About the problem of cycle-slipping in discrete system with periodic nonlinear vector function

Vera B. Smirnova

Alexander I. Shepeljavyi Natalia V. Utina

Abstract

A multidimensional discrete phase control system with periodic vector nonlinearity is investigated. By means of Lyapunov direct method and Yakubovich-Kalman theorem certain estimates for the phase error are obtained. The results are formulated as frequency-domain criteria.

I. Introduction

In this paper we consider a multidimensional discrete phase system with vector nonlinearity:

$$
\begin{align*}
z(n+1) & =A z(n)+B \xi(n) \\
\sigma(n+1) & =\sigma(n)+C^{*} z(n)+R \xi(n) \tag{1}\\
\xi(n) & =\varphi(\sigma(n)), \quad n=0,1,2, \ldots
\end{align*}
$$

Here A, B, C, R are real matrices of order $(m \times m)$, $(m \times l), \quad(m \times l),(l \times l)$ respectively and the symbol * is used for Hermitian conjugation. We suppose that the pair (A, B) is controllable, the pair (A, C) is observable and all eigenvalues of A lie inside the open unit circle. We suppose also that $\varphi: \mathbf{R}^{l} \rightarrow \mathbf{R}^{l}$ is a vector-valued function with the property $\varphi(\sigma)=\left(\varphi_{1}\left(\sigma_{1}\right), \ldots, \varphi_{l}\left(\sigma_{l}\right)\right)$ for $\sigma=\left(\sigma_{1}, \ldots, \sigma_{l}\right) \in \mathbf{R}^{l}$. We assume that every component $\varphi_{j}\left(\sigma_{j}\right)$ is Δ_{j}-periodic, belongs to \mathbf{C}^{1}, has a finite number of simple zeros on $\left[0, \Delta_{j}\right)$. Let $\Delta=\left(\Delta_{1}, \ldots, \Delta_{l}\right)$.

In this paper the subject of cycle-slipping for discrete phase systems is developed. This subject has already been investigated in published works [1],[2],[3] for the case of scalar nonlinear periodic function $\varphi(\sigma)(l=1)$. These works contain a number of assertions which guarantee that (in a case of $l=1$)

$$
|\sigma(n)-\sigma(0)|<k \Delta, \text { for all } n=1,2, \ldots
$$

where k is a positive integer. In this paper the results of [1][3] are extended to the case of $l>1$. All the theorem of this paper are obtained by means of Lyapunov direct method and Yakubovich-Kalman theorem [4]. All the results are formulated as frequency-domain criteria, i.e. in terms of the transfer function of the linear part of system (1)

$$
K(p)=C^{*}\left(A-p E_{m}\right)^{-1} B-R \quad(p \in \mathbf{C})
$$

where E_{m} is an $(m \times m)$-unit matrix.

[^0]
II. FREQUENCY-DOMAIN ESTIMATES FOR THE PHASE ERROR OF DISCRETE SYSTEM

Let us suppose that

$$
\int_{0}^{\Delta_{j}} \varphi_{j}(\sigma) d \sigma<0 \quad(j=1, \ldots, l)
$$

Let $\alpha_{1 j}, \alpha_{2 j}$ be such numbers that

$$
\begin{equation*}
\alpha_{1 j} \leq \frac{d \varphi_{j}(\sigma)}{d \sigma} \leq \alpha_{2 j} \text { for all } \sigma \in \mathbf{R} \tag{2}
\end{equation*}
$$

where $\alpha_{1 j}<0<\alpha_{2 j}$.
Let us introduce several notations $(j=1,2, \ldots, l)$:

$$
\begin{gathered}
\Omega_{j}^{(1)}=\left\{\sigma_{j} \in\left[0, \Delta_{j}\right): \varphi_{j}\left(\sigma_{j}\right)>0\right\}, \\
\Omega_{j}^{(2)}=\left\{\sigma_{j} \in\left[0, \Delta_{j}\right): \varphi_{j}\left(\sigma_{j}\right)<0\right\}, \\
\Gamma_{j}=\int_{\Omega_{j}^{(2)}}\left|\varphi_{j}(\sigma)\right| d \sigma, \\
\gamma_{j}=\int_{\Omega_{j}^{(1)}} \varphi_{j}(\sigma) d \sigma, \quad R_{j}=\frac{2 \Gamma_{j} \gamma_{j}}{\Gamma_{j}+\gamma_{j}}, \\
\mu_{j}^{(1)}(æ, k, w)=\frac{\gamma_{j}-\Gamma_{j}-\frac{w+\sum_{i=1}^{l}\left|æ_{j}\right| R_{j}}{æ_{j} k}}{\gamma_{j}+\Gamma_{j}}, \\
\mu_{j}^{(2)}(æ, k, w)=\frac{\gamma_{j}-\Gamma_{j}+\frac{w+\sum_{i=1}^{l}\left|æ_{j}\right| R_{j}}{æ_{j} k}}{\gamma_{j}+\Gamma_{j}},
\end{gathered}
$$

where $æ=\operatorname{diag}\left\{æ_{1}, \ldots, æ_{l}\right\}$ is a real diagonal $(l \times l)$ matrix, $w \in \mathbf{R}$ and k is a natural number. We shall also need the following quadratic forms of $z \in \mathbf{R}^{m}$ and $\xi \in \mathbf{R}^{l}$:
$F(z, \xi)=\xi^{*} æ\left(C^{*} z+R \xi\right)+\xi^{*} \eta \xi+\left(C^{*} z+R \xi\right) \varepsilon\left(C^{*} z+R \xi\right)$.

$$
\Phi(z, \xi)=(A z+B \xi)^{*} H(A z+B \xi)-z^{*} H z+F(z, \xi)
$$

Here $H=H^{*}$ is a $(m \times m)$-matrix and $\varepsilon=\operatorname{diag}\left\{\varepsilon_{1}, \ldots, \varepsilon_{l}\right\}$, $\eta=\operatorname{diag}\left\{\eta_{1}, \ldots, \eta_{l}\right\}, æ=\operatorname{diag}\left\{æ_{1}, \ldots, æ_{l}\right\}$ are real diagonal $(l \times l)$-matrices.

