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Abstract

This paper addresses the inverse problem of

anisotropy-based performance analysis of linear

discrete time-invariant system. The inverse prob-

lem consists in finding the maximum level of mean

anisotropy of random input sequence corresponding

to some given value of anisotropic norm of system.

A unique solution is determined by solving a system

of four cross-coupled nonlinear algebraic equations

including Riccati, Lyapunov, and two scalar equations

with respect to traces of symmetric matrices. A simple

illustrative numerical example is considered.
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1 Introduction

The main concept of the anisotropy-based approach to

robust stochastic control developed in the mid 1990’s

by I. G. Vladimirov and presented in papers [Semy-

onov et al., 1994; Vladimirov et al., 1995; Vladimirov

et al., 1996-1], is the anisotropic norm of systems

which builds on the anisotropy of random signals. The

anisotropy functional, considered there, is an entropy

theoretic measure of the deviation of a probability dis-

tribution in Euclidean space from Gaussian distribu-

tions with zero mean and scalar covariance matrices.

The mean anisotropy of a stationary random sequence

is defined in [Vladimirov et al., 2006] as the anisotropy

production rate per time step for long segments of the

sequence. In application to random disturbances, the

mean anisotropy describes the amount of statistical un-

certainty which is understood as the discrepancy be-

tween the imprecisely known actual noise distribution

and the family of nominal models which consider the

disturbance to be a Gaussian white noise sequence with

a scalar covariance matrix. The a-anisotropic norm

quantifies the disturbance attenuation capabilities of

a linear discrete time invariant (LDTI) system by the

largest ratio of the power norm of the system output to

that of the input, provided that the mean anisotropy of

the input disturbance does not exceed a given nonneg-

ative parameter a.

This paper is devoted to the inverse problem of

anisotropy-based performance analysis of LDTI sys-

tems. The inverse problem consists in finding the max-

imum level a of the mean anisotropy of the random

input sequence that corresponds to the case when the

anisotropic norm of the system is equal to given value

γ.

The paper is organized as follows. Some neces-

sary theoretical background and problem statement are

given in Section 2. The main result of the paper is a

sufficient condition defining the maximum level of the

input sequence mean anisotropy corresponding to some

given value of the system anisotropic norm γ repre-

sented in Section 3. A simple numerical example is

considered in Section 4.

2 Background and Problem Statement

Let us recall some background material on the

anisotropy of signals and anisotropic norm of sys-

tems. An extended exposition of the anisotropy-based

robust performance analysis, developed originally in

[Vladimirov et al., 1995; Vladimirov et al., 1996-

1], can be found in [Diamond et al., 2001]; see also

[Vladimirov et al., 2006].

2.1 Anisotropy of Random Vector

Denote by L
m
2 the class of square integrable R

m-

valued random vectors distributed absolutely contin-

uously with respect to the m-dimensional Lebesgue

measure mes m. For any W ∈ L
m
2 with PDF f : R

m →
R+, the relative entropy of its distribution with respect

to the Gaussian PDF

pm,λ(w) , (2πλ)−m/2 exp

(
−|w|2

2λ

)
, w ∈ R

m,

(1)



is computed as

D(f‖pm,λ) = E ln
f(W )

pm,λ(W )

=
m

2
ln(2πλ) +

E(|W |2)
2λ

− h(W ), (2)

where D(f‖pm,λ) denotes the relative entropy (or

Kullback-Leibler informational divergence) of f with

respect to pm,λ,

h(W ) , E ln f(W ) = −
∫

Rm

f(w) ln f(w)dw

denotes the differential entropy of W with respect to

mes m; see [Cover and Thomas, 1991].

The anisotropy A(W ) is defined in [Vladimirov et al.,

2006] as the minimal value of relative entropy (2) with

respect to the Gaussian distributions in R
m with zero

mean and scalar covariance matrices described by (1):

A(W )
.
= min

λ>0
D(f‖pm,λ)

=
m

2
ln

(
2πe

m
E(|W |2)

)
− h(W ), (3)

where the minimum is achieved at λ = E(|W |2)/m;

see [Vladimirov et al., 2006].

