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Recently a new forecast method that goes beyond the traditional ensemble forecasting was pro-
posed. While traditional ensemble forecasts try to determine the uncertainty of the dynamics
by initializing the model with many different states, the so called super-model (SUMO) ensemble
method tries to reduce the uncertainty of the forecast by coupling different models and let them
exchange information during run-time. As we have seen so far SUMO was evaluated in what we
would call the perfect model scenario (PMS), that is the models and the system have structurally
the same equations. Therefore the only mismatch between the model and the system tested so
far is that the ensemble of models and the system have different coefficients or control parameters.
Here [2] we report on the much more realistic imperfect model scenario (IPMS). We assume that in
the modeling process there occurred an error and the flow equations governing the models and the
systems are therefore different. It is far from obvious that techniques developed for the PMS work
in the IPMS as well.

Forecasting or predicting the future dynamics of a com-
plex system is one of the most challenging endeavors we
are currently facing as scientists. Whether it is the path
of a hurricane, the future climate or the opinion and
therefore the behavior of societies, we have to deal with
several problems that can be characterized as follows:
determining a suitable model of the complex system, es-
timation of the current state of the system given mea-
surement data and finally using a forecast method that
minimizes the uncertainty of the predicted dynamics.

Given that these problems arise almost every time we
want to know the future dynamics of a complex system
it is not surprising that over the last couple of decades
more and more advanced methods to perform these tasks
have been suggested and tested. While in most cases it is
sufficient to deduce the model from first principles, time
series driven models [5], statistical models, and network
models become more frequent when dealing with com-
plex systems. Similar in the area of data assimilation,
that is the state estimation of the model’s state based on
observations, we have come a long way since the Wiener
filter. Nowadays methods like 4Dvar, Kalman filters and
shadowing filters are the state of the art.

Recently a new forecast method that goes beyond the
traditional ensemble forecasting was proposed. While
traditional ensemble forecasts try to determine the un-
certainty of the dynamics by initializing the model with
many different states, the so called super-model (SUMO)
ensemble method tries to reduce the uncertainty of the
forecast by coupling different models and let them ex-
change information during run-time [4, 6]. The idea be-
hind this approach is that each model hopefully captures

some aspects of the true dynamics of the system and
therefore the overall quality of the forecast increases if
the models exchange this information. Using a training
data set the coupling between the different models can
be optimized such that only the wanted information is
exchanged.

The far aim is obviously to combine the SUMO method
with the traditional ensemble method and consequently
to do ensemble runs with many initial conditions of the
SUMO. But in the moment we are at the state where we
try to understand and evaluate the performance of the
SUMO method.

Here [2] we deal with a different problem. As we have
seen so far SUMO was evaluated in what we would call
the perfect model scenario (PMS), that is the models and
the system have structurally the same equations. There-
fore the only mismatch between the model and the sys-
tem tested so far is that the ensemble of models and
the system have different coefficients or control param-
eters. We report on the much more realistic imperfect
model scenario (IPMS). We assume that in the modeling
process there occurred an error and the flow equations
governing the models and the systems are therefore dif-
ferent. It is far from obvious that techniques developed
for the PMS work in the IPMS as well. In the following
we define the problem of the IPMS and introduce the
SUMO framework. In addition we will define the quan-
tities we are using to evaluate the performance of our
forecasting method. Furthermore, we report on two spe-
cific examples based on the Lorenz and Rössler model.
In both examples we use the standard equations as well
as a more complex form of the equations. We are us-
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ing the later as our systems and forecast its dynamics by
the SUMO method. The ensemble of models is built from
the standard, simpler models and therefore is structurally
different from the system. We compare the performance
of SUMO in the IPMS to the PMS as well as to a simple
traditional forecast.

In the following we define the fundamental differences
between the PMS and IPMS. In addition we are going
to describe the different classes of imperfect models. As-
sume that the system’s dynamics y(t) and model’s dy-
namics x(t) are given as differentiable ordinary differen-
tial equations:

ẏ = f(y, µ) with

{

y(t) ∈ Rc

µ ∈ Rn
, (1)

ẋ = g(x, η) with

{

x(t) ∈ Rd

η ∈ Rm
, (2)

where µ and η are a set of model parameters.
We define the PMS as the special, somehow artificial

case of g(ξ, µ) = f(ξ, η) for all ξ ∈ Rn. Obviously this
implies that dim(y) = c = dim(x) = d, µi = ηi for
i = 1, . . . , n and n = m. Note that the SUMO investiga-
tions in [Berge] considered this special case but allow for
variation in the models parameters. That is for the N
different models in the ensemble ẋj = g(x, ηj) ηi,j 6= µi

for j = 1, . . . , N . As it turns out they implied an addi-
tional constraint: min(ηi,j) < µi < max(ηi,j), where the
minimization (maximization) for each i is done over the
ensemble.

In IPMS the previous equations do not hold and there-

fore g(ξ̂, µ) 6= f(ξ, η) for almost all points in the state

space. Since in general in the IPMS n 6= m, ξ̂ (ξ) is a

projection of ξ (ξ̂) onto the lower dimensional space Rc

(Rd) if c < d (d < c). A simple classification of the typi-
cal modeling errors leading to the IPMS can be done like
this:

1. dim(y) = c = dim(x) = c and the general form of
g and f are the same, but ηi 6= µi for some or all
i = 1, . . . , n.

