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Abstract
Latest research papers on ultrasound tomography fea-

ture a new way of performing the scanning procedure
that is similar to computed tomography. The underly-
ing work of computed tomography consists of scanning
thin slices with a rotating narrow X-ray beam. Usu-
ally, one needs a large number of projections for many
different angles to reconstruct an image. In this work,
we consider the application of the compressive sens-
ing framework together with randomization to arrange
an economy representation of the ultrasound diagnos-
tics data without essential loss of performance. Us-
ing this approach, we will be able to randomly select
the angles of scanning instead of obtaining all possible
projections. We start with a brief overview of ultra-
sound tomography techniques, after that we formulate
the problem of our interest, and provide the appropriate
decision with results of preliminary computer simula-
tions.

Key words
Compressive sensing, randomized algorithms, spar-

sity, wavelet transform, ultrasound tomography.

1 Introduction
In the 21st century, the amount of information

to be processed has increased dramatically, mainly
due to mass transitions to processing flows of two-
dimensional (2-D) and three-dimensional (3-D) data.
The complexity of traditional signal quantization meth-

ods grows exponentially with dimensionality. In mod-
ern applications for digital photos and video cameras,
the traditional requirement for the desired measure-
ment frequency (Nyquist rate, see [Nyquist, 1928]) is
so high that too much data must be compressed sub-
stantially before being stored or transmitted. In other
applications, including display systems (medical scan-
ners and radars) and high-speed analog-digit convert-
ers, increasing a measurement frequency has proven to
be too costly.
We assume that knowledge makes it possible to restore

the required information x from the data y acquired
in the course of experiments or computations. For the
sake of simplicity, one can often assume that the es-
sential information about a phenomenon x ∈ X under
consideration is related to the available data y ∈ Y
by means of understanding the regularities of the phe-
nomenon, i.e., the knowledge (operator)

y = Ux (= U(x)). (1)

If the operator U is invertible, it provides exhaustive
knowledge to fully restore x from y. It is known from
matrix algebra that x = U−1y for the case y,x ∈ RT

and the nonsingular T × T matrix U.
A case in which the data are subject to the action of an

uncontrollable disturbance

y = Ux+ v (2)

is typical for open systems. For an insignificant level of
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external disturbances v (or at their damping), the prob-
lem of restoring x from y comes down to one of in-
verting the operator U, which usually is accomplished
by increasing the number of observations: choosing
m > T for y ∈ Rm and x ∈ RT . From the practical
point of view, it is extremely interesting to investigate
the possibilities for restoring x ∈ RT from y ∈ Rm for
m ≪ T which is, of course, unattainable in the general
case.
Modern information theory originating from the fa-

mous Nyquist-Shannon Theorem (see [Nyquist, 1928;
Shannon, 1949]) states that if an analog signal f : R →
R from L2(R) has a limited spectrum, it can be restored
uniquely without losses of its discrete readings taken
at a frequency greater than the doubled maximal fre-
quency of the spectrum. In many practical applications,
the original notion of information x may be described
much more simply than the actual signals f observed
by the researcher. For example, to make a decision in
some control system, one needs to know that a signal
in the form of an acoustic or electromagnetic wave ap-
peared in the registering channel. Of interest is a one-
bit answer to the simple yes/no question, whereas the
arriving and registered signal may take a complex form
and be distributed in time and space (multidimensional
vector). The rapidly progressing new paradigm of in-
formation processing relies on such specificity.
Yet recently a new paradigm of “compressive sens-

ing” (CS) has been introduced in place of traditional
signal processing theory. This paradigm makes it pos-
sible to restore the sparse information x with sufficient
accuracy (see [Donoho, 2006]). The new methodol-
ogy is based on a certain — usually randomized — se-
lection of the matrix U and on the fact that the vector
x resulting from ℓ1-optimization has at most s < m
nonzero components, that is, is strongly sparse. This
remarkable fact was established and used by one of the
authors for constructing an ℓ1-optimal stabilizing con-
troller of a non-minimum phase control plant that was
initially presented in [Granichin, 1983]. An extended
and detailed explanation of why only a small number
— equal to the co-dimension of the subspace Ux = 0
— of vector components of the ℓ1-optimization prob-
lem solution is not equal to zero was given in [Bara-
banov and Granichin, 1984]. More precisely, the CS
paradigm uses randomized measurements as nonadap-
tive linear projections with a measurement operator H
— a random m × T matrix — retaining the structure
of a signal f = Φx. The information x is recovered
using, for example, the methods of ℓ1-optimization: x
is determined as the solution of a problem such as

||x||1 → min
x

subject to : y = Ux, (3)

where U = HΦ is an operator that converts x into the
set of data y.

