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Abstract
Non-linear control systems defined by means of dis-

tributions of smooth vector fields are relevant, partly
because they provide good models for nonholonomic
systems in mechanics, automation and classical parti-
cles. In this paper we approach the classical Foucault
pendulum, which is accepted as indisputable demon-
stration of the Earth’s rotation movement, through the
formalism of geometric control theory. By applying the
Pontryagin Maximum Principle, we derive some geo-
metric properties for trajectories for the case of small
oscillations, we establish also a link of the Foucault
pendulum with the well known Hopf fibration, which
is a ubiquitous geometric object in physics.

Key words
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1 Introduction
The experiment of the Foucault pendulum goes back

to 1851 and is recognized as a feasible demonstration
of Earth’s rotation movement. In this paper we ap-
proach the system that models the experiment through
the framework of the geometric optimal control theory,
restricting ourselves to small oscillations and the sym-
metric case in the sense that we shall explain latter. We
write the equations as an optimal control system on a
three dimensional manifold and apply the Pontryagin
Maximum Principle to derive some geometric proper-
ties of the solutions.
Geometric non-linear control theory merges differen-

tial geometric techniques with the analysis of different
aspects of non-linear control systems, including equi-
libria, stabilization, and optimal control problems. The
foundations of the theory goes back to the early seven-
ties with the pioneering papers by C. Lobry, [C. Lo-
bry, 1970], R.W. Brockett [R.W. Brockett, 1972], and

H.Sussmann and V. Jurdjevic [V. Jurdjevic, H.J. Suss-
mann,1972], among others.
The theory has been especially successful in applica-

tions to certain problems in geometric mechanics [F.
Bullo, A.D. Lewis, 2004] and robotics [R. Murray, L.
Zexiang,S.S. Sastry, 1994]. There is an extensive liter-
ature presenting the general theory of geometric non-
linear control systems, we refer the reader to the vol-
ume by V. Jurdjevic [ V. Jurdjevic, 1997] and the recent
book by A. Agrachev and Y. Sachkov [A. Agrachev,
Y.L. Sachkov, 2004].
Geometric Optimal control for non-linear systems

finds its origin in the well-known Pontryagin Maxi-
mum Principle (PMP), originally published in the book
[L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze;
E.F. Mishchenko, 1962]. This important result and its
subsequent generalizations provide natural extensions
of the necessary conditions for optimality stated in the
classical calculus of variations, see for instance [M.
Giaquinta, S. Hildebrandt, 1996], and has recently lead
to new geometry that goes in the literature under the
name of Sub-Riemannian or Carnot-Caratheodory ge-
ometry.
Generally speaking a sub-Riemannian (s-R) structure

on a manifoldM is determined by a completely non-
integrable (non-holonomic) distribution ∆ of smooth
vector fields, together with a smooth metric defined on
∆. An absolutely continuous curve α is ∆−admissible
if α̇(t) ∈ ∆(α(t)) for almost all t. The s-R distance be-
tween two points p, q ∈M is realized by the minimum
of the length of all ∆−admissible curves connecting p
and q. In is known that the s-R geodesic problem can
be formulated as an optimal control problem onM, in
this paper we shall pursue the latter approach, for de-
tails about the former, we refer the reader to excellent
survey by A.M. Vershik et al. [A.M. Vershik and V. Ya.
Gershkovich, 1991], the volume by R. Montgomery [R.
Montgomery, 2002], and the recent book by O.Calin et
al. [O. Calin, D.Ch. Chang, 2009].
An optimal control problem on connected n-



dimensional smooth manifold M, can be given by
means of a rank k < n distribution of vector fields
∆ ⊂ TM. The iteration of the Lie bracket of vec-
tor fields in ∆ yields the following flag of modules of
vector fields:

