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Abstract— A multidimensional discrete phase control system
with periodic vector nonlinearity is investigated. By means
of Lyapunov direct method and Yakubovich–Kalman theorem
certain estimates for the phase error are obtained. The results
are formulated as frequency-domain criteria.

I. I NTRODUCTION

In this paper we consider a multidimensional discrete
phase system with vector nonlinearity:

z(n + 1) = Az(n) + Bξ(n),
σ(n + 1) = σ(n) + C∗z(n) + Rξ(n),

ξ(n) = ϕ(σ(n)), n = 0, 1, 2, . . .
(1)

Here A,B, C, R are real matrices of order(m×m),
(m× l), (m× l), (l × l) respectively and the symbol∗

is used for Hermitian conjugation. We suppose that the
pair (A,B) is controllable, the pair(A,C) is observable
and all eigenvalues ofA lie inside the open unit cir-
cle. We suppose also thatϕ : Rl → Rl is a vector-valued
function with the propertyϕ(σ) = (ϕ1(σ1), ..., ϕl(σl)) for
σ = (σ1, ..., σl) ∈ Rl. We assume that every component
ϕj(σj) is ∆j-periodic, belongs toC1, has a finite number
of simple zeros on[0, ∆j). Let ∆ = (∆1, ..., ∆l).

In this paper the subject of cycle–slipping for discrete
phase systems is developed. This subject has already been
investigated in published works [1],[2],[3] for the case of
scalar nonlinear periodic functionϕ(σ) (l = 1). These works
contain a number of assertions which guarantee that (in a
case ofl = 1)

|σ(n)− σ(0)| < k∆, for all n = 1, 2, ...,

wherek is a positive integer. In this paper the results of [1]-
[3] are extended to the case ofl > 1. All the theorem of
this paper are obtained by means of Lyapunov direct method
and Yakubovich–Kalman theorem [4]. All the results are
formulated as frequency-domain criteria, i.e. in terms of the
transfer function of the linear part of system (1)

K(p) = C∗(A− pEm)−1B −R (p ∈ C),

whereEm is an (m×m)-unit matrix.
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II. FREQUENCY-DOMAIN ESTIMATES FOR THE PHASE

ERROR OF DISCRETE SYSTEM

Let us suppose that

∆j∫

0

ϕj(σ) dσ < 0 (j = 1, ..., l).

Let α1j , α2j be such numbers that

α1j ≤ dϕj(σ)
dσ

≤ α2j for all σ ∈ R, (2)

whereα1j < 0 < α2j .
Let us introduce several notations(j = 1, 2, ..., l):

Ω(1)
j = {σj ∈ [0, ∆j) : ϕj(σj) > 0},

Ω(2)
j = {σj ∈ [0, ∆j) : ϕj(σj) < 0},

Γj =
∫

Ω
(2)
j

|ϕj(σ)| dσ,

γj =
∫

Ω
(1)
j

ϕj(σ) dσ, Rj =
2Γjγj

Γj + γj
,

µ
(1)
j (æ, k, w) =

γj − Γj − w+
∑l

i=1
|æj |Rj

æjk

γj + Γj
,

µ
(2)
j (æ, k, w) =

γj − Γj +
w+

∑l

i=1
|æj |Rj

æjk

γj + Γj
,

where æ = diag{æ1, ..., æl} is a real diagonal(l × l)-
matrix, w ∈ R and k is a natural number. We shall also
need the following quadratic forms ofz ∈ Rm andξ ∈ Rl:

F (z, ξ) = ξ∗æ(C∗z+Rξ)+ξ∗ηξ+(C∗z+Rξ)ε(C∗z+Rξ).

Φ(z, ξ) = (Az + Bξ)∗H(Az + Bξ)− z∗Hz + F (z, ξ),

HereH = H∗ is a(m×m)-matrix andε = diag{ε1, ..., εl},
η = diag{η1, ..., ηl} , æ = diag{æ1, ..., æl} are real diago-
nal (l × l)-matrices.