The acquisition of information on the basis of com-
pressive sensing may be more efficient than the tradi-
tional sampling of rare or compressed signals. Popu-
lar estimates using the least square method are inade-
quate in CS for good signal reconstruction. Therefore,
other types of convex optimization are used. The do-
main of compressive sensing applications has recently
gone far beyond the limits of coding/decoding theory
and now embraces problems of image classification
and processing. In some applications, the actual arriv-
ing signals require no restoration at all, and the data are
processed only in their compressed form.
Ultrasound tomography is widely applied in medical

diagnostics. The development of technology enabled
use of a larger number of sensors in the US transduc-
ers to obtain better images. Moreover, for better fo-
cusing, higher sampling frequencies of the signal re-
ceived is required, hence leading to a huge pile of data
to be processed. However, tomography-produced im-
ages are of sparse nature, i.e., there is little information
available for the reconstruction. At the same time, the
data is overly redundant, leaving space for the devel-
opment of more efficient data acquisition and analysis
technology in the process of tomography diagnostics.
One such technology for collecting and reconstructing
US tomography images is described below; it is based
on the randomization ideology and is deemed to be less
time-consuming, yet quality-lossless.
At present, resolution capability of ultrasound tomog-

raphy is comparable to that of magnetic resonance
imaging; in medicine, it is widely used in the diagnos-
tics of soft tissues [Hopp et al., 2014]. Among the ad-
vantages of the ultrasound tomography are relatively
low cost of equipment and maintenance, portability,
safety to a human, non-invasive nature.
To increase the quality and resolution capability of the

image obtained in the process of ultrasound diagnos-
tics, both the amount of sensors in the transducer and
sampling time are to be increased. This unavoidably
leads to the increase of the amount of data transmitted
which complicates the overall process. On top of that,
distortions of data and presence of noise are usually as-
sumed [Shannon, 1949].
The paper is organized as follows. In Section II basic

concepts of travel-time tomography are introduced. In
Section III we describe the problem statement. In Sec-
tion IV the data processing in ultrasound tomography
is considered. Simulation results are given in Section
V. Section VI contains conclusions.

2 Travel-time Tomography
Propagation speed of sound in tumors is usually

higher than that in normal tissue. This enables efficient
reconstruction of tissue densities in the desired domain
of the body using equations that involve the propaga-
tion paths of the signal and the measured times of travel
between the sensors which are located at the perimeter
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of a ring-type transducer [Quan and Huang, 2007]. It
is this travel-time tomography principle that underlies
the functioning of modern US diagnostics equipment;
specifically, this approach was applied to the breast
cancer diagnostics [Hormati et al., 2010].
The amount of raw data obtained with travel-time to-

mography typically depends quadratically on the num-
ber of sensors in the transducer, since the impulse
emitted consecutively by each of the sensors is re-
ceived by all the rest of them. This imposes heavy
requirements on the computational unit of the tomo-
graph and increases the processing time. Modern US-
image reconstruction methods process data iteratively
with time complexity of an iteration being of the order
of O(N logN) [Chen, Donoho, and Saunders, 2001].
Travel-time ultrasound tomography is a well-studied

technique, which is broadly discussed in research
and application papers [Kunyansky, 2011; Quan and
Huang, 2007; Hopp et al., 2014]; also, data reconstruc-
tion methods which perform well in the presence of
noise were studied [Hormati et al., 2010]. Needless
to say, accurate determination of arrival times is crucial
for better reconstruction [Li et al., 2009]. The over-
all process of travel-time ultrasound tomography can
be schematically depicted as follows: Signal emission
from a US-sensor−→ Acquisiton of data from other
sensors −→ Extraction of travel times −→ Speed map
reconstruction −→ Shaping the image.
The primary goal of acoustic tomography is to recover

the parameters of the analyzed media from the charac-
teristics of sound propagation. First, an exact model is
needed that describes adequately the underlying phys-
ical system; second, high-precision measurements are
required. Then the unknown parameters of the speed
propagation model are estimated by solving the inverse
problem. The quality of reconstruction directly de-
pends on the adequacy of the physical model, accuracy
of the measurements, and on the specific method for
solving the inverse problem.
Propagation of energy of acoustic signals in the

anisotropic media can be described by the partial dif-
ferential equation

∇2p(r, t)− 1

F 2(r)