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆l · · · ⊂ TM,

where ∆1 = ∆ and ∆i+1 = ∆i + [∆,∆i]. The dis-
tribution is said to be bracket generating, if for each
m ∈ M, there exist a positive integer l for which
∆l
m = TmM. The growth vector of ∆ at m is de-

fined as (n1, . . . , nl), where nj(m) = dim(∆j
m), the

distribution is said to be regular if the growth vector is
independent of the base point.
A regular, bracket generating distribution ∆ =
{X1, . . . , Xk} determines the following driftless
control-affine system

q̇ = u1X1(q) + · · ·+ ukXk(q), (1)

where t 7→ u(t) = (u1(t), . . . , uk(t)), the admissible
control, is bounded and measurable.
An absolutely continuous curve t 7→ q(t), t ∈ [0, Tq]

is said to be admissible is q̇(t) ∈ ∆(q(t)), a.e., that is,
there is an admissible control u such that (1) holds.
For a continuous cost c(x,u) one can consider the

functional

E =
∫ Tq

0

c(x,u), (2)

to have at the end, the optimal control problem onM
of finding, among the solutions t 7→ (q,u) of (1) the
one that minimizes (2).
Apart from this introduction this paper contains three

sections and an appendix. In section 2 we present the
standard mathematical model for the Foucault the pen-
dulum. In section 3, under certain considerations for
small oscillations, we formulate the Foucault pendu-
lum as an optimal control problem an a smooth man-
ifold, for this problem we apply the PMP and derive
some geometric properties of the solutions. In section
4 we establish a natural connection of the trajectories
of the problem to the well known Hopf fibration. At
the end, in section 5 we derive some conclusions and
discuss further research perspectives. The appendix in-
cludes some technical details of the Foucault pendulum
that is in the process of being installed at the Universi-
dad Autónoma Metropolitana-Azcapotzalco in México
City. It is fair to recognize that our involvement in the
project of installation of the Foucault pendulum, has
been one of our sources of motivation for studying it
theoretically under new perspectives.
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Figure 1. Pendulum at geographic latitude α

2 The standard model for the Foucault pendulum
We take and inertial frame with coordinates (X,Y, Z),

and a pendulum of length ` and point mass m, oscil-
lating taking into consideration Earth’s rotation move-
ment. The angular velocity of the rotation is denoted
as ~ω, and the mass’ position is measured from a fixed
coordinate system with origin located at latitude α and
coordinates (x1, x2, x3), the x1 direction on a meridian
great circle in north-south sense, the x2 direction on a
latitude circle in west-east sense and the x3 direction
perpendicular to the tangent plane at the intersection of
both circles as illustrated in figure 1.
A vector ~r in the non-inertial system on Earth’s sur-

face behaves as

d~r

dt
= ~̇r + ~ω × ~r,

where ~̇r = (ẋ, ẋ2, ẋ3) and ~ω = (−ω cosα, 0, ω sinα),
with ω ≈ 10−4 sec−1. The kinetic energy is given as
follows

m

2

∣∣∣∣d~rdt
∣∣∣∣2 =

m

2
(|~̇r|2 + |~ω × ~r|2 + 2~̇r · (~ω × ~r) ).

The second term leads to a centrifugal force perpendic-
ular to the rotation axis and can be disregarded. For the
third term we observe that

~̇r · (~ω × ~r) = ~ω · (~r × ~̇r)
= ωx1(x2ẋ3 − x3ẋ2) + ωx2(x3ẋ1 − x1ẋ3)
+ωx3(x1ẋ2 − x2ẋ1),

finally we also have to take into account the following
holonomic constraint



δx2
1 + x2

2 + x2
3 − `2 = 0, (3)

where δ is a dimensionless asymmetry parameter due
to different moments of inertia or some other asymme-
tries of the experiment, for details see [ A. Anzaldo-
Menenses, F. Monroy-Pérez, 2010].
Taking all these constraints into consideration, we

have that the complete functional is written as follow:

S =
∫ (

(
m

2
(ẋ1

2 + ẋ2
2 + ẋ3

2 − 2gx3)

+ λ0(δx2
1 + x2

2 + x2
3 − `2)