Theorem 1: Let there exist such diagonal matrices $\varepsilon>0$, $\eta>0, æ$ and such positive integers $m_{1}, m_{2}, \ldots, m_{l}$ that the following hypotheses hold:

1) For all $p \in \mathbf{C},|p|=1$ the matrix

$$
\begin{equation*}
\Re e\left\{æ K(p)-K^{*}(p) \varepsilon K(p)-\eta\right\} \tag{3}
\end{equation*}
$$

(where the designation $\Re e A=(1 / 2)\left(A^{*}+A\right)$ is used) is positive definite.
2) The inequalities

$$
\begin{gather*}
4 \eta_{j}\left[\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{(i)}\left(æ, m_{j}, z^{*}(0) H z(0)\right)\right|\right)\right]> \\
>\left[æ_{j} \mu_{j}^{(i)}\left(æ, m_{j}, z^{*}(0) H z(0)\right)\right]^{2} \tag{4}\\
(j=1,2, \ldots, l, i=1,2)
\end{gather*}
$$

with $\alpha_{0 j}=\alpha_{2 j}$ if $æ_{j}>0$, and $\alpha_{0 j}=\alpha_{1 j}$ if $æ_{j}<0$ are true. Here $H=H^{*}$ is just such a $(m \times m)$-matrix that $\Phi(z, \xi) \leq 0, \forall z \in \mathbf{R}^{m}, \xi \in \mathbf{R}^{l}$.

Then for any solution $(z(n), \sigma(n))$ of (1) with initial data $(z(0), \sigma(0))$ the estimates

$$
\begin{equation*}
\left|\sigma_{j}(n)-\sigma_{j}(0)\right|<m_{j} \Delta_{j}(j=1,2, \ldots, l) \tag{5}
\end{equation*}
$$

are true for all natural n.
Remark 1. Notice that of the hypothesis 1) of the theorem is fulfilled for certain matrices $æ, \varepsilon>0, \eta>0$ then according to Yakubovich-Kalman frequency-domain theorem [4] there exists a matrix $H=H^{*}$, which guarantees that the inequality $\Phi(z, \xi) \leq 0$ is valid for all $z \in \mathbf{R}^{m}, \xi \in \mathbf{R}^{l}$.

The proof of theorem 1 is base on a special Lyapunov-type lemma with Lyapunov functions of the form "a quadratic form plus integral of a nonlinearity". The nonlinearity in Lyapunov function is conctructed by Bakaev-Guzh technique [5] intended specially for phase control systems.

Let sequences $\sigma_{1}(n), \ldots, \sigma_{l}(n)$ and $W(n) \geq 0$ be defined. Let $\varphi_{j}(\sigma)(j=1, \ldots, l)$ be Δ_{j}-periodic functions with all the properties described in this paper.

Lemma 1: Suppose there exist such numbers $\varepsilon>0, \quad \eta>0, æ \neq 0$ and natural $m_{j}(j=1, \ldots, l)$ and functions $\varphi_{j}(\sigma), \sigma_{j}(n) \quad(j=1, \ldots, l), W(n) \geq 0$ that the following hypotheses are fulfilled:

1) for all integer $n \geq 0$ the inequality

$$
\begin{gathered}
W(n+1)-W(n)+\sum_{j=1}^{l}\left\{æ_{j} \varphi(\sigma(n))[\sigma(n+1)-\sigma(n)]+\right. \\
\left.+\varepsilon[\sigma(n+1)-\sigma(n)]^{2}+\eta \varphi^{2}(\sigma(n))\right\} \leq 0
\end{gathered}
$$

is valid;
2) functions $\mu_{j}^{(i)}(æ, k, w)$ satisfy inequalities

$$
\begin{aligned}
& 4 \eta_{j}\left[\varepsilon_{j}-\frac{æ \alpha_{0 j}}{2}\left(1+\left|\mu_{i}^{(i)}\left(æ, m_{j}, W(0)\right)\right|\right)\right]> \\
> & {\left[æ_{j} \mu_{i}^{(i)}\left(æ, m_{j}, W(0)\right)\right]^{2}, \quad j=1, \ldots, l ; i=1,2 }
\end{aligned}
$$

where $\alpha_{0 j}$ are defined in theorem 1.
Then for all natural n the estimates

$$
\begin{equation*}
\left|\sigma_{j}(n)-\sigma_{j}(0)\right|<m_{j} \Delta_{j} \quad(j=1, \ldots, l) \tag{6}
\end{equation*}
$$

are valid.
Proof: It follows from the requirement 2) that for a certain $\varepsilon_{0}>0$ and all integer $k_{j}>m_{j}$ inequalities

$$
4 \eta_{j}\left(\varepsilon_{j}-\frac{æ \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{(i)}\left(æ, k_{j}, W(0)+\varepsilon_{0}\right)\right|\right)\right)
$$

$$
\begin{equation*}
\geq\left(æ \mu_{j}^{(i)}\left(æ, k_{j}, W(0)+\varepsilon_{0}\right)\right)^{2} \quad(j=1, \ldots, l ; i=1,2) \tag{7}
\end{equation*}
$$

are true.
Let us define functions

$$
\begin{equation*}
F_{j}^{(i)}(\sigma)=\varphi_{j}(\sigma)-\mu_{j}^{(i)}|\varphi(\sigma)|, \quad(j=1, \ldots, l ; i=1,2) \tag{8}
\end{equation*}
$$

It follows from [2] that the following estimates are valid:

$$
\begin{gather*}
F_{j}^{(i)}(a)(u-a)+\frac{\alpha_{1 j}}{2}\left(1+\left|\mu_{j}^{(i)}\right|\right)(u-a)^{2} \leq \int_{a}^{u} F_{j}^{(i)}(\sigma) d \sigma \leq \\
\quad \leq F_{j}^{(i)}(a)(u-a)+\frac{\alpha_{2 j}}{2}\left(1+\left|\mu_{j}^{(i)}\right|\right)(u-a)^{2} \tag{9}
\end{gather*}
$$

In formula (8) and (9) we used the designation

$$
\mu_{j}^{(i)}=\mu_{j}^{(i)}\left(æ, k_{j}, W(0)+\varepsilon_{0}\right), \quad(j=1, \ldots, l ; i=1,2)
$$