∂2p(r, t)

∂t2
= s(r, t) (4)

where p(r, t) is the pressure at the point r at the time in-
stant t, F (r) is an unknown speed propagation model,
and s(r, t) is the initial signal. By knowing the initial
signal and solving the inverse problem, the model F (r)
is detected that best fits the measurements p(r, t)|Ω ob-
tained from the known positions Ω.
Simulation of the primal problem using wave propa-

gation is extremely computationally laborious, that is
why principles of geometric acoustics are exploited in
travel-time tomography. Under the assumption that the
frequency of the signal is high enough, the path that

it traveled can be found by using Fermat’s principle
[Schuster, 1904]. Then the inverse problem is to re-
construct the distribution F (r) of the speed of sound
from the travel times read from the sensors.
Importantly, in contrast to the X-ray tomography

where signals propagate along straight lines, ultrasound
signals in anisotropic media propagate differently and
depend on speed distribution.
Though acoustic travel-time tomography originates

from seismology, at present there is quite a bit of re-
search that testifies to the efficiency of US tomography
in medical diagnostics, in particular, in breast cancer
diagnostics [Duric et al., 2007].

3 Inverse Problem and Image Reconstruction
The signal travel time Y between the emitter and re-

ceiver can be computed as

Y =

∫
Γ

1

F (r)
ds, (5)

where Γ is the propagation path and F (r) is the speed
of sound at point r; notably, the path Γ that the signal
travels depends on the speed distribution F (r) in the
media, and the travel time nonlinearly depends on the
speed of sound in the media. Equation 5 can be repre-
sented in the discrete-time form by considering it over a
fine enough N -cell rectangular grid and assuming that
the speed of sound is constant in every cell:

Y = A(F ) · F, (6)

where F is the N × 1-vector of speed distribution,
A(F ) is the M×N -matrix of paths that the signal trav-
els over, and Y is the M × 1 vector of the signal arrival
times obtained from the sensors. With k sensors in the
system, we have M = k(k − 1) various paths.
The goal of the inverse problem is to find an esti-

mate of the speed distribution vector which explains
the travel time in 6 in the best way. One of the tradi-
tional algorithms for solving this problem is the conju-
gate gradient method with ℓ1-regularization [Hormati
et al., 2010]. We thus arrive at the minimization prob-
lem

min
F

∥A(F ) · F − Y ∥22 + λ∥Ψ⊤F∥1, (7)

where Ψ is a basis that brings F to a sparse representa-
tion, and λ is a weight coefficient.
Next, to compare the results of a reconstruction ob-

tained by using compressive sensing with the original
model (data), we have to choose the measure of differ-
ence between two sparse images (i.e., a metric in the
space of sparse images).
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Experimentally it was found that the relative error
metric showed itself inadequate, while the Frobenius

norm defined as ∥F∥2 =
(∑

i,j |fij |2
)1/2

demon-
strated a reasonable behavior.
The following reduced-scale model was used when

testing the compressive sensing paradigm in the area
of ultrasound diagnostics data:

1. the diameter of the ring-type transducer is
d = 6cm

2. the overall amount of sensors evenly located on the
perimeter is k = 100

3. the amount of receivers among them is kRx = 1
3k

4. the reconstruction grid is N = 64× 64 = 4096
5. the number of cross-sections is ztotal = 15
6. the system under diagnostics is represented by

the media (water) with the speed of sound fw =
1500mps (meters per second) and an object (tu-
mor) to be detected placed in it, having speed of
sound ft = 2600mps

4 Data Processing in Ultrasound Tomography
To get a better image, one needs a large number of

sensors and high signal sampling rate, which obviously
necessitates the processing of huge amount of data ob-
tained from the sensors; this can be evaluated as

V = k2zYmaxν, (8)

where V is the overall number of measurements, k is
the number of sensors, z is the number of cross-
sections to be analyzed, Ymax is the signal travel time
with account for echo return loss, ν is the sampling
rate.
A modern commercial ultrasound tomograph The

SoftVue has the following characteristics:

1. Master server: Two processors quad-core Intel
Xeon E5620, with 192Gb RAM

2. Backup server: Two processors quad-core Intel
Xeon E5620, with 96Gb RAM, and two GPU
Nvidia Tesla M2070

Table 1 presents the amount of data (in Gb) obtained
from sensors per one cross-section.