+ λ1(ξ̇1 + x2ẋ3 − x3ẋ2)
+ λ2(ξ̇2 + x3ẋ1 − x1ẋ3)

+ λ3(ξ̇3 + x1ẋ2 − x2ẋ1)
)
dt,

where λ0 Lagrange parameter and λ1 =
−mω cosα, λ2 = 0 and λ3 = mω sinα, (the
last differentials do not alter the Euler-Lagrange
equations for ~r). The λi can be taken as the La-
grange parameters associated with the nonholonomic
constraints

ω1 = dξ1 + x2dx3 − x3dx2 = 0, (4)
ω2 = dξ2 + x3dx1 − x1dx3 = 0, (5)
ω3 = dξ3 + x1dx2 − x2dx1 = 0, (6)

which is tantamount of saying that the ω′is are con-
stants, since the ξ′is are cyclic variables.

3 Optimal control approach for the Foucault pen-
dulum

We consider the Lagrangian

L0 =
m

2
(ẋ2

1 + ẋ2
2 + ẋ2

3)−mgx3

+ λ1(ξ̇1 + x2ẋ3 + x3ẋ2)
+ λ2(ξ̇2 + x3ẋ1 + x1ẋ3)
+ λ3(ξ̇3 + x1ẋ2 + x2ẋ3),

subject to constraint (3).
The last three terms of the Lagrangian result from the

fact that the pendulum is in a non-inertial coordinates
system. Equivalently, we can take the Lagrangian

L =
m

2
(ẋ2

1 + ẋ2
2 + ẋ2

3)−mgx3,

subject to the non-holonomic constraints (4), (5)and
(6).
For a standard Foucault pendulum only small oscil-

lations are important, therefore ẋ3 ' 0 and, from the
holonomic constraint we have

x3 =
√
`− x2

1 − δx2
1 ' `−

1
2`

(δx2
1 + x2

2),

so that the Lagrangian reduces to

L =
m

2
(ẋ2

1 + ẋ2
2)− mgδ

2`
x2

1 −
mg

2`
x2

2

together with the non-holonomic constraint

ξ̇ = x1ẋ2 − x2ẋ1. (7)

The problem can now be formulated as the optimal con-
trol problem of minimization of the functional

∫
c(x, ẋ)dt, (8)

with

c(x, ẋ) =
m

2
(ẋ2

1 + ẋ2
2)− mω1

2
x2

1 −
mω2

2
x2

2,

and ω1 =
√
gδ/`, ω0 =

√
g/`, amongst the admissi-

ble solutions of the following control affine system

dq

dt
= u1X1(q) + u2X2(q), (9)

with

X1 =
∂

∂x1
− x2

∂

∂ξ

X2 =
∂

∂x2
+ x1

∂

∂ξ

The state variable is three-dimensional q =
(x1, x2, ξ)t, and the velocities are taken as con-
trol parameters, that is,

u1 = ẋ1, u2 = ẋ2.

we assume further that u = (u1, u2) is measurable and
bounded.



3.1 The Pontryagin Maximum Principle
The distribution ∆ = {X1, X2} is bracket generat-

ing, regular and generates a three dimensional step-2
nilpotent Lie algebra with the only non-zero bracketX3

given by

X3 = [X1, X2] = 2
∂

∂ξ
,

In fact, we have a Lie algebra isomorphic to the Heisen-
berg Lie algebra, and the manifold M is the Heisen-
berg group.
Necessary conditions for admissible optimal trajecto-

ries of the above optimal control problem are given by
the PMP that we now roughly explain, for details see
for instance [ V. Jurdjevic, 1997].
The cotangent bundle T ∗M is a symplectic manifold

with canonical symplectic form Ω, that allows to as-
sociate to each smooth function H : T ∗M → R, a
Hamiltonian vector field ~H , according to the expres-
sion dHη(v) = Ω(v, ~H(η)), where v ∈ TηT