Let us introduce Lyapunov sequences

$$
V^{I}(n)=W(n)+\sum_{j=1}^{l} æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}(n)} F_{i}^{i_{j}}(\sigma) d \sigma, \quad n=0,1,2, \ldots
$$

where i_{j} is equal either to 1 or 2 and

$$
I=\left(\begin{array}{c}
i_{1} \\
\cdot \\
\cdot \\
\cdot \\
i_{l}
\end{array}\right)
$$

Their increments are as follows:

$$
\begin{gather*}
V^{I}(n+1)-V^{I}(n)= \\
=W(n+1)-W(n)+\sum_{j=1}^{l} æ_{j} \int_{\sigma_{j}(n)}^{\sigma_{j}(n+1)} F_{j}^{\left(i_{j}\right)}(\sigma) d \sigma \tag{10}
\end{gather*}
$$

Let us consider every summand in the right part of (10) separately. According to hypothesis 1) of the lemma we have

$$
\begin{aligned}
W(n+1) & -W(n) \leq-\sum_{j=1}^{l}\left\{æ_{j} \varphi_{j}\left(\sigma_{j}(n)\right)\left[\sigma_{j}(n+1)-\sigma_{j}(n)\right]\right. \\
& \left.+\varepsilon_{j}\left[\sigma_{j}(n+1)-\sigma_{j}(n)\right]^{2}+\eta_{j} \varphi_{j}^{2}\left(\sigma_{j}(n)\right)\right\}
\end{aligned}
$$

To estimate the other summand we use the formula (9). As a result we have

$$
V^{I}(n+1)-V^{I}(n) \leq-\sum_{j=1}^{l} P_{j}^{\left(i_{j}\right)}
$$

where

$$
\begin{aligned}
& P_{j}^{\left(i_{j}\right)}=-æ_{j} \varphi_{j}\left(\sigma_{j}(n)\right)\left[\sigma_{j}(n+1)-\sigma_{j}(n)\right]- \\
& -\varepsilon_{j}\left[\sigma_{j}(n+1)-\sigma_{j}(n)\right]^{2}-\eta_{j} \varphi_{j}^{2}\left(\sigma_{j}(n)\right)+ \\
& \quad+æ_{j}\left[F_{j}^{\left(i_{j}\right)}\left(\sigma_{j}(n)\right)\left(\sigma_{j}(n+1)-\sigma_{j}(n)\right)+\right. \\
& \left.\quad+\frac{\alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{\left(i_{j}\right)}\right|\right)\left(\sigma_{j}(n+1)-\sigma_{j}(n)\right)^{2}\right] .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& P_{j}^{\left(i_{j}\right)}=-\left\{\left(\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{\left(i_{j}\right)}\right|\right)\left(\sigma_{j}(n+1)-\sigma_{j}(n)\right)^{2}+\right.\right. \\
& +æ_{j}\left(\sigma_{j}(n+1)-\sigma_{j}(n)\right)\left[\varphi_{j}\left(\sigma_{j}(n)\right)-F_{j}^{\left(i_{j}\right)}\left(\sigma_{j}(n)\right)\right]+ \\
& \left.+\frac{æ_{j}^{2}}{4\left(\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{\left(i_{j}\right)}\right|\right)\right)}\left[\varphi_{j}\left(\sigma_{j}(n)\right)-F_{j}^{\left(i_{j}\right)}\left(\sigma_{j}(n)\right)\right]^{2}\right\}+ \\
& +\frac{æ_{j}^{2}}{4\left(\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{\left(i_{j}\right)}\right|\right)\right)}\left[\varphi_{j}\left(\sigma_{j}(n)\right)-F_{j}^{\left(i_{j}\right)}\left(\sigma_{j}(n)\right)\right]^{2}- \\
& -\eta_{j} \varphi_{j}^{2}\left(\sigma_{j}(n)\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
P_{j}^{\left(i_{j}\right)} & \leq \frac{æ_{j}^{2}}{4\left(\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{\left(i_{j}\right)}\right|\right)\right)}\left[\varphi_{j}\left(\sigma_{j}(n)\right)-\right. \\
& \left.-F_{j}^{\left(i_{j}\right)}\left(\sigma_{j}(n)\right)\right]^{2}-\eta_{j} \varphi_{j}^{2}\left(\sigma_{j}(n)\right)= \\
& =\frac{æ_{j}^{2}\left(\mu_{j}^{\left(i_{j}\right)}\right)^{2}}{4\left(\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{\left(i_{j}\right)}\right|\right)\right)}-\eta_{j} .
\end{aligned}
$$

In virtue of hypothesis 2) of the lemma one can affirm that

$$
\begin{equation*}
V^{(I)}(n+1)-V^{(I)}(n) \leq 0 \tag{11}
\end{equation*}
$$

Hence

$$
V^{(I)}(n) \leq V^{(I)}(0) \quad(n \in \mathbf{N})
$$

or

$$
\begin{equation*}
V^{(I)}(n) \leq W(0) \tag{12}
\end{equation*}
$$

Suppose now that for certain $n_{0} \in \mathbf{N}$ several estimates (6) are false. Suppose there exits such $q_{i} \in[1, l]$ $(i=1,2, \ldots, k ; k \leq l)$ that

$$
\begin{equation*}
\left|\sigma_{q_{i}}\left(n_{0}\right)-\sigma_{q_{i}}(0)\right| \geq m_{q_{i}} \Delta_{q_{i}} \tag{13}
\end{equation*}
$$

Let for $\left(i=1,2, \ldots, k_{1}\right.$ with $\left.k_{1} \leq k\right)$
$\sigma_{q_{i}}\left(n_{0}\right)=\sigma_{q_{i}}(0)+l_{q_{i}} \Delta_{q_{i}}+\beta_{1 q_{i}}, \beta_{1 q_{i}} \in\left[0, \Delta_{q_{i}}\right), l_{q_{i}} \geq m_{q_{i}}$
and for $i=k+1+1, \ldots, k$

$$
\begin{equation*}
\sigma_{q_{i}}\left(n_{0}\right)=\sigma_{q_{i}}(0)-l_{q_{i}} \Delta_{q_{i}}-\beta_{2 q_{i}}, \beta_{2 q_{i}} \in\left[0, \Delta_{q_{i}}\right), l_{q_{i}} \geq m_{q_{i}} \tag{15}
\end{equation*}
$$

Note that if j does not coincide with q_{1}, \ldots, q_{k} we either

$$
\begin{equation*}
\sigma_{j}\left(n_{0}\right)=\sigma_{j}(0)-l_{j} \Delta_{j}+\beta_{1 j}, \beta_{1 j} \in[0, \Delta), 0 \leq l_{j}<m_{j} \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{j}\left(n_{0}\right)=\sigma_{j}(0)-l_{j} \Delta_{j}-\beta_{2 j}, \beta_{2 j} \in[0, \Delta), 0 \leq l_{j}<m_{j} \tag{17}
\end{equation*}
$$

Let us now consider $V^{(I)}\left(n_{0}\right)$ and choose $i_{j}=1$ for those j for which formulae (14) or (16) are true and $i_{j}=2$ for those j for which formulae (15) or (17) take place. Further we choose $k_{j}=l_{j}$ if formulae (14) or (15) are true and $k_{j}=m_{j}$ if formulae (16) or (17) take place.

