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Abstract—This work deals with the problem of inade

quacy of a fixed depth range in costvolumebased dense

methods for visual SLAM to fit different scales of the

scenery. Mainly, the rapid changes of scale in the focused

scene during navigation makes it necessary the adaptation

of the depth range in order to maximize the resolution.

We present a novel approach based on the distribution of

the mass probability of the inverse depth estimations. We

track continuously the wrapping of this function, keyframe

by keyframe, and create corrections on the basis of soft

restrictions to be effective in the next step. We illustrate

the efficacy of the realtime approach employing a dataset

of a scenario indoors.

Keywords: Monocular SLAM, Direct dense method,

Cost volume, Inverse depth map, Depth range.

I. INTRODUCTION

SLAM techniques are increasingly being employed in

many areas of the Robotics, in aerial as well as in ground,

mobile robot navigation, space, swarm and underwater

applications [1].

Recently, direct dense and semidense methods em

ploying photometric knowledge have become popular in

SLAM, see for instance DTAM [3] and LSDSLAM [4].

In particular DTAM makes use of a cost volume to

gather photometric information for checking brightness

consistency between every pixel in a keyframe with

respect to pixels on the respective epipolar lines of

ancillary frames. Thereby, a global timedemanding cost

optimization of the photometric errors is performed

along numerous epipolar directions to finally outcome
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a depth estimation [3]. However, new incoming tech

nological breakthrough like GPGPU commodities allow

to implement the complex procedure of optimization

avoiding overhead for groundtruth applications [5].

A inherent feature of the cost volume is the discretiza

tion of the inverse depth range with more resolution for

short than longsight distances between camera an ob

ject. Besides, the inversedepth setup taps efficiently the

great parallax for short and middle distances of objects

to the camera. Nevertheless, since the amount of depth

units in the depth discretization influences exponentially

the time taken to optimize, this is customarily selected

as relatively small value, say 32 or 64. This in turn will

produce a staircasing effect in the depth map surface

although it is negligible for short and tolerable for middle

distances when the regularization strength is well set up.

In complex indoor and outdoor scenarios, equally

natural or manmade constructions are geometrically

characterized by a wide range of dimensions. If the depth

range spans a very low minimal and a very high maximal

depths during the navigation, this surely will carry a

significant drop in the resolution when all objects in the

footage are for instance at middle distances.

In this paper we will place the resolution problem at

the core of the analysis in relation to a costvolumebased

depth estimation. We provide a powerful yet simple

approach to overcome the problem by conferring the

map the maximal resolution which is possible for the

given discretization. After describing the heuristic and

stages of the design, we will illustrate the approach

performance by way of a real dataset.
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II. PROBLEM STATEMENT

We begin to illustrate the problem to be dealt with by

depicting a cost volume with a scenario like of the Fig.

1 (cf. [3]). Therein three inert objects are captured by

the camera many times from different point of views.

In this configuration, object A and object C (at least

partially) should not be included in the depth map even

though they are perceived from all point of views during

the camera displacement. Object B on the contrary, can

be detected seamlessly with all details perceived from

all viewing angles provided by the keyframe and its

ancillary frames.

In such cases, objects will be out of scale and the depth

estimations yield incorrect. A correction of the limiting

depths ξmin and ξmax has to be attained and this should

at best be done from time to time.

The core of the problem is that a continuous adaptation

of the depth extremes will require of knowledge of the

scene depth, for instance through the estimates, but on

the other side these need just the information of the depth

range to perform the estimation. It seems to be a chicken

andegg like problem.

So the range adaptation seems at first glance to be an

unsolvable problem from a theoretic point of view.

III. PRELIMINARIES

By way of Fig. 1 we can describe the depth estimator

appropriately and afterwards be able to develop a suitable

heuristic for a solution to the problem stated previously.

Assuming constant brightness of the scene in all

positions of the camera, an energy cost functional is

defined on the cost volume for determining the depths

of all pixels in the keyframe.

For inverse depth dense mapping estimation, DTAM

employs a projective photometric cost volume Cr from

any number m of ancillary frames with shortbaseline

one to each other nearby, which are overlapped with

a reference image named keyframe r. The set of these

frames is referred to as I(r). Moreover, the perpixel in

verse depth map is Dr : Ω→ d ⊂ R+∪{0} where d is a
inverse discrete interval [dmin, dmax] = [1/ξmax, 1/ξmin]
with inverse depth elements d defined by an uniform

discretization of d in q units (e.g., q=64), and Ω ∈ R2

is the set of normalized pixel coordinates that includes

the intrinsic camera calibration. The average photometric

error for every pixel ur of the RGB reference image Ir
is computed by

Cr(u, d) = 1/ |I(r)| Σ
m∈I(r)

	ρr(Im,u, d)	1 , (1)

where Im is one image of I(r), u a row of entries of

Cr (geometrically a frustum of Cr), ρr the single pixel

photometric error function of the distance d for a given

u of an Im and 	.	1 is the L1 norm.