Theorem 1:Let there exist such diagonal matricesε > 0,
η > 0, æ and such positive integersm1,m2, ..., ml that the
following hypotheses hold:
1) For all p ∈ C, |p| = 1 the matrix

<e{æK(p)−K∗(p)εK(p)− η} (3)



(where the designation<eA = (1/2)(A∗ + A) is used) is
positive definite.
2) The inequalities

4ηj

[
εj − æjα0j

2
(1 + |µ(i)

j (æ,mj , z
∗(0)Hz(0))|)

]
>

>
[

æjµ
(i)
j (æ,mj , z

∗(0)Hz(0))
]2

(4)

(j = 1, 2, ..., l, i = 1, 2)

with α0j = α2j if æj > 0, and α0j = α1j if æj < 0 are
true. Here H = H∗ is just such a(m×m)-matrix that
Φ(z, ξ) ≤ 0, ∀z ∈ Rm, ξ ∈ Rl.

Then for any solution(z(n), σ(n)) of (1) with initial data
(z(0), σ(0)) the estimates

|σj(n)− σj(0)| < mj∆j(j = 1, 2, ..., l) (5)

are true for all naturaln.
Remark 1.Notice that of the hypothesis 1) of the theorem

is fulfilled for certain matricesæ, ε > 0, η > 0 then accord-
ing to Yakubovich–Kalman frequency–domain theorem [4]
there exists a matrixH = H∗, which guarantees that the
inequalityΦ(z, ξ) ≤ 0 is valid for all z ∈ Rm, ξ ∈ Rl.

The proof of theorem 1 is base on a special Lyapunov-type
lemma with Lyapunov functions of the form ”a quadratic
form plus integral of a nonlinearity”. The nonlinearity in Lya-
punov function is conctructed by Bakaev-Guzh technique [5]
intended specially for phase control systems.

Let sequencesσ1(n), ..., σl(n) andW (n) ≥ 0 be defined.
Let ϕj(σ) (j = 1, ..., l) be∆j-periodic functions with all the
properties described in this paper.

Lemma 1:Suppose there exist such numbers
ε > 0, η > 0, æ 6= 0 and natural mj (j = 1, ..., l) and
functions ϕj(σ), σj(n) (j = 1, ..., l), W (n) ≥ 0 that the
following hypotheses are fulfilled:
1) for all integern ≥ 0 the inequality

W (n + 1)−W (n) +
l∑

j=1

{æjϕ(σ(n))[σ(n + 1)− σ(n)]+

+ε[σ(n + 1)− σ(n)]2 + ηϕ2(σ(n))} ≤ 0

is valid;
2) functionsµ

(i)
j (æ, k, w) satisfy inequalities

4ηj

[
εj − æα0j

2
(1 + |µ(i)

i (æ,mj ,W (0))|)
]

>

>
[
æjµ

(i)
i (æ,mj ,W (0))

]2

, j = 1, ..., l; i = 1, 2

whereα0j are defined in theorem 1.
Then for all naturaln the estimates

|σj(n)− σj(0)| < mj∆j (j = 1, ..., l) (6)

are valid.
Proof: It follows from the requirement 2) that for a

certainε0 > 0 and all integerkj > mj inequalities

4ηj

(
εj − æα0j

2
(1 + |µ(i)

j (æ, kj , W (0) + ε0)|)
)

≥
(
æµ

(i)
j (æ, kj ,W (0) + ε0)

)2

(j = 1, ..., l; i = 1, 2) (7)

are true.
Let us define functions

F
(i)
j (σ) = ϕj(σ)− µ

(i)
j |ϕ(σ)|, (j = 1, ..., l; i = 1, 2). (8)

It follows from [2] that the following estimates are valid:

F
(i)
j (a)(u−a)+

α1j

2
(1+ |µ(i)

j |)(u−a)2 ≤
u∫

a

F
(i)
j (σ) dσ ≤

≤ F
(i)
j (a)(u− a) +

α2j

2
(1 + |µ(i)

j |)(u− a)2. (9)

In formula (8) and (9) we used the designation

µ
(i)
j = µ

(i)
j (æ, kj , W (0) + ε0), (j = 1, ..., l; i = 1, 2).

Let us introduce Lyapunov sequences

V I(n) = W (n) +
l∑

j=1

æj

σj(n)∫

σj(0)

F
ij

i (σ) dσ, n = 0, 1, 2, ...,

whereij is equal either to1 or 2 and

I =




i1
.
.
.
il




.

Their increments are as follows:

V I(n + 1)− V I(n) =

= W (n + 1)−W (n) +
l∑

j=1

æj

σj(n+1)∫

σj(n)

F
(ij)
j (σ) dσ. (10)

Let us consider every summand in the right part of (10)
separately. According to hypothesis 1) of the lemma we have

W (n+1)−W (n) ≤ −
l∑

j=1

{æjϕj(σj(n))[σj(n+1)−σj(n)]

+εj [σj(n + 1)− σj(n)]2 + ηjϕ
2
j (σj(n))}.