Suppose formula (14) or (16) is true. Then

$$
F_{j}^{\left(i_{j}\right)}(\sigma)=F_{j}^{(1)}(\sigma)=\varphi_{j}(\sigma)-\mu_{j}^{(1)}\left(æ, l_{j}, W(0)+\varepsilon_{0}\right)|\varphi(\sigma)|
$$

and

$$
\begin{gathered}
æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}\left(n_{0}\right)} F_{j}^{(1)}(\sigma) d \sigma= \\
=æ_{j} l_{j} \int_{0}^{\Delta_{j}} F_{j}^{(1)}(\sigma) d \sigma+æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}(0)+\beta_{1 j}} F_{j}^{(1)}(\sigma) d \sigma .
\end{gathered}
$$

Futher as it follows from [1]

$$
\begin{gather*}
æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}(0)+\beta_{1 j}} F_{j}^{(1)}(\sigma) d \sigma= \\
=\frac{\left(\gamma_{0 j}+\Gamma_{0 j}\right)\left(W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}\right.}{\left.l_{j}\left(\gamma_{j}+\Gamma_{j}\right)\right)}+ \\
+\frac{2 æ_{j}\left(\Gamma_{j} \gamma_{0 j}-\Gamma_{0 j} \gamma_{j}\right)}{\gamma_{j}+\Gamma_{j}} \tag{18}
\end{gather*}
$$

where

$$
\begin{aligned}
& \int_{\sigma_{j}(0)}^{\sigma_{j}(0)+\beta_{1 j}} \varphi_{j}(\sigma) d \sigma=\gamma_{0 j}-\Gamma_{0 j} \\
& \int_{\sigma_{j}(0)}^{\sigma_{j}(0)+\beta_{1 j}}\left|\varphi_{j}(\sigma)\right| d \sigma=\gamma_{0 j}+\Gamma_{0 j} \quad\left(\gamma_{0 j}, \Gamma_{0 j} \geq 0\right)
\end{aligned}
$$

If $l_{j} \geq m_{j}$ (formula (14)) we have

$$
æ_{j} l_{j} \int_{0}^{\Delta_{j}} F_{j}^{(1)}(\sigma) d \sigma=W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}
$$

and if $0 \geq l_{j}<m_{j}$ (formula (16)) we have

$$
æ_{j} l_{j} \int_{0}^{\Delta_{j}} F_{j}^{(1)}(\sigma) d \sigma=\frac{l_{j}}{m_{j}}\left(W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}\right)
$$

Analogous by if formula (15) or formula (17) is true then

$$
F_{j}^{\left(i_{j}\right)}(\sigma)=F_{j}^{(2)}(\sigma)
$$

and

$$
\begin{gathered}
æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}\left(n_{0}\right)} F_{j}^{(2)}(\sigma) d \sigma= \\
=-æ_{j} l_{j} \int_{0}^{\Delta_{j}} F_{j}^{(2)}(\sigma) d \sigma+æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}(0)-\beta_{2 j}} F_{j}^{(2)}(\sigma) d \sigma .
\end{gathered}
$$

Note that

$$
\begin{gathered}
æ_{j} \int_{\sigma_{j}(0)}^{\sigma_{j}(0)-\beta_{2 j}} F_{j}^{(2)}(\sigma) d \sigma= \\
=\frac{\left(\gamma_{1 j}+\Gamma_{1 j}\right)\left(W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}\right.}{\left.l_{j}\left(\gamma_{j}+\Gamma_{j}\right)\right)}+
\end{gathered}
$$

$$
\begin{equation*}
+\frac{2 æ_{j}\left(\Gamma_{j} \gamma_{1 j}-\Gamma_{1 j} \gamma_{j}\right)}{\gamma_{j}+\Gamma_{j}} \tag{19}
\end{equation*}
$$

where

$$
\begin{gathered}
\int_{\left.\sigma_{j}(0)-\beta_{2 j}\right)}^{\sigma_{j}(0)} \varphi_{j}(\sigma) d \sigma=\gamma_{1 j}-\Gamma_{1 j} \\
\int_{\sigma_{j}(0)-\beta_{2 j}}^{\sigma_{j}(0)}\left|\varphi_{j}(\sigma)\right| d \sigma=\gamma_{1 j}+\Gamma_{1 j} \quad\left(\gamma_{1 j}, \Gamma_{1 j}>0\right)
\end{gathered}
$$

If $l_{j} \geq m_{j}$ (formula (15)) then

$$
-æ_{j} l_{j} \int_{0}^{\Delta_{j}} F_{j}^{(2)}(\sigma) d \sigma=W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}
$$

and if $0 \geq l_{j}<m_{j}$ (formula (17)) then

$$
-æ_{j} l_{j} \int_{0}^{\Delta_{j}} F_{j}^{(2)}(\sigma) d \sigma=\frac{l_{j}}{m_{j}}\left(W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}\right) .
$$

As a result

$$
\begin{aligned}
V^{(I)}\left(n_{0}\right) & \geq W\left(n_{0}\right)+\left(W(0)+\varepsilon_{0}+\sum_{j=1}^{l}\left|æ_{j}\right| R_{j}\right) k+ \\
& +\sum_{j=1}^{k_{1}} \frac{2 æ_{j}}{\gamma_{j}+\Gamma_{j}}\left(\Gamma_{j} \gamma_{0 j}-\Gamma_{0 j} \gamma_{j}\right)+ \\
& +\sum_{j=k_{1}+1}^{k} \frac{2 æ_{j}}{\gamma_{j}+\Gamma_{j}}\left(\Gamma_{1 j} \gamma_{j}-\Gamma_{j} \gamma_{1 j}\right)
\end{aligned}
$$