∗M
and η ∈ T ∗M. For then the Hamiltonian flow t 7→
(g(t), p(t)) obeys the so-called Hamilton equations

dg

dt
= (dLg)(dH) (10)

dp

dt
= −(ad∗dH)(p), (11)

her g 7→ Lg denotes the left translation.
We consider the corresponding Hamiltonians (mo-

menta) H ′is associated to the vector fields X ′is, i.e.
p(Xi) = Hi. The coordinates on the cotangent bun-
dle are (x1, x2, H1, H2) and the algebra for the Hi’
is enlarged (see for example Abraham, R. & Mars-
den, J.E. 1987, Foundations of Mechanics, Addison-
Wesley.) according to

{xi, xj} = 0, {xi, Hj} = Xj(xi).

The commuting relations for the step-2 nilpotent Lie-
Poisson algebra generated by the Hamiltonians and the
coordinates functions is summarized in the following
table

{·, ·} H1 H2 x1 x2

H1 0 H3 −1 0
H2 −H3 0 0 −1
x1 1 0 0 0
x2 0 1 0 0

Table 1

A control dependent Hamiltonian is written as follows

Hλ0,u = −λ0c(x, u) + p(u1X2(q) + u2X2(q))
= −λ0c(x, u) + u1H1 + u2H2,

as customary, λ0 is normalized to take the values 1 or
0, the integral curves of the Hamiltonian system asso-
ciated to Hλ0,u are called extremals, the ones corre-
sponding to 1 are called normal, whereas those corre-
sponding to 0 are called abnormal, we restrict ourselves
to the normal case, PMP then read as follows:

Theorem 3.1. A solution curve t 7→ (x(t), û) is opti-
mal if it is the projection of an extremal curve (x, p)
along which the inequality Hλ,bu ≥ Hλ,w holds a.e.,
for all w ∈ U .

The maximality condition readily implies that along
extrema mui = Hi, therefore the system Hamiltonian
becomes quadratic

H =
1

2m
(H2

1 +H2
2 ) +

mω1

2
x2

1 +
mω2

2
x2

2.

The differential system for the adjoint variable is writ-
ten by Poisson bracketing as follows:

Ḣ1 = {H1,H} = H2H3 −mω1x1,

Ḣ2 = {H2,H} = −H1H3 −mω0x2,

Ḣ3 = {H3,H} = 0,

from where we can perform a straightforward integra-
tion process.

Remark 3.1. In general, following the same lines, we
observe that in the same way, the PMP can be applied
to more general problems with Lagrangians written as
c(x, ẋ) = T (ẋ)−V (x), subject to non-holonomic con-
straints.

4 Foucault pendulum and the Hopf fibration
As it is shown in our previous work [A.Anzaldo-

Meneses and F. Monroy-Pérez, 2009], for a symmetric
pendulum δ = 1, the solution can be better written by
introducing the complex variable u = x1 + ix2, from
where ξ̇3 = Im (uu̇∗) and ü = −i 2λ3

m u̇− g
`u. It follows

that

u = e−iω̃t(A+e
iω̃0t +A−e

−iω̃0t), (12)
u̇ = i e−iω̃t(α+A+e

iω̃0t + α−A−e
−iω̃0t), (13)

ξ3 = −(α+|A+|2 + α−|A−|2) t

−2<
(
A+A

∗
− (e2i ω̃0 t − 1)

)
.

For the first two relations, this is a rotation given by
the slow mode, with frequency ω̃, of the fast mode
motion, with frequency ω̃0. Therefore, the trajectory
in base space performs a precession with frequency



ω sin(α), whereas ξ3 increases by the same amount af-
ter 2π/ω̃0 where ω̃0 =

√
ω̃2 + ω2

0 , ω0 =
√
g/` and

ω̃ = λ3/m. Here, ω̃ is equal to the rotation angular
speed ω times the sinus of the geographical latitude,
and the A± depends on he initial conditions. The con-
servation of energy reads now as follows

