algorithms was presented. Different combined
algorithms, which are applicable for the multi-sensor
multi-target tracking problem were shown. The new al-
gorithm, which is an Accelerated consensus-based SPSA
algorithm, was validated through the simulation. It was
shown that it converges faster than non-accelerated one.
Furthermore, the convergence does not depend on the
type of noise.
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