Since $k \geq 1$ and for $r=0,1$

$$
\begin{aligned}
& \left|æ_{j}\right| R_{j}+\frac{2 æ_{j}(-1)^{r}}{\gamma_{j}+\Gamma_{j}}\left(\Gamma_{j} \gamma_{r j}-\Gamma_{r j} \gamma_{j}\right) \geq \\
& \geq \frac{2\left|æ_{j}\right|}{\gamma_{j}+\Gamma_{j}}\left(\gamma_{j} \Gamma_{j}-\mid \Gamma_{j} \gamma_{r j}-\Gamma_{r j} \gamma_{j}\right) \geq 0,
\end{aligned}
$$

we obtain than

$$
V^{(I)}\left(n_{0}\right) \geq W\left(n_{0}\right)+W(0)+\varepsilon_{0}
$$

and in virtue of (12)

$$
W(0) \geq W\left(n_{0}\right)+W(0)+\varepsilon_{0}
$$

Hence

$$
W\left(n_{0}\right) \leq-\varepsilon_{0} \quad\left(\varepsilon_{0}>0\right)
$$

which contradict the fact that $W(n) \geq 0$. Lemma is proved.
Proof: (theorem 1) Let us consider the quadratic form $\Phi(z, \xi)\left(z \in \mathbf{R}^{m}, \xi \in \mathbf{R}^{l}\right)$. First of all we shell prove that there exists a matrix $H=H^{*}$ such that the inequality $\Phi(z, \xi) \leq 0$ is valid for all $z \in \mathbf{R}^{m}, \xi \in \mathbf{R}^{l}$. Let $\tilde{F}(z, \xi)$ and $\tilde{\Phi}(z, \xi)$ be the Hermitian extensions of the forms F and Φ to complex arguments. According to Yakubovich-Kalman frequency-domain theorem [4] the inequality

$$
\begin{equation*}
\tilde{\Phi}(z, \xi) \leq 0 \tag{20}
\end{equation*}
$$

is valid for all $z \in \mathbf{R}^{m}, \xi \in \mathbf{R}^{l}$ iff for all $p \in \mathbf{C},|p|=1$ the inequality

$$
\begin{equation*}
\tilde{F}\left(-\left(A-p E_{m}\right)^{-1} B \xi, \xi\right) \leq 0 \tag{21}
\end{equation*}
$$

is true. We have

$$
\begin{gathered}
\tilde{F}\left(-\left(A-p E_{m}\right)^{-1} B \xi, \xi\right)= \\
=\Re e\left\{\xi^{*} æ\left(c^{*}\left(p E_{m}-A\right)^{-1} B \xi+R \xi\right)+\xi^{*} \eta \xi+\right. \\
\left.+\left(c^{*}\left(p E_{m}-A\right)^{-1} B \xi+R \xi\right)^{*} \varepsilon\left(c^{*}\left(p E_{m}-A\right)^{-1} B \xi+R \xi\right)\right\}= \\
=\Re e\left\{-æ K(p)+\eta+K(p)^{*} \varepsilon K(p)\right\}|\xi|^{2} .
\end{gathered}
$$

By virtue of hypothesis 1) of the theorem the inequality (21) is correct. Thus we have proved the existance of matrix $H=H^{*}$ with which (20) is correct.

Moreover as all eigenvalues of matrix A are situated inside the unit circle matrix H is positive define. Indeed

$$
\Phi(z, 0)=(A z)^{*} H(A z)-z^{*} H z+z^{*} C \varepsilon C^{*} z
$$

Since $\Phi(z, 0) \leq 0$ we have

$$
\begin{equation*}
z^{*}\left(A^{*} H A-H\right) z \leq-z^{*} C \varepsilon C^{*} z \leq-\bar{\varepsilon}\left|C^{*} z\right|^{2} \tag{22}
\end{equation*}
$$

where $\bar{\varepsilon}=\min \left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}\right\}$. Hence and from the fact that (A, C) is observable it follows that $H>0$ [4].

We choose now $W(n)=z^{*}(n) H z(n)$. It satisfies all hypotheses of lemma 1. Really on the one hand $W(n) \geq 0$ for all $n \geq 0$. On the other hand by virtue of system (1) we have

$$
\begin{gathered}
W(n+1)-W(n)+\sum_{j=1}^{l}\left\{æ_{j} \varphi_{j}\left(\sigma_{j}(n)\right)\left(\sigma_{j}(n+1)-\sigma_{j}(n)\right)+\right. \\
\left.\quad+\varepsilon_{j}\left(\sigma_{j}(n+1)-\sigma_{j}(n)\right)^{2}+\eta_{j} \varphi_{j}^{2}\left(\sigma_{j}(n)\right)\right\}= \\
=(A z(n)+B \varphi(\sigma(n)))^{*} H(A z(n)+B \varphi(\sigma(n)))- \\
-z^{*}(n) H z(n)+\varphi^{*}(\sigma(n)) æ\left(C^{*} z(n)+R \varphi(\sigma(n))\right)+ \\
+\left(C^{*} z(n)+R \varphi(\sigma(n))\right)^{*} \varepsilon\left(C^{*} z(n)+R \varphi(\sigma(n))\right)+ \\
\quad+\varphi^{*}(\sigma(n)) \eta \varphi(\sigma(n))=\Phi(z(n), \varphi(\sigma(n))) .
\end{gathered}
$$

Since $\Phi(z(n), \varphi(\sigma(n))) \leq 0$ the hypothesis 1) of lemma 1 is valid. Hypothesis 2) of lemma 1 and hypothesis 2) of theorem 1 coincide. Thus the estimate (6) is true. It coincide with the conclusion of theorem 1 . Theorem 1 is proved.