To estimate the other summand we use the formula (9). As
a result we have

V I(n + 1)− V I(n) ≤ −
l∑

j=1

P
(ij)
j ,

where

P
(ij)
j = −æjϕj(σj(n))[σj(n + 1)− σj(n)]−
−εj [σj(n + 1)− σj(n)]2 − ηjϕ

2
j (σj(n))+

+æj [F
(ij)
j (σj(n))(σj(n + 1)− σj(n))+

+
α0j

2
(1 + |µ(ij)

j |)(σj(n + 1)− σj(n))2].



Note that

P
(ij)
j = −{(εj − æjα0j

2
(1 + |µ(ij)

j |)(σj(n + 1)− σj(n))2+

+æj(σj(n + 1)− σj(n))[ϕj(σj(n))− F
(ij)
j (σj(n))]+

+
æ2

j

4(εj − æjα0j

2 (1 + |µ(ij)
j |))

[ϕj(σj(n))−F
(ij)
j (σj(n))]2}+

+
æ2

j

4(εj − æjα0j

2 (1 + |µ(ij)
j |))

[ϕj(σj(n))− F
(ij)
j (σj(n))]2−

−ηjϕ
2
j (σj(n)).

So

P
(ij)
j ≤ æ2

j

4(εj − æjα0j

2 (1 + |µ(ij)
j |))

[ϕj(σj(n))−

−F
(ij)
j (σj(n))]2 − ηjϕ

2
j (σj(n)) =

=
æ2

j (µ
(ij)
j )2

4(εj − æjα0j

2 (1 + |µ(ij)
j |))

− ηj .

In virtue of hypothesis 2) of the lemma one can affirm that

V (I)(n + 1)− V (I)(n) ≤ 0. (11)

Hence
V (I)(n) ≤ V (I)(0) (n ∈ N)

or
V (I)(n) ≤ W (0). (12)

Suppose now that for certainn0 ∈ N several esti-
mates (6) are false. Suppose there exits suchqi ∈ [1, l]
(i = 1, 2, ..., k; k ≤ l) that

|σqi(n0)− σqi(0)| ≥ mqi∆qi . (13)

Let for (i = 1, 2, ..., k1 with k1 ≤ k)

σqi(n0) = σqi(0) + lqi∆qi + β1qi , β1qi ∈ [0, ∆qi), lqi ≥ mqi

(14)
and for i = k + 1 + 1, ..., k

σqi(n0) = σqi(0)− lqi∆qi − β2qi , β2qi ∈ [0, ∆qi), lqi ≥ mqi

(15)
Note that if j does not coincide withq1, ..., qk we either

σj(n0) = σj(0)− lj∆j + β1j , β1j ∈ [0, ∆), 0 ≤ lj < mj

(16)
or

σj(n0) = σj(0)− lj∆j − β2j , β2j ∈ [0, ∆), 0 ≤ lj < mj

(17)
Let us now considerV (I)(n0) and chooseij = 1 for thosej
for which formulae (14) or (16) are true andij = 2 for those
j for which formulae (15) or (17) take place. Further we
choosekj = lj if formulae (14) or (15) are true andkj = mj

if formulae (16) or (17) take place.
Suppose formula (14) or (16) is true. Then

F
(ij)
j (σ) = F

(1)
j (σ) = ϕj(σ)−µ

(1)
j (æ, lj , W (0)+ε0)|ϕ(σ)|,

and

æj

σj(n0)∫

σj(0)

F
(1)
j (σ) dσ =

= æj lj

∆j∫

0

F
(1)
j (σ) dσ + æj

σj(0)+β1j∫

σj(0)

F
(1)
j (σ) dσ.

Futher as it follows from [1]

æj

σj(0)+β1j∫

σj(0)

F
(1)
j (σ) dσ =

=
(γ0j + Γ0j)(W (0) + ε0 +

∑l
j=1 |æj |Rj

lj(γj + Γj))
+

+
2æj(Γjγ0j − Γ0jγj)

γj + Γj
, (18)

where
σj(0)+β1j∫

σj(0)

ϕj(σ) dσ = γ0j − Γ0j ,

σj(0)+β1j∫

σj(0)

|ϕj(σ)| dσ = γ0j + Γ0j (γ0j , Γ0j ≥ 0).