Table 1. Amount of data obtained from sensors

sampling rate vs # sensors 256 512 1024

10 0.21 0.86 3.44

12 0.26 1.03 4.13

14 0.3 1.2 4.81

When using a single server, it takes several minutes
for the reconstruction (manufacturer’s information as
per [Roy et al., 2013]).

4.1 Analysis of the Speed Map in the Wavelet
Framework

Ultrasound tomography images are known to have
sparse character. Among the efficient transformation
tools leading to a sparse representation of the recon-
structed speed map F are wavelet transforms. In
the context of the problem under consideration, the
Daubechies wavelet D4 was proved to be particularly
efficient.
Figures 1–2 exemplify use of the wavelet D4 as ap-

plied to the reconstruction of the cross-section z = 3 of
the reduced-scale model described above. Speed map
reconstruction from the signal is depicted in Fig. 1. The
result of the transform X = Ψ−1F is shown in Fig. 2.

Figure 1. Speed map reconstruction from the signal

Figure 2. Speed map after wavelet transform
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The overall number of the coefficients in the reduced-
scale model is N = 4096. Sparsity of the signal is
easily seen. Indeed, Fig. 3 demonstrates that use of
just 100 to 200 coefficients allows for nearly complete
reconstruction.

Figure 3. Density map reconstruction error using incomplete coef-
ficient set of the wavelet representation

In the compressive sensing context this means that the
signal can be considered as being s-sparse with the fea-
sible values of s lying between s = 100 and s = 200.
We chose to pick s = 122 = 144.

4.2 Scaling the Grid
Given k sensors, the overall amount of equations ob-

tained from using the maximum possible number of
projections of the image is equal to

M = k(k − 1). (9)

Compressed sensing ideology is useful here in the
sense that, having once detected the sparsity level s,
a scaling of the reconstruction grid for F can be per-
formed, leading to the required number of the equations

m ≈ 4s log
N

s
(10)

without need for performing extra experiments. Thus,
Fig. 4 sheds light on the superiority of the compressed
sensing paradigm over many other approaches; namely,
the number of equations required for the reconstruction
of a pre-specified quality, grows only logarithmically
as compared to the traditional use of the complete set
of M equations.

Figure 4. Portion of the equations sufficient for reconstruction

5 Simulation Results
We applied the following two randomization schemes:

1. The entries of the vector Y are picked at random,
which corresponds to the m × N matrix A with
the only 1 in each row at a random position, and
the rest of the entries are zeros.

2. The matrix A ∈ Rm×N is generated randomly
with entries having either the Bernoulli distribu-
tion Prob{x = −1} = Prob{x = 1} = 1/2, or
the distribution Prob{x = −1} = 1/6, Prob{x =
0} = 2/3, Prob{x = 1} = 1/6).

The experiment was performed with the reduced-scale
model using various numbers of projections. Use of
equation 10 leads to m ≈ 60, which is sufficient for a
good reconstruction. Keeping in mind that the number
of receiving sensors kRx < k, we obtain the required
number of projections mπ = m

kRx
≈ 3. The results are

presented in Fig. 5.

Figure 5. Deviation (in the Frobenius norm) of the reconstructed
signal from the original data (speed map) as function of projections

Finally, the figures below depict the reconstruction of
the image when using mπ = 60 projections (Fig. 6)
and mπ = 100 projections (Fig. 7).
The preliminary results presented in this section look

promising; in the nearest future, experiments over a
full-scale model with k = 1, 024 sensors will be per-
formed.

6 Conclusions
In this paper we have applied the Compressive Sens-

ing approach to the problem of ultrasound diagnostics
data processing. For this purpose, we have investigated
the sparsity properties of the obtained images, as well
as how increasing the resolution of the image affects
the numerical characteristic of the sparsity s. After
that, we have studied a modification of the algorithm
for the tomographic image reconstruction and tested it
on the artificial models. Our experiments have shown
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Figure 6. Sparse representation of the speed map using wavelet
transform: 60 projections

Figure 7. Sparse representation of the speed map using wavelet
transform: 100 projections

that it is possible to reconstruct an image without a sig-
nificant loss of quality despite using incomplete data.
The use of Compressive Sensing approach may signifi-
cantly reduce the amount of processed data, which will
in turn significantly weaken the requirements for the
computing power of the computed tomography scan
and reduce the time spent on each examination.
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