III. EXTENSION OF FREQUENCY-DOMAIN CRITEION FOR THE PHASE ERROR

Let us extend the state space of system (1) [5], [6]. For the purpose we introduce the notations

$$
y=\left\|\begin{array}{c}
z \\
\varphi(\sigma)
\end{array}\right\|, \quad P=\left\|\begin{array}{cc}
A & B \\
0 & E_{l}
\end{array}\right\|, \quad L=\left\|\begin{array}{c}
0 \\
E_{l}
\end{array}\right\|,
$$

$C_{1}^{*}=\left\|C^{*}, R\right\|, \xi_{1}(n)=\varphi(\sigma(n+1))-\varphi(\sigma(n))$. Here P is a $((m+l) \times(m+l))$ - matrix, L is a $((m+l) \times l)$ matrix, C_{1}^{*} is a $(l \times(m+l))$ - matrix, y is a $(m+l)$-vector and ξ_{1} is a l-vector. Then system (1) can be written as follows

$$
\begin{align*}
& y(n+1)=P y(n)+L \xi_{1}(n), \\
& \sigma(n+1)=\sigma(n)+C_{1}^{*} y(n), \quad n=0,1,2, \ldots \tag{23}
\end{align*}
$$

Consider the forms of $y \in \mathbf{R}^{m+l}$ and $\xi_{1} \in \mathbf{R}^{l}$
$\Phi_{1}\left(y, \xi_{1}\right)=\left(P y+L \xi_{1}\right)^{*} H\left(P y+L \xi_{1}\right)-y^{*} H y+F_{1}\left(y, \xi_{1}\right)$,

$$
\begin{aligned}
F_{1}\left(y, \xi_{1}\right) & =y^{*} L æ C_{1}^{*} y+y^{*} C_{1} \varepsilon C_{1}^{*} y+y^{*} L \eta L^{*} y+ \\
& +\left(A_{1} C_{1}^{*} y-\xi_{1}\right)^{*} \tau\left(\xi_{1}-A_{2} C_{1}^{*} y\right)
\end{aligned}
$$

where $A_{i}=\operatorname{diag}\left\{\alpha_{i 1}, \alpha_{i 2}, \ldots, \alpha_{i l}\right\}(i=1,2), H=H^{*}$ is a $((m+l) \times(m+l))-$ matrix, and $\varepsilon, \eta, æ, \tau$ are real diagonal matrices with varied elements.

Remark 2. [5], [6] If (A, b) is controllable then (P, L) is controllable.

Remark 3. [5], [6] If $p \neq 1$ we have

$$
\begin{align*}
C_{1}^{*}(P-p E)^{-1} L & =\frac{1}{p-1} K(p) \tag{24}\\
L^{*}(P-p E)^{-1} L & =-\frac{1}{p-1} E_{l} \tag{25}
\end{align*}
$$

Lemma 2: Suppose all eigenvalues of matrix A are situated inside the unit circle. Suppose there exist such diagonal matrices $\varepsilon>0, \eta,>0, \tau>0$ and æ that for all $p \in \mathbf{C},|p|=1$ the frequency-domain inequality

$$
\Re e\left\{æ K(p)+\left(A_{1} K(p)+(p-1) E_{l}\right)^{*} \tau\left((p-1) E_{l}+A_{2} K(p)\right)\right\}-
$$

$$
\begin{equation*}
-K(p)^{*} \varepsilon K(p)-\eta \geq 0 \tag{26}
\end{equation*}
$$

is valid. Then there exist such $((m+l) \times(m+l))$ - matrix $H_{1}=H_{1}^{*}$ that

$$
\begin{equation*}
\Phi_{1}\left(y, \xi_{1}\right) \leq 0 \quad \forall y \in \mathbf{R}^{m+l}, \xi_{1} \in \mathbf{R}^{l} \tag{27}
\end{equation*}
$$

Proof: Let $\tilde{F}_{1}\left(y, \xi_{1}\right)$ and $\tilde{\Phi}_{1}\left(y, \xi_{1}\right)$ be the Hermitian extensions of the forms F_{1} and Φ_{1} to complex arguments. According to Yakubovich-Kalman frequency-domain theorem [4] the inequality $\tilde{\Phi}_{1}\left(y, \xi_{1}\right) \leq 0$ is valid for all $y \in \mathbf{C}^{m}$, $\xi_{1} \in \mathbf{C}^{l}$ for certain matrix $H_{1}=H_{1}^{*}$ iff

$$
\begin{equation*}
\tilde{F}_{1}\left(-(P-p E)^{-1} L \xi_{1}, \xi_{1}\right) \leq 0 \tag{28}
\end{equation*}
$$

We have

$$
\begin{gathered}
\tilde{F}_{1}\left(-(P-p E)^{-1} L \xi_{1}, \xi_{1}\right)= \\
=\Re e\left\{\xi _ { 1 } ^ { * } \left[L^{*}\left((P-p E)^{-1}\right)^{*} L æ C_{1}^{*}(P-p E)^{-1} L+\right.\right. \\
+L^{*}\left((P-p E)^{-1}\right)^{*} C_{1} \varepsilon C_{1}^{*}(P-p E)^{-1} L+ \\
+L^{*}\left((P-p E)^{-1}\right)^{*} L \eta L^{*}(P-p E)^{-1} L- \\
\left.\left.-\left(A_{1} C_{1}^{*}\left((P-p E)^{-1}\right)^{*} L+E\right)^{*} \tau\left(E A_{2} C_{1}^{*}(P-p E)^{-1} L\right)\right] \xi_{1}\right\} .
\end{gathered}
$$

Let us use (24) and (25). Then

$$
\begin{gathered}
\tilde{F}_{1}\left(-(P-p E)^{-1} L \xi_{1}, \xi_{1}\right)= \\
=-\frac{1}{|p-1|^{2}} \xi_{1}^{*} \Re e\left\{æ K(p)-K(p)^{*} \varepsilon K(p)-\eta+\right. \\
\left.+\left(A_{1} K(p)+(p-1) E_{l}\right)^{*} \tau\left((p-1) E_{l}+A_{2} K(p)\right)\right\} \xi_{1}
\end{gathered}
$$

They in (26) is valid then (27) is valid too. So there exist such matrix $H_{1}=H_{1}^{*}$ that inequality (27) is fulfilled. Lemma 2 is proved.

Remark 4. Suppose all the hypotheses of lemma 2 are fulfilled. Then we can consider the sequence

$$
W+1(n)=y^{*}(n) H_{1} y(n)
$$

where $y(n)$ is a solution of system (23). As all eigenvalues of matrix A are situated inside the unit circle and functions $\varphi_{j}\left(\sigma_{j}\right)(j=1, \ldots, l)$ are bounded we can affirm that $|y(n)|<$ const for all $n \geq 0$. So the quadratic form $W_{1}(n)$ is bounded for all $n \geq 0$.