If lj ≥ mj (formula (14)) we have

æj lj

∆j∫

0

F
(1)
j (σ) dσ = W (0) + ε0 +

l∑

j=1

|æj |Rj

and if 0 ≥ lj < mj (formula (16)) we have

æj lj

∆j∫

0

F
(1)
j (σ) dσ =

lj
mj


W (0) + ε0 +

l∑

j=1

|æj |Rj


 .

Analogous by if formula (15) or formula (17) is true then

F
(ij)
j (σ) = F

(2)
j (σ)

and

æj

σj(n0)∫

σj(0)

F
(2)
j (σ) dσ =

= −æj lj

∆j∫

0

F
(2)
j (σ) dσ + æj

σj(0)−β2j∫

σj(0)

F
(2)
j (σ) dσ.

Note that

æj

σj(0)−β2j∫

σj(0)

F
(2)
j (σ) dσ =

=
(γ1j + Γ1j)(W (0) + ε0 +

∑l
j=1 |æj |Rj

lj(γj + Γj))
+



+
2æj(Γjγ1j − Γ1jγj)

γj + Γj
, (19)

where
σj(0)∫

σj(0)−β2j)

ϕj(σ) dσ = γ1j − Γ1j ,

σj(0)∫

σj(0)−β2j

|ϕj(σ)| dσ = γ1j + Γ1j (γ1j ,Γ1j > 0).

If lj ≥ mj (formula (15)) then

−æj lj

∆j∫

0

F
(2)
j (σ) dσ = W (0) + ε0 +

l∑

j=1

|æj |Rj

and if 0 ≥ lj < mj (formula (17)) then

−æj lj

∆j∫

0

F
(2)
j (σ) dσ =

lj
mj


W (0) + ε0 +

l∑

j=1

|æj |Rj


 .

As a result

V (I)(n0) ≥ W (n0) + (W (0) + ε0 +
l∑

j=1

|æj |Rj)k+

+
k1∑

j=1

2æj

γj + Γj
(Γjγ0j − Γ0jγj)+

+
k∑

j=k1+1

2æj

γj + Γj
(Γ1jγj − Γjγ1j).

Sincek ≥ 1 and forr = 0, 1

|æj |Rj +
2æj(−1)r

γj + Γj
(Γjγrj − Γrjγj) ≥

≥ 2|æj |
γj + Γj

(γjΓj − |Γjγrj − Γrjγj) ≥ 0,

we obtain than

V (I)(n0) ≥ W (n0) + W (0) + ε0

and in virtue of (12)

W (0) ≥ W (n0) + W (0) + ε0.

Hence
W (n0) ≤ −ε0 (ε0 > 0)

which contradict the fact thatW (n) ≥ 0. Lemma is proved.

Proof: (theorem 1)Let us consider the quadratic
form Φ(z, ξ) (z ∈ Rm, ξ ∈ Rl). First of all we shell prove
that there exists a matrixH = H∗ such that the inequality
Φ(z, ξ) ≤ 0 is valid for all z ∈ Rm, ξ ∈ Rl. Let F̃ (z, ξ)
andΦ̃(z, ξ) be the Hermitian extensions of the formsF and
Φ to complex arguments. According to Yakubovich–Kalman
frequency-domain theorem [4] the inequality

Φ̃(z, ξ) ≤ 0 (20)

is valid for all z ∈ Rm, ξ ∈ Rl iff for all p ∈ C, |p| = 1 the
inequality

F̃ (−(A− pEm)−1Bξ, ξ) ≤ 0 (21)

is true. We have

F̃ (−(A− pEm)−1Bξ, ξ) =

= <e{ξ∗æ(c∗(pEm −A)−1Bξ + Rξ) + ξ∗ηξ+

+(c∗(pEm−A)−1Bξ+Rξ)∗ε(c∗(pEm−A)−1Bξ+Rξ)} =

= <e{−æK(p) + η + K(p)∗εK(p)}|ξ|2.
By virtue of hypothesis 1) of the theorem the inequality (21)
is correct. Thus we have proved the existance of matrix
H = H∗ with which (20) is correct.

Moreover as all eigenvalues of matrixA are situated inside
the unit circle matrixH is positive define. Indeed

Φ(z, 0) = (Az)∗H(Az)− z∗Hz + z∗CεC∗z.