2. dim(y) = c 6= dim(x) = d, which often occurs when
the system has different time scales and a slow or
fast subspace is ignored by the modeler.

3. dim(y) = c = dim(x) = c but higher order terms in
g are ignored when modeling.

As mentioned above the trivial case 1 of a mismatch be-
tween the model’s and system’s parameters can be easily
be dealt with and L. A. van Berge et al. have used this
example to introduce the SUMO method.. Case 2 and
3 are much more settle and define the true IPMS in our
understanding. There has been much work on case 2,
since A. Einstein’s seminal work on stochastic modeling.
If the ignored subspace is fast, its action on the dynam-
ics can usually be modeled by means of a suitable noise
term [1, 3]. If the ignored subspace is slow forecasting

y(t) should be possible by adding a constant term to the
model f(x, η). Ignoring such an offset can lead to very
characteristic shortcomings in the forecasts, that allow
identification of this specific modeling error.

In the following we focus on case 3. We assume that
the model’s and system’s dynamics result from different
flow equations. Obviously we want the difference between
the system and model to be small but big enough to be
non-negligible. In particular we are going to investigate
two examples. First the Lorenz equations:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y, (3)

ż = xy − βz,

where we use the standard parameters σ = 28, ρ = 10,
and β = 8/3.
Second the Rössler equations:

ẋ = y − z,

ẏ = x+ ay, (4)

ż = b+ z(x− c),

where a = 0.2, b = 0.2, and c = 5.7.
We use eqs. (4) and (5) as our model equations and

assume that a third order term was missed when model-
ing the dynamics. That is, the true systems’ dynamics is
governed by eqs. (4) or (5) when the state variables are
replaced by:

x → x+ ǫx3,

y → y + ǫy3, (5)

z → z + ǫz3.

Note that we use an odd term, since this is the order
in which the variables enter in our model–equations (4)
and (5).

I. SUMO AND FORECASTING MEASURES

The general SUMO method is described somewhere
else [6], therefore we are only going to report on the gen-
eral setup and how to optimize the coupling between the
different models in the ensemble. In addition we are pre-
senting the measures we used to evaluate the performance
of the forecast as well as the different type of experiments
done.

Assume that we have j models:

ẋj = g(xj , ηj), (6)

where xj = (xj,1, . . . , xj,d)
T and the parameters ηj =

(ηj,1, . . . , ηj,n). We want to use linear coupling of the d–
dimensional models to give us a j×d–dimensional SUMO:

ẋk = g(xk, ηk) +

j
∑

m 6=k

d
∑

p=1

C
xp

mk(xm,p − xk,m), (7)
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where the first summation is over the ensemble of the
models and the second summation over the d compo-
nents of the state vector. The coupling constant C

xp

mk

determines how much model k is influenced by the dy-
namics of the other models. To determine the coupling
constant we follow the idea presented in [Berge]. They
suppose to minimize the following cost function given the
true dynamics y(t):

minC(F (C)) = minC

(

1

K∆

∫ ti+∆

ti

|x(C, t) − y(t)|2γtdt

)

,

(8)
where the minimization is done over the vector of pos-
sible coupling constants C ∈ Rd and γt is some scalar
error–weighting factor between the model and the sys-
tem. Note that the factor γt in the minimization means
that errors for small t contribute more than errors at
larger t. Following the conclusions of L. A. van Berge et

al. [6] we choose γ = 1/2.
In our investigation we used eqs. (4) and (5) as our

model and y(t) results from integrating these equations
after using the substitutions (6). While in the ensemble
forecasting field there exists one superior measure [7], of-
ten it is not necessary to go to these extremes. Instead
to determine the performance of our algorithm we use

the separation time Tm, that is, the largest lead-time for
which the forecast error remains less than some thresh-
old. Define:

Tm = max {T : ‖y(t0 + t)− x(t0 + t)‖ ≤ 2σ, ∀ 0 ≤ t ≤ T } ,
(9)

where y(t0) = x(t0) is the initial condition of the system
and the SUMO. We have chosen 2σ as some threshold,
that depends on the system investigated.

For both of our experiments we determine the sepa-
ration time Tm for three different forecast methods: (1)
forecast y(t) with one one standard Lorenz or Rössler
model, that is j = 1 and the model parameters are the
standard parameters given in eqs. (4) or (5); (2) forecast
y(t), given that the system as well as the SUMO are given
by eqs. (4) or (5), that is ǫ = 0 in eq. (6); (3) forecast
y(t) (given by ǫ 6= 0) with an ensemble of models given
by eqs. (4) or (5).
Note that these experiments allow us to compare (1) the
most simple forecast scheme in the IPMS with (2) the
SUMO method given by [6] and (3) the SUMO method
applied to a true IPMS. In all three cases we used an
ensemble different initial conditions y(t0), so that our re-
sults do not just give one special case, but represent the
overall performance of the method.
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