Theorem 2: Let all eigenvalues of matrix A be situated inside the unit circle. Let pair (A, B) is controllable and pair (A, C) is observable. Suppose there exist such diagonal matrices $\varepsilon>0, \tau>0, \eta>0, æ$ and such positive integers $m_{1}, m_{2}, \ldots, m_{l}$ that the following hypotheses hold:

1) The frequency-domain inequality (26) is valid.
2) The inequalities

$$
\begin{gather*}
4 \eta_{j}\left[\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{(i)}\left(æ, m_{j}, y^{*}(0) H_{1} y(0)-r\right)\right|\right)\right]> \\
>\left[æ_{j} \mu_{j}^{(i)}\left(æ, m_{j}, y^{*}(0) H_{1} y(0)-r\right)\right]^{2} \tag{29}\\
(j=1,2, \ldots, l, i=1,2)
\end{gather*}
$$

are valid, where $H_{1}=H_{1}^{*}$ is such a $((m+l) \times(m+l))$ matrix that $\Phi_{1}\left(y, \xi_{1}\right) \leq 0\left(y \in \mathbf{R}^{m+l}, \xi_{1} \in \mathbf{R}^{l}\right)$ and

$$
r \leq \inf _{n=0,1,2, \ldots} y^{*}(n) H_{1} y(n)
$$

Then for solution $(z(n), \sigma(n))$ of (1) with initial data $(z(0), \sigma(0))$ the estimates (5) are true for all natural n.

Proof: The proof is based on lemma 1. Let us consider the sequence

$$
W(n)=y^{*}(n) H_{1} y(n)-r .
$$

Note that $W(n) \geq 0$ for all $n \geq 0$. Let us prove this sequence satisfies all the hypotheses of lemma 1. Consider

$$
\begin{gathered}
z(n)=W(n+1)-W(n)+ \\
+\sum_{j=1}^{l}\left\{æ_{j} \varphi_{j}\left(\sigma_{j}(n)\right)\left[\sigma_{j}(n+1)-\sigma_{j}(n)\right]+\right. \\
\left.+\varepsilon_{j}\left[\sigma_{j}(n+1)-\sigma_{j}(n)\right]^{2}+\eta_{j} \varphi_{j}^{2}\left(\sigma_{j}(n)\right)\right\}
\end{gathered}
$$

and transform it in virtue of system (1).

$$
\begin{gathered}
z(n)=\left(P y(n)+L \xi_{1}(n)\right)^{*} H_{1}\left(P y() n+L \xi_{1}(n)\right)- \\
-y^{*}(n) H_{1} y(n)+y^{*}(n) L æ C_{1}^{*} y(n)+y^{*}(n) C_{1} \varepsilon C_{1}^{*} y(n)+ \\
+y^{*}(n) L \eta L^{*} y(n)=\Phi_{1}\left(y(n), \xi_{1}(n)\right)- \\
-\left(A_{1} C_{1}^{*} y(n)-\xi_{1}(n)\right)^{*} \tau\left(\xi_{1}(n)-A_{2} C_{1}^{*} y(n)\right) .
\end{gathered}
$$

Futher

$$
\begin{gathered}
A_{1} C_{1}^{*} y(n)-\xi_{1}(n)= \\
=A_{1}\left(C^{*} x(n)+R \varphi(\sigma(n))\right)-\varphi(\sigma(n+1))+\varphi(\sigma(n))= \\
=A_{1}(\sigma(n+1)-\sigma(n))-(\varphi(\sigma(n+1))-\varphi(\sigma(n))) . \\
\xi_{1}(n)-A_{2} C_{1}^{*} y(n)=
\end{gathered}
$$

$$
=(\varphi(\sigma(n+1))-\varphi(\sigma(n)))-A_{2}(\sigma(n+1)-\sigma(n))
$$

Let us take into account that
$\varphi_{j}\left(\sigma_{j}(n+1)\right)-\varphi_{j}\left(\sigma_{j}(n)\right)=\varphi_{j}^{\prime}\left(\sigma_{j}^{\prime}\right)\left(\sigma_{j}(n+1)\right)-(\sigma(n))$, where σ_{j}^{\prime} lies between $\left(\sigma_{j}(n)\right.$ and $\sigma_{j}(n+1)$. Then in virtue of (2) we have

$$
\begin{aligned}
& \left(A_{1} C_{1}^{*} y(n)-\xi_{1}(n)\right)^{*} \tau\left(\xi_{1}(n)-A_{2} C_{1}^{*} y(n)\right)= \\
& =\sum_{j=1}^{l} \tau_{j}\left(\varphi_{j}^{\prime}\left(\sigma_{j}^{\prime}\right)\right)^{2}\left(\sigma_{j}(n+1)\right)-(\sigma(n))^{2} \geq 0
\end{aligned}
$$

As a result

$$
z(n) \leq \Phi_{1}\left(y(n), \xi_{1}(n)\right)
$$

In virtue of hypothesis 1) of theorem 2 we can establishe by lemma 2 that $z(n) \leq 0$. This fact is equivalent to hypothesis 1) of lemma 1. Hypothesis 2) of theorem 2 coincide with hypothesis 2) of lemma 1 . So estimates (6) are valid, and theorem 2 is proved.

Let as now reject the requirement of $W(n) \geq 0$.
Lemma 3: Let $\sigma_{1}(n), \ldots, \sigma_{l}(n), W(n) \geq 0$ be sequences and $\varphi_{j}(\sigma)(j=1, \ldots, l)$ be Δ_{j}-periodic functions which have all the properties of nonlinear functions of system (1). Suppose there exist such numbers $\varepsilon_{j}>0, \eta_{j}>0, æ_{j} \neq 0$ $j=1,2, \ldots, l$ and natural numbers $m_{J} j=1,2, \ldots, l$ that the following hypotheses are fulfilled:

1) hypothesis 1) of lemma 1 ;
2) inequalities

$$
\begin{aligned}
& 4 \eta_{j}\left[\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{(i)}\left(æ, m_{j},|W(0)|\right)\right|\right)\right]> \\
> & {\left[æ_{j} \mu_{j}^{(i)}\left(æ, m_{j},|W(0)|\right)\right]^{2}(j=1,2, \ldots, l, i=1,2) }
\end{aligned}
$$

are true.
Then for those natural n for which $W(n) \geq 0$ the estimates (6) are true.