The photometric error function ρr (termed PEF from

now on) is defined as the difference of a keyframe

pixel and every pixel of the corresponding epipolar line

pertaining to Im. All PEFs for m ∈ I(r)) corresponding
to one keyframe pixel are stacked in u in the cost volume

and then averaged in the direction of u to yield Cr in

(1). Both a PEF as well as the averaged PEFs are not

convex in the direction of u, i.e., they may have many

local extremes in [1/ξmax, 1/ξmin].

Figure 1  Scene with 3 objects and cost volume (cf.

[3]). Object A is outside depth range. Object B is in

range. Object C is partially in range

Generally, it is expected that a physical point that is

registered in the keyframe with coordinates (x, y) and

also in many ancillary frames, satisfies

min
d∈[ξ

min
,ξ
max

]
Cr(u, d) = Cr(u, �d) (2)

where Cr is usually a nonzero residual of the estimation

and �d is unique and represents the depth of the physical

point captured on the keyframe pixel (x, y). Owing to

errors, mostly stochastic by nature, �d may be not unique

or it might not exist or even in the absence of stochastic

errors it might be for instance double �d because there

are two physical points with the same brightness on the

epipolar line.

Frequently, incoming blurred pictures of the scene

give rise to many inconsistencies about the uniqueness

of minima. In the worst case, this will ensue indetermi

nation of Cr or generally untrue irregularity of the depth

function �d(x, y) in a neighborhood of the keyframe pixel
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(x, y). It is noticing that besides the noise interference

over �d(x, y) there is a natural staircasing effect produce

by the discretization.

In order to overcome this problem and provide a more

smooth but trustworthy estimations in the vicinity of

every pixel and preserving natural edges, the cost func

tion (1) is replaced by a nonconvex energy functional

[2]. This contains a nonconvex photometric error data

term and a convex spatial regularizer term integrating

over all pixels that ensures a spatially smooth inverse

depth map solution.

IV. OUTOFRANGE DEPTH ESTIMATION

It is clear that the approach for estimation described

above can satisfactorily work with a setting equal to

[ξmin, ξmax] = [ε0,∞], where ε0 is a positive real value

close to zero and ξmax = ∞, i.e., dmin = 0 and

dmax = ε
−1
0 .

Clearly this infinite span is appropriate to measure

all the object depths, from a very close position to the

camera, i.e. ε0 in meters, up to objects in the far horizon.

However the resolution achieved will be poor due to the

staircasing effect and it is more noticeable when the

world objects are at equal distance from the camera.

Thereby, it is indispensable an adaptation of the depth

range to the scene scale in order to capture fine details

as a zoom function. For each physical point, which is

common to many frames, there is an epipolar line by

every one ancillary frame. This conforms a set of PEFs

Cr(ux,y, d) for every keyframe pixel (x, y),where ux,y
is the row in the cost volume.

The approach mechanism searches for photoconsis

tency, it is, equal pixel brightness on every epipolar

line. As all objects are continuously focused by different

camera poses, the mechanism will eventually assign a

depth value within this interval independently if the

object position is in or out of range.

Therefore, no matter how narrow is the span of

[dmin, dmax], the depth estimator mechanism will provide

outcomes for all physical points captured in the sequence

of frames, included for points outside the depth range.

This fact is a key part of the heuristics developed to

achieve our end.

V. HEURISTIC

Considering the depth value occurrence as a real

valued stochastic variable, this can be associated to a

density function, which is defined over the discrete depth

interval. This can be assessed through the histogram

which is characterized by f(�d). Certainly this is a

stationary process when the scene topography is self

similar, but this is not the general general.

By the initialization of the depth map we will assume

that all physical points of the scene are in range. It is

clear that the related histogram on say D0 = [d0, d0] =
[0, 1/ε0] for ε0 small satisfies this condition.

A property of the keyframe sequence in DTAM is that

any two consecutive elements overlay a large portion of

the scene. Hence, we can argue that their histograms will

differ slightly. This feature points out that the probability

mass function changes dynamically but to some extent

slowly.

Thereupon we can change the next range interval D1
by [d0 + δ1, d0 + δ1] where δ1 and δ1 are realvalued

corrections that enable the interval to stretch, compress

or displace.

In so doing repeatedly with D2...Dt we are attempting

to suitably put frame by frame the probability mass in

the shortaspossible correct depth interval. As a result of

this, the depth resolution is maximized for each keyframe

and at the same time it is enabled that all scene physical

points are included in the depth range correctly.