2H/m = |u̇|2 + ω2
0 |u|2. (14)

For instance, for the original Foucault experimental set-
ting one has, x1(0) = R cosβ, x2(0) = R sinβ, with
β ∈ (0, 2π), and ẋ1(0) = 0 and ẋ2(0) = 0, the trajec-
tories are written as follows:

x1 = R cos(ω̃t− β) cos(ω̃0 t)

+
Rω̃

ω̃0
sin(ω̃t− β) sin(ω̃0 t),

x2 = −R sin(ω̃t− β) cos(ω̃0 t)

+
Rω̃

ω̃0
cos(ω̃t− β) sin(ω̃0 t),

ξ3 =
R2 ω̃ ω2

0

ω̃2
0

(
t

2
− sin(2ω̃0 t)

4ω̃0

)
.

Observe that the expressions for x1 and x2 are a rota-
tion by an angle α = ω̃t− β of the ellipse given by the
vector

(R cos(ω̃0 t),
Rω̃

ω̃0
sin(ω̃0 t)).

This vector has initial value (R, 0) and takes the same
value at times tk = π k/ω̃0, for k integer. Since
ω̃ < ω̃0, the nearest approach to the origin is at distance
Rω̃/ω̃0. The curves in base space are hypocycloids.

We establish now the connection of these solutions
with the well know Hopf fibration, we restrict ourselves
to the symmetric pendulum, that is δ = 1.
As is well known, the Hopf fibration describes the unit

three dimensional sphere S3 by means of circles S1 and
the two dimensional sphere S2. It was shown by H.
Hopf himself [H. Hopf , 1931], that a many to one con-
tinuous function from the S3 onto S2, can be defined
in such a way that distinct points of S2 come from a
distinct circles of S3, so that S3 is fibered by circles for
each point of S2. In modern notation it is customary to
denote this bundle structure as follows

S1 ↪→ S3 π−→ S2,

where S3 is the total space, S2 the base space, S1 the
fiber space, and π : S3 −→ S2, the so-called Hopf
map, the bundle projection.

Figure 2. The Hopf fibration.

The Hopf fibration, like any fiber bundle, has the im-
portant property of local triviality, (looks locally as a
product), however it is not a trivial fiber bundle, that
is, S3 is not globally equal to S3 × S2. Hopf fibration
provides a basic example of a principal bundle by iden-
tifying the fiber with the circle group.
Stereographic projection of the Hopf fibration induces

a remarkable structure on the space R3, it turns out that
the space is filled with nested tori made of linking Vil-
larceau circles. Each fiber projects to a circle in space,
including the circle through infinity, and each torus is
the stereographic projection of the inverse image of a
circle of latitude of S2. For details we refer the reader
to the volume by G.L. Naber [G.L. Naber, 2000], and
the beautiful paper by H.K. Urbantke [H.K. Urbantke,
2003]. Figure 2 illustrates the well know picture of the
Hopf fibration.
Now from equations (12) and (13) we introduce the

following the two complex variables

z1 = ω0

√
m/2H u,

z2 =
√
m/2H u̇.

For then, the dynamics develops on S3 given by the
conservation of energy (14) that now is written as

|z1|2 + |z2|2 = 1.

Now, by means of Hopf map π : S3 → CP1 = S2,
the 2-sphere S2 is described by the unit vector n̂ =
(n1, n2, n3) with components

n1 = 2Re(z1z∗2),
n2 = 2Im(z1z∗2),
n3 = |z1|2 − |z2|2,

satisfying

n2
1 + n2

2 + n2
3 = 1.



Figure 3. The Bloch sphere.