Proof of the lemma 3 is analogous to those of lemma 2. Instead of inequality (20) we pbtain inequality

$$
\begin{equation*}
W(0) \geq W\left(n_{0}\right)+|W(0)|+\varepsilon_{0} \quad\left(\varepsilon_{0}>0\right) \tag{30}
\end{equation*}
$$

Hence

$$
W\left(n_{o}\right) \leq-\varepsilon_{0} \quad\left(\varepsilon_{0}>0\right)
$$

which contradict the fact $W\left(n_{o}\right) \geq 0$.
Theorem 3: Let all the hypotheses of theorem 2 be fulfilled, exept hypothesis 2) which is substituted by the requirement
2') inequalities

$$
\begin{aligned}
& 4 \eta_{j}\left[\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{(i)}\left(æ, m_{j},\left|y^{*}(0) H_{1} y(0)\right|\right)\right|\right)\right]> \\
> & {\left[æ_{j} \mu_{j}^{(i)}\left(æ, m_{j},\left|y^{*}(0) H_{1} y(0)\right|\right)\right]^{2} \quad(j=1,2, \ldots, l, i=1,2) }
\end{aligned}
$$

are valid with $H_{1}=H_{1}^{*}$ satisfying (27).
Then for any solution $(z(n), \sigma(n))$ of (1) with initial data $(z(0), \sigma(0))$ the following limit relations are true:

$$
\begin{equation*}
z(n) \rightarrow 0 \text { as } n \rightarrow+\infty \tag{32}
\end{equation*}
$$

$$
\begin{align*}
\sigma_{j}(n) \rightarrow \hat{\sigma}_{j} \text { as } n & \rightarrow+\infty \quad(j=1,2, \ldots, l) \tag{33}\\
\varphi_{j}\left(\sigma_{j}(n)\right) & \rightarrow 0 \text { as } n \rightarrow+\infty \tag{34}
\end{align*}
$$

where $\varphi_{j}\left(\hat{\sigma}_{j}\right)=0$, and

$$
\begin{equation*}
\left|\sigma_{j}(0)-\hat{\sigma}_{j}\right|<m_{j} \Delta_{j} \tag{35}
\end{equation*}
$$

Proof: Inequalities (31) imply the inequalities

$$
\begin{equation*}
4 \eta_{j}\left[\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\frac{\Gamma_{j}-\gamma_{j}}{\Gamma_{j}+\gamma_{j}}\right)\right]>\left(æ_{j} \frac{\Gamma_{j}-\gamma_{j}}{\Gamma_{j}+\gamma_{j}}\right)^{2} \tag{36}
\end{equation*}
$$

Then all the hypotheses of theorem 5.4.1 [5] are fulfilled. According to this theorem the limit relations (32), (34), (33) take place.

It follows from hypothesis 2^{\prime}) that for a certain $\varepsilon_{0}>0$ inequalities

$$
\begin{gather*}
4 \eta_{j}\left[\varepsilon_{j}-\frac{æ_{j} \alpha_{0 j}}{2}\left(1+\left|\mu_{j}^{(i)}\left(æ, m_{j},\left|y^{*}(0) H_{1} y(0)+\varepsilon_{0}\right|\right)\right|\right)\right]> \\
>\left[æ_{j} \mu_{j}^{(i)}\left(æ, m_{j},\left|y^{*}(0) H_{1} y(0)+\varepsilon_{0}\right|\right)\right]^{2} \tag{37}\\
(j=1,2, \ldots, l, i=1,2)
\end{gather*}
$$

are valid. Let

$$
W(n)=y^{*}(n) H_{1} y(n)+\varepsilon_{0}
$$

Since (32) and (33) are true, the sequence $W(n)$ becomes positive for $n>N_{0}$, where N_{0} is sufficientli great. Further we can repeat the proof of theorem 2 up to the moment when the correctness of hypothesis 1) of lemma 1 is established. The latter coincides with hypothesis 1) of lemma 3. The hypotheses of lemma 3 and theorem 3 coincide. So according lemma 3 estimate (6) is true. In virtue of (6) and (33) estimates (35) is true. Thus theorem 3 is proved.

REFERENCES

[1] V. B. Smirnova, A. I. Shepeljavyi and N. V. Utina, " Frequency-domain conditions for cycle-slipping in discrete systems with periodic nonlinearity," International Conference "Physics and Control". Proceedings, Saint-Petersburg, August 20-22, 2003, P. 607-610.
[2] V. B. Smirnova, A. I. Shepeljavyi and N. V. Utina, "Frequency-domain estimates for transient attributes of discrete phase systems," Second International Conference "Physics and Control". Proceedings, SaintPetersburg, Russia, August 24-26, 2005, P. 469-473..
[3] V. B. Smirnova, A. I. Shepeljavyi and N. V. Utina, "Asymptotic frequency-domain estimaes for the amplitude of the output in discrete phase systems". Vestnik $S P b G U$, ser. 1, vyp. 1, pp. 60-68, 2006. (in Russian)
[4] V. A. Yakubovich, "A frequency-domain theorem in the control theory," Sibirsk. Mat. Zh. v. 14, no 2, pp. 265-289, 1973. (in Russian)
[5] G. A. Leonov and V. B. Smirnova, Mathematical problems of phase synchronization theory. Nauka, St.Petersburg, 2000. (in Russian)
[6] Yu.A. Koryakin, G.A. Leonov. "The Bakaev-Guzh technique for systems with several angular coordinates," Izvestya Akad. Nauk Kazakhskoy SSR, N 3, p. 41-46, 1976. (in Russian)

[^0]: A.I. Shepeljavyi is with Dept. of Mathematics and Mechanics, St.Petersburg State University, 28, Universitetsky av., 198504 St.Petersburg, Petrodvoretz, Russia; email: as@ as1020.spb.edu
 V.B. Smirnova and N.V. Utina are with Dept. of Mathematics, St. Petersburg State University of Architecture and Civil Engineering, 4, Vtoraja Krasnoarmeiskaja Str., 198005 St.Petersburg, Russia; email: unv74@mail.ru