The heuristic suggests also that one must be aware that

the physical points are not out of range, because in this

case the depth estimator is not able to realize whether

such points are outside the range. Insofar, the mass of

probability must not cross the limits of the range interval

but also it must not accumulate at its extremes.

VI. ADAPTIVE RESOLUTION SETTING

As we are constrained to include permanently all point

distances to the camera in a fluctuating depth interval and

the span is also expected to be as short as possible, the

rate of corrections has to be accomplished cautiously.

A. Distribution of probability mass

In Fig. 2. we illustrate the probability mass function

at a given time point for three different scenes with one

particular setting for each of them.

The function f1 refers to a setting whereby some un

certain depth estimations in the keyframe have probably

befallen. Therefore, the accuracy of some depth esti

mates in the keyframe is doubtful. Worse still, there is no

information regarding which estimations are incorrect.

The function f2 describes an optimal setting whereby

the probability mass yields scattered on the whole in

terval with f2 being null just at the interval extremes.

Clearly, the resolution of the scene achieved by the

estimation with this setting is in broad outlines high.

Finally, function f3 exhibits a biased occurrence in

the interval, which is a sign of an inadequate setting that
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carries to loss of scene details, that it is to say, to get a

low resolution of the focused scene.

Figure 2  Different depthrange settings for the same

scene. f1: overlynarrowtuned depth range, f2:
optimally tuned depth range for high resolution, f3:

overlywidetuned range

It is evident that a properly tuning of the depth interval

all the time to get a function with properties like f2
must be the goal for range setting. However in so doing,

the scene could change so rapid that a function like

f2 may turn also fast into a function like f1, which is

undesirable.

Therefore the first step of the approach should be

to modify the range extremes for detecting in advance

crosses of the probability mass through them. Thus, two

new limits for the extremes are defined. They are referred

to as soft limits δmin and δmax in Fig. 3.

The soft limits are set up regarding the discretization

of the inverse depth range as δmin = dmin + mmin∆
and δmin = dmax−mmax∆, where ∆ is a discretization

unit of the inverse depth interval, mmin and mmax are

positive integers, for instance mmin = mmax = 3 for

q = 32, it is about 10% of q.

On one side, the extent of the mass flowing outwards

suggests the reaction speed to modify the range span

since the camera begin to focus parts of the scene

wherein objects are appearing ahead and/or behind the

cost volume boundaries. On the other side the amount of

the mass outside the soft limits suggests the magnitude

of the correction.

Finally, for a fast reaction of the approach, it is

more pressing the case in where the largest portion of

mass approaches fast to the extreme dmax with maximal

velocity than any other case. Thereby, the scattering on

mass along with its velocity field have to be cautiously

combined in order to define the strength of correction

effectively.

B. Adaptive correction

In order to compound the mass rate and amount,

two elements are introduced to conform an approach.

The first one are the weighting functions Wmin and

Wmax on the soft intervals [dmin, δmin] and [δmax, dmax],
respectively. They penalize the probability mass on the

soft intervals. These are

Wmin(dmin + i∆) = Kmine
−n(δmin−dmin)i∆ (3)

for i = 0, 1, · · · , δmin

Wmax(dmax−i∆) = Kmaxe
−n(dmax−δmax)i∆ (4)

for i = 0, 1, · · · , δmax

where Kmin and Kmax are gain factors for the pe

nalization, n is a nonnegative integer to strength the

exponential decay, (δmin− dmin) and (dmax− δmax) are
coefficients of the exponential functions.

Next, we can define flow fields for the mass escaping

from inside out of [δmin, δmax]. The flow fields are cal

culated by the transversal mass velocity on [dmin, δmin]
and [δmax, dmax] as

vmin(dmin+i∆) = f(dmin+i∆)f(dmin+(i+1)∆)

for i=0, 1, · · · , δmin (5)

vmax(dmaxi∆) = f(dmaxi∆)f(dmax(i+1)∆)

for i=0, 1, · · · , δmax. (6)

It is noticing that every rate element of the field may

be positive or negative according to the direction of the

elemental mass flow wherein the sign is positive when

the mass element flows outwards and viceversa. Finally,

we sum up the weighted flow field at both sides of

[δmin, δmax] as

Fmin=
δmin�

i=0

Wmin(dmin + i∆) vmin(dmin + i∆) (7)

Fmax=
δmax�

i=0

Wmax(i∆+ δmax) vmax(i∆+ δmax). (8)

Now we are in the position to establish a procedure

for calculating the range modifications in real time.

The approach consists in modify dmin and dmax and

recalculate the new range and ∆. We will set down the

algorithm for dmin solely, because the counterpart for

dmax is similarly deducible.