This surface is known as Bloch sphere in the study
of two level systems, of nuclear magnetic resonance,
nonlinear optics and quantum computing. The points
on the sphere correspond to the pure states |ψ〉 of the
system, whereas the points in the interior correspond
to mixed states. Each pair of antipodal points corre-
spond to mutually orthogonal state vectors, the north
and south poles are customarily chosen to correspond
to the standard basis vectors |0〉 and |1〉, respectively,
which in turn might correspond to the spin-up and spin-
down states of an electron, see figure 3.
Observe that the sets of points z0z1 and z0z2 for
|z0| = 1 are circles through z1 respectively through
z2 and are mapped to the same point on S2.
As mentioned before, the fiber bundle structure is

given by S1 ↪→ S3 π→ S2 where S3 is the total space,
S2 the base space, S1 the fiber space and π the projec-
tion. In our problem to multiply z1, respectively z2, by
a unit complex number is equivalent to rotate the plane
{x1, x2}.
Since the solution is a rotation by an angle ω̃t of an el-

lipse parameterized by an angle ω̃0t, we conclude that,
all arcs of trajectories in base space, which can be ob-
tained by a rotation from a given one, are mapped to
the same curve on S2 by the Hopf map. The resulting
curve will be thus the same for all equivalent arcs. The
Bloch vector n̂ satisfies

dn̂

dt
= ~Ω× n̂, (15)

with constant angular velocity ~Ω = (0, −2ω0, 2ω̃).
The canonical angular momentum conservation leads

to the planes

−ω0n2 + ω̃n3 =
1
2
~Ω · n̂ =

ω2
0 Lz
H

− ω̃.

They are at a distance (ω2
0Lz − Hω̃)/(Hω̃0)

from the origin, their normal unit vectors are
(0,−ω0/ω̃0, ω̃/ω̃0) = ~Ω/Ω and the intersections of
these planes with S2 are of course circles. In the case
for which H = mR2ω2

0/2 we have

n̂ = (−ω0

ω̃0
sin(2ω̃0t),

ω0(−ω̃ + ω̃ cos(2ω̃0 t))
ω̃2

0

,

ω̃2 + ω2
0 cos(2ω̃0 t)
ω̃2

0

).

The two halves of the spheres are foliated by circles
independent of the initial position R or the energy. The
circles on one half are for ω̃/ω0 > 0 and on the other
half for ω̃/ω0 < 0. All circles pass through the north
pole. The isolated north pole also corresponds to the
limit cases where the ratio of the frequencies is± infin-
ity, associated to the Heisenberg flywheel or a charged
particle in a perpendicular static magnetic field. When
ω̃/ω0 = 0 the circles become a meridian that corre-
sponds to a two dimensional harmonic oscillator. For
ω̃/ω0 = ±1 two circles connect the north pole with
the equator. Finally, each circle corresponds to a sin-
gle curve arch in the base space {x1, x2} trajectory
traversed in half a period. For the general case H =
mx2

0ω
2
0/2 +mv2

0/2 and Lz = mx0v0 sin(β) +mω̃x2
0.

The components of the normal vector are

n1 =
mω0

2Hω̃0
(2ω̃0v0x0 cos(β) cos(2ω̃0t)

+ [v2
0 − ω2

0x
2
0 + 2ω̃v0x0 sin(β)] sin(2ω̃0t)),

n2 =
mω0

2Hω̃2
0

(ω̃v2
0 − ω̃ω2

0x
2
0 − 2ω2

0v0x0 sin(β)

− ω̃ cos(2ω̃0t)[v2
0 − ω2

0x
2
0 + 2ω̃v0x0 sin(β)]

+ 2ω̃ω̃0v0x0 cos(β) sin(2ω̃0t))

n3 =
m

2Hω̃2
0

(
−ω̃2v2

0 + ω2
0ω̃

2x2
0 + 2ω2

0ω̃v0x0 sin(β)

− ω2
0 cos(2ω̃0t)[v2

0 − ω2
0x

2
0 + 2ω̃v0x0 sin(β)]

+ 2ω2
0ω̃0v0x0 cos(β) sin(2ω̃0t)).