SinceΦ(z, 0) ≤ 0 we have

z∗(A∗HA−H)z ≤ −z∗CεC∗z ≤ −ε̄|C∗z|2, (22)

whereε̄ = min{ε1, ε2, ..., εm}. Hence and from the fact that
(A,C) is observable it follows thatH > 0 [4].

We choose nowW (n) = z∗(n)Hz(n). It satisfies all
hypotheses of lemma 1. Really on the one handW (n) ≥ 0
for all n ≥ 0. On the other hand by virtue of system (1) we
have

W (n+1)−W (n)+
l∑

j=1

{æjϕj(σj(n))(σj(n+1)−σj(n))+

+εj(σj(n + 1)− σj(n))2 + ηjϕ
2
j (σj(n))} =

= (Az(n) + Bϕ(σ(n)))∗H(Az(n) + Bϕ(σ(n)))−
−z∗(n)Hz(n) + ϕ∗(σ(n))æ(C∗z(n) + Rϕ(σ(n)))+

+(C∗z(n) + Rϕ(σ(n)))∗ε(C∗z(n) + Rϕ(σ(n)))+

+ϕ∗(σ(n))ηϕ(σ(n)) = Φ(z(n), ϕ(σ(n))).

SinceΦ(z(n), ϕ(σ(n))) ≤ 0 the hypothesis 1) of lemma 1
is valid. Hypothesis 2) of lemma 1 and hypothesis 2) of
theorem 1 coincide. Thus the estimate (6) is true. It coincide
with the conclusion of theorem 1. Theorem 1 is proved.

III. E XTENSION OF FREQUENCY-DOMAIN CRITEION FOR

THE PHASE ERROR

Let us extend the state space of system (1) [5], [6]. For
the purpose we introduce the notations

y =
∣∣∣∣
∣∣∣∣

z
ϕ(σ)

∣∣∣∣
∣∣∣∣ , P =

∣∣∣∣
∣∣∣∣

A B
0 El

∣∣∣∣
∣∣∣∣ , L =

∣∣∣∣
∣∣∣∣

0
El

∣∣∣∣
∣∣∣∣ ,

C∗1 = ||C∗, R||, ξ1(n) = ϕ(σ(n + 1))− ϕ(σ(n)). Here P
is a ((m + l)× (m + l)) - matrix, L is a ((m + l)× l) -
matrix, C∗1 is a (l× (m + l)) - matrix, y is a (m + l)-vector
andξ1 is al-vector. Then system (1) can be written as follows

y(n + 1) = Py(n) + Lξ1(n),
σ(n + 1) = σ(n) + C∗1y(n), n = 0, 1, 2, . . .

(23)



Consider the forms ofy ∈ Rm+l andξ1 ∈ Rl

Φ1(y, ξ1) = (Py +Lξ1)∗H(Py +Lξ1)− y∗Hy +F1(y, ξ1),

F1(y, ξ1) = y∗LæC∗1y + y∗C1εC
∗
1y + y∗LηL∗y+

+(A1C
∗
1y − ξ1)∗τ(ξ1 −A2C

∗
1y),

whereAi = diag{αi1, αi2, ..., αil} (i = 1, 2), H = H∗ is a
((m + l)× (m + l)) - matrix, andε, η, æ, τ are real diagonal
matrices with varied elements.

Remark 2.[5], [6] If (A, b) is controllable then(P,L) is
controllable.

Remark 3.[5], [6] If p 6= 1 we have

C∗1 (P − pE)−1L =
1

p− 1
K(p), (24)

L∗(P − pE)−1L = − 1
p− 1

El. (25)

Lemma 2:Suppose all eigenvalues of matrixA are sit-
uated inside the unit circle. Suppose there exist such di-
agonal matricesε > 0, η, > 0, τ > 0 and æ that for all
p ∈ C, |p| = 1 the frequency-domain inequality

<e{æK(p)+(A1K(p)+(p−1)El)∗τ((p−1)El+A2K(p))}−
−K(p)∗εK(p)− η ≥ 0, (26)

is valid. Then there exist such((m + l)× (m + l)) - matrix
H1 = H∗

1 that

Φ1(y, ξ1) ≤ 0 ∀ y ∈ Rm+l, ξ1 ∈ Rl. (27)
Proof: Let F̃1(y, ξ1) and Φ̃1(y, ξ1) be the Hermitian

extensions of the formsF1 and Φ1 to complex arguments.
According to Yakubovich–Kalman frequency-domain theo-
rem [4] the inequalitỹΦ1(y, ξ1) ≤ 0 is valid for all y ∈ Cm,
ξ1 ∈ Cl for certain matrixH1 = H∗