The approach for correcting the lower part of the range

consists of two differentiated parts. The first one includes

the case when the probability mass is scattered on the

soft interval while the second part deals with the case



5

when the probability mass is on a narrow subinterval.

Correspondingly the first part of the algorithm is

IF f(dmin + i∆) > 0 on [dmin, δmin] THEN (9)

Calculate Wmin(dmin + i∆)

Calculate vmin(dmin+i∆)

Calculate Fmin

η = fr(cminFmin/∆) and dmin :=dmin − η∆

IF dmin < 0, THEN dmin := 0 ENDIF

∆ := (dmax − dmin) /q

ENDIF

where fr(.) is the floor function, η is a nonnegative entire
number, cmin is a gain constant that adjust the correction

strength. The second part of the approach accomplishes

the following operations

IF Fmin = 0 THEN calculate [δmin+m∆] (10)

wherein f(�d) is identically zero

IFm > 0 THEN

dmin := dmin −m∆

∆ := (dmax − dmin) /q

ENDIF ENDIF

VII. CASE STUDIES

The proposed approach is tested in real scenarios and

datasets pertaining to the Computer Vision Group at the

TU Munich. We summarize the results for a dataset with

an IR depthfinding camera Kinect sensor. The kinect

sensor employes color gradients from white (near) to

blue (far) to depict the depth map. Similarly, in our map

estimation a grayscale gradient from white (near) to

black (far) is used to visualize depth.

Fig. 3 shows the outcomes of map estimation indoors

with he adaptive approach. The raw frame complements

with the depth map of the kinect sensor for a 3D com

position of the world in real scale. One ascertains that

the histogram spans the whole inverse depth range with

decay for very short distances (right limit) and is tuned

for infinitely distant points (left limit). In broad outlines,

the estimation is very truthful up to scale in comparison

with the accurate depth measures of the kinect sensor.

However, one notices both in the regularized map and the

onlydatatermbased map the presence of some white

stains in the background. This fact indicates a great depth

uncertainty for far physical points. This drawback was

observed in many applications of DTAM which warns of

a large sensibility to small parallax at least in the way

that DTAM is commonly adopted.

Kinect camera
Raw frame

Histogram

Regularized depth map Depth map (data term)

Figure 3  Map estimation with adaptation of the

inverse depth range. Comparison with kinect camera

sensor

Wide differences in results exist comparatively be

tween automatically adapted and fixed depth ranges. For

instance in Fig. 4, the histogram is set up too tight

for the scene. So the right extreme of the histogram

begins to increase when more and more physical points

approach to the camera. This, clearly will denote false

estimations at short distances. Thereby they are countless

white specks and great white spots observed in the depth

map with data term. The regularized map illustrates the

same drawback as well, although even more serious,

since edges and contours yield blurred.

Histogram

Regularized depth map Depth map (data term)

Figure 4  Map estimation with fixed narrow inverse

depth range

Fig. 5 depicts the case of fixed, but on the contrary

as former case, wide range. The depth map states a sig

nificant improve with respect to the previous case. Even

when the tuning is appropriate for the scene, it seems

from its histogram that it is somewhat conservative for

short distances (see the strong decay of the histogram a

bit far from the right extreme). This result in a loss of

some details of the close by scene.

Fig. 6 portrays the evolution of the adapted depth

range, showing a permanently adjustment of the upper

limit, it is short distances. This adaptation proves to be

more effective in comparison with the fixed set up of a

wide range.
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The most categorical indicator of the estimation qual

ity is given in Fig. 7 for the mean errors of the estimated

depths. Clearly the adaptation of the depth range yields

the lowest error.

Histogram

Regularized depth map Depth map (data term)

Figure 5  Map estimation with fixed wide inverse

depth range

Figure 6  Time evolution of inverse depth range limits

Figure 7  Quality of map estimation with fixed and

adapted depth range

VIII. CONCLUSIONS

In this work we have presented an original approach

to adapt the depth range automatically for worldscale

changing environments. The approach focuses first on

the problem of the inherent discretization error of the

depth range in the cost volume and second on the

estimation errors that can befall when objects rests

outside of the set depth range. Consistently it sheds light

in the mechanism whereby the estimator manages the

photometric consistency and from this issue it elaborates

an approach to optimally adapt the depth range. This is

based depth histogram of the keyframe and the distorting

of the probability mass in time. The adaptation is based

in restraining the mass to spread out of the range interval

by expanding or shrinking the range span to contain the

mass inside.

This outcomes impacts positively in the performance

of SLAM namely in the accuracy of the camera tracking.

Many other examples with datasets in air and underwater

(which were not shown here for the sake of being

succinct), provide solid evidence of the high robustness

which is achievable in harsh scenarios, described for

instance by characteristics of selfsimilarity, blurriness

and lowlevel lighting.
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