Again, the conservation of the canonical angular mo-
mentum leads to circular trajectories around the vector
~Ω.
For ω̃ = 0, uncoupled harmonic oscillator, the coor-

dinate n2 is constant and the corresponding limit cir-
cle is perpendicular to the {n1, n2} plane and separates
the sphere in two unequal parts in general. The limit
case ω0 = 0 is the south pole for v0 6= 0, since then
n3 = −1, and the north pole for v0 = 0 and x0 6= 0
which lead to n3 = 1.
Perform now a rotation such that the angular veloc-

ity ~Ω coincides with the n3 axis, i.e., introduce the
coordinates n′1 = n1, n

′
2 = ω̃n2/ω̃0 + ω0n3/ω̃0 and

n′3 = −ω0 n2/ω̃0 + ω̃n3/ω̃0. More explicitly

n′2 =
mω0

2Hω̃0
(−[v2

0 − ω2
0x

2
0 + 2ω̃v0x0 sin(β)] cos(2ω̃0t)

+ 2ω̃0v0x0 cos(β) sin(2ω̃0t)).



Figure 4. The Foucault Pendulum at UAM-A.

The coordinate n′3 is the constant (ω2
0Lz −

ω̃H)/(Hω̃0) and (n′1, n
′
2) describes a circle centered

on the n′3 axis.
Further geometrical analysis shall be carried out

somewhere else for exploiting the richness of the Hopf
fibration in the same spirit of the aforementioned refer-
ence of H.K. Urbantke.

5 Conclusion and research perspectives
We formulate the classical Foucault pendulum in the

framework of geometric optimal control theory, the
small oscillation consideration allow to reduce the state
manifold to the three dimensional Heisenberg group.
The Pontryagin Maximum Principle yields the optimal
controls that in turn allow to write explicitly the so-
lutions. With these expressions at hand we establish
an intriguing connection with the well known Hopf fi-
bration, that open an interesting line of theoretical re-
search.

Appendix
One of the motivations for studying theoretical aspects

of the Foucault pendulum was the involvement of the
authors in the the project of installation of a real Fou-
cault pendulum at the UAM-Azcapotzalco in México
City. The project is now at the level of a prototype de-
sign that we shall briefly describe.

5.1 Physical Characteristics

It consist of a perfect 10 kilograms bronze (SAE 65)
sphere with a central cylindrical axis of 1in of diam-
eter of stainless steel (SW 10), perfectly coupled to
the sphere. This ferromagnetic composition allows
the action of electromagnetic devices. The sphere is
suspended by a iron cable of seven threads of type
(1× 7 + 0), see figure 4.

Figure 5. The closed loop scheme for the Foucault Pendulum at
UAM-A.

The pendulum is initialized as in the original experi-
ment from rest and is energized by mean of an electro-
magnetic impulse on the bottom by means of a coil that
energizes the pendulum on a regular basis. The electro-
magnetic force was calculated by means of a COMSOL
Multiphysics 3.5’s simulation for a permanent oscilla-
tion of 5◦, see table 2.

1◦ 2◦ 3◦ 4◦ 5◦

-1.1 E08 4.2 E07 1.3 E07 -9.8 E10 4.2 E10
7.4 E06 -6.8 E06 -3.9 E05 -1.9 E06 -2.9. E07

-5.0 E04 -5.4 E04 -1.2 E05 -2.8 E07 -5.8 E08
5.0 E04 5.4 E04 4.1 E05 2.0 E06 2.9 E07

Table 2. Estimation of the electromagnetic impulse.

5.2 The control and vision system
It consist of three fundamental parts, namely, a three

rings circular configuration of eight independent mod-
ules of sensors. An interactive mechanism with a cen-
tral controller of each module and a web cam. The
permanent communication of the modules determines
a closed loop scheme where feedback is generated by
infrared presence sensors that triggers the electromag-
netic impulse within a determined threshold, see figure
5.
The web cam has a fix IP and interfaces with the cen-

tral controller for keeping track of the movement, for
generating data regarding position, velocity and accel-
eration, as well as database of images that can be used
for image reconstruction experiments, see figure 6.
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