1 iff

F̃1(−(P − pE)−1Lξ1, ξ1) ≤ 0. (28)

We have
F̃1(−(P − pE)−1Lξ1, ξ1) =

= <e{ξ∗1 [L∗((P − pE)−1)∗LæC∗1 (P − pE)−1L+

+L∗((P − pE)−1)∗C1εC
∗
1 (P − pE)−1L+

+L∗((P − pE)−1)∗LηL∗(P − pE)−1L−
−(A1C

∗
1 ((P−pE)−1)∗L+E)∗τ(EA2C

∗
1 (P−pE)−1L)]ξ1}.

Let us use (24) and (25). Then

F̃1(−(P − pE)−1Lξ1, ξ1) =

= − 1
|p− 1|2 ξ∗1<e{æK(p)−K(p)∗εK(p)− η+

+(A1K(p) + (p− 1)El)∗τ((p− 1)El + A2K(p))}ξ1.

They in (26) is valid then (27) is valid too. So there exist such
matrix H1 = H∗

1 that inequality (27) is fulfilled. Lemma 2
is proved.

Remark 4.Suppose all the hypotheses of lemma 2 are
fulfilled. Then we can consider the sequence

W + 1(n) = y∗(n)H1y(n),

wherey(n) is a solution of system (23). As all eigenvalues
of matrix A are situated inside the unit circle and func-
tions ϕj(σj) (j = 1, ..., l) are bounded we can affirm that
|y(n)| < const for all n ≥ 0. So the quadratic formW1(n)
is bounded for alln ≥ 0.

Theorem 2:Let all eigenvalues of matrixA be situated
inside the unit circle. Let pair(A,B) is controllable and
pair (A,C) is observable. Suppose there exist such diagonal
matricesε > 0, τ > 0, η > 0 , æ and such positive integers
m1,m2, ...,ml that the following hypotheses hold:
1) The frequency-domain inequality (26) is valid.
2) The inequalities

4ηj

[
εj − æjα0j

2
(1 + |µ(i)

j (æ,mj , y
∗(0)H1y(0)− r)|)

]
>

>
[

æjµ
(i)
j (æ,mj , y

∗(0)H1y(0)− r)
]2

(29)

(j = 1, 2, ..., l, i = 1, 2)

are valid, whereH1 = H∗
1 is such a((m + l)× (m + l))-

matrix thatΦ1(y, ξ1) ≤ 0 (y ∈ Rm+l, ξ1 ∈ Rl) and

r ≤ inf
n=0,1,2,...

y∗(n)H1y(n).

Then for solution(z(n), σ(n)) of (1) with initial data
(z(0), σ(0)) the estimates (5) are true for all naturaln.

Proof: The proof is based on lemma 1. Let us consider
the sequence

W (n) = y∗(n)H1y(n)− r.

Note thatW (n) ≥ 0 for all n ≥ 0. Let us prove this sequence
satisfies all the hypotheses of lemma 1. Consider

z(n) = W (n + 1)−W (n)+

+
l∑

j=1

{æjϕj(σj(n))[σj(n + 1)− σj(n)]+

+εj [σj(n + 1)− σj(n)]2 + ηjϕ
2
j (σj(n))}

and transform it in virtue of system (1).

z(n) = (Py(n) + Lξ1(n))∗H1(Py()n + Lξ1(n))−
−y∗(n)H1y(n) + y∗(n)LæC∗1y(n) + y∗(n)C1εC

∗
1y(n)+

+y∗(n)LηL∗y(n) = Φ1(y(n), ξ1(n))−
−(A1C

∗
1y(n)− ξ1(n))∗τ(ξ1(n)−A2C

∗
1y(n)).

Futher
A1C

∗
1y(n)− ξ1(n) =

= A1(C∗x(n) + Rϕ(σ(n)))− ϕ(σ(n + 1)) + ϕ(σ(n)) =

= A1(σ(n + 1)− σ(n))− (ϕ(σ(n + 1))− ϕ(σ(n))).

ξ1(n)−A2C
∗
1y(n) =



= (ϕ(σ(n + 1))− ϕ(σ(n)))−A2(σ(n + 1)− σ(n)).

Let us take into account that

ϕj(σj(n + 1))− ϕj(σj(n)) = ϕ′j(σ
′
j)(σj(n + 1))− (σ(n)),

whereσ′j lies between(σj(n) andσj(n + 1). Then in virtue
of (2) we have

(A1C
∗
1y(n)− ξ1(n))∗τ(ξ1(n)−A2C

∗
1y(n)) =

=
l∑

j=1

τj(ϕ′j(σ
′
j))

2(σj(n + 1))− (σ(n))2 ≥ 0.

As a result
z(n) ≤ Φ1(y(n), ξ1(n)).

In virtue of hypothesis 1) of theorem 2 we can establishe by
lemma 2 thatz(n) ≤ 0. This fact is equivalent to hypothesis
1) of lemma 1. Hypothesis 2) of theorem 2 coincide with
hypothesis 2) of lemma 1. So estimates (6) are valid, and
theorem 2 is proved.

Let as now reject the requirement ofW (n) ≥ 0.
Lemma 3:Let σ1(n), ..., σl(n), W (n) ≥ 0 be sequences

and ϕj(σ) (j = 1, ..., l) be ∆j-periodic functions which
have all the properties of nonlinear functions of system (1).
Suppose there exist such numbersεj > 0, ηj > 0, æj 6= 0
j = 1, 2, ..., l and natural numbersmJ j = 1, 2, ..., l that the
following hypotheses are fulfilled:
1) hypothesis 1) of lemma 1;
2) inequalities

4ηj

[
εj − æjα0j

2
(1 + |µ(i)

j (æ,mj , |W (0)|)|)
]

>

>
[

æjµ
(i)
j (æ,mj , |W (0)|)

]2

(j = 1, 2, ..., l, i = 1, 2)

are true.
Then for those naturaln for which W (n) ≥ 0 the esti-

mates (6) are true.
Proof of the lemma 3 is analogous to those of lemma 2.

Instead of inequality (20) we pbtain inequality

W (0) ≥ W (n0) + |W (0)|+ ε0 (ε0 > 0) (30)

Hence
W (no) ≤ −ε0 (ε0 > 0),

which contradict the factW (no) ≥ 0.
Theorem 3:Let all the hypotheses of theorem 2 be ful-

filled, exept hypothesis 2) which is substituted by the re-
quirement
2’) inequalities

4ηj

[
εj − æjα0j

2
(1 + |µ(i)

j (æ,mj , |y∗(0)H1y(0)|)|)
]

>

(31)

>
[

æjµ
(i)
j (æ,mj , |y∗(0)H1y(0)|)

]2

(j = 1, 2, ..., l, i = 1, 2)

are valid withH1 = H∗
1 satisfying (27).

Then for any solution(z(n), σ(n)) of (1) with initial data
(z(0), σ(0)) the following limit relations are true:

z(n) → 0 asn → +∞, (32)

σj(n) → σ̂j asn → +∞ (j = 1, 2, ..., l), (33)

ϕj(σj(n)) → 0 asn → +∞, (34)

whereϕj(σ̂j) = 0, and

|σj(0)− σ̂j | < mj∆j . (35)
Proof: Inequalities (31) imply the inequalities

4ηj

[
εj − æjα0j

2

(
1 +

Γj − γj

Γj + γj

)]
>

(
æj

Γj − γj

Γj + γj

)2

(36)
Then all the hypotheses of theorem 5.4.1 [5] are fulfilled.
According to this theorem the limit relations (32), (34), (33)
take place.

It follows from hypothesis 2’) that for a certainε0 > 0
inequalities

4ηj

[
εj − æjα0j

2
(1 + |µ(i)

j (æ,mj , |y∗(0)H1y(0) + ε0|)|)
]

>

(37)

>
[

æjµ
(i)
j (æ,mj , |y∗(0)H1y(0) + ε0|)

]2

(j = 1, 2, ..., l, i = 1, 2)

are valid. Let

W (n) = y∗(n)H1y(n) + ε0.

Since (32) and (33) are true, the sequenceW (n) becomes
positive for n > N0, whereN0 is sufficientli great. Further
we can repeat the proof of theorem 2 up to the moment when
the correctness of hypothesis 1) of lemma 1 is established.
The latter coincides with hypothesis 1) of lemma 3. The
hypotheses of lemma 3 and theorem 3 coincide. So according
lemma 3 estimate (6) is true. In virtue of (6) and (33)
estimates (35) is true. Thus theorem 3 is proved.
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