Let G
m(µ,Σ) denote the class of R

m-valued Gaus-

sian random vectors with mean EW = µ and nonsin-

gular covariance matrix cov(W ) , E((W − µ)(W −
µ)T) = Σ. Basic properties of the anisotropy of a ran-

dom vector stated in [Vladimirov et al., 2006] are as

follows:

1. A(σUW ) = A(W ) for any orthogonal matrix

U ∈ R
m×m and any σ ∈ R \ {0};

2. For any R
m×m ∋ Σ ≻ 0,

min
{
A(W ) : W ∈ L

m
2 , E(WWT) = Σ

}

= −1

2
ln det

mΣ

tr Σ
, (4)

where the minimum is only achieved at W ∈
G

m(0,Σ);
3. A(W ) > 0 for any W ∈ L

m
2 , and A(W ) = 0 if

and only if W ∈ G
m(0, λIm) for some λ > 0.

2.2 Mean Anisotropy of Random Sequence

Let W , (wk)−∞<k<+∞ be a stationary sequence

of square integrable random vectors with values in R
m

which is interpreted as a discrete-time random signal.

Assembling the elements of W , associated with a time

interval [s, t], into a random vector

Ws:t ,



ws

...

wt


 , (5)

we assume that W0:N is absolutely continuously dis-

tributed for every N > 0. The mean anisotropy of the

sequence W is defined in [Vladimirov et al., 2006] as

the anisotropy production rate per time step by

A(W )
.
= lim

N→+∞

A(W0:N )

N
. (6)

Now suppose the stationary random sequence W is

Gaussian. Furthermore, let V , (vk)−∞<k<+∞ be

an m-dimensional Gaussian white noise sequence, so

that vk are independent Gaussian random vectors with

zero mean Evk = 0 and identity covariance matrix

cov(vk) = Im. Suppose W = GV is generated from

V by a shaping filter G as

wj =
∑+∞

k=0
gkvj−k, −∞ < j < +∞. (7)

The impulse response of the filter gk ∈ R
m×m is as-

sumed to be square summable over k > 0, thus ensur-

ing the mean square convergence of the series in (7).

The spectral density of W is given by

S(ω) , Ĝ(ω)Ĝ(ω)∗, −π 6 ω < π, (8)

where (·)∗ = (·)T denotes the complex conjugate

transpose of a matrix, and Ĝ(ω) , limr→1− G(reiω)
is the boundary value of the transfer function G(z) ,∑+∞

k=0
gkzk. The latter encodes all the properties of the

filter as an input-output operator and belongs to the

Hardy space Hm×m
2 of (m × m)-matrix-valued func-

tions, analytic in the disc |z| < 1 of the complex plane.

As is shown in [Vladimirov et al., 1996-1; Diamond et

al., 2001], the mean anisotropy of the stationary Gaus-

sian random sequence W = GV can be computed in

terms of the spectral density (8) and the associated H2-

norm of the shaping filter G as

A(W ) = − 1

4π

∫ π

−π

ln det
mS(ω)

‖G‖2
2

dω. (9)

Since the probability law of the sequence W is com-

pletely determined by the shaping filter G or by the

spectral density S, the alternative notations A(G) and

A(S) will also be used instead of A(W ).
Mean anisotropy functional (9), which is always non-

negative, takes a finite value if the shaping filter G
is of full rank, that is, if rank Ĝ(ω) = m for al-

most all ω ∈ [−π, π). Otherwise, A(G) = +∞;

see [Vladimirov et al., 1996-1; Diamond et al., 2001].

The equality A(G) = 0 holds true if and only if G
is an all-pass system up to a nonzero constant factor.

In this case, the spectral density (8) is described by

S(ω) = λIm, −π 6 ω < π, for some λ > 0, so

that W is a Gaussian white noise sequence with zero

mean and a scalar covariance matrix.



2.3 Anisotropic Norm of Linear System

Let F ∈ Hp×m
∞ be an LDTI system with an m-

dimensional input W = GV and a p-dimensional out-

put Z = FW , where, as before, V is a m-dimensional

Gaussian white noise sequence with zero mean and

identity covariance matrix. Let

Ga ,
{
G ∈ Hm×m

2 : A(G) 6 a
}

(10)

denote the set of shaping filters G which generate

Gaussian random sequences W with mean anisotropy

(9) bounded by a given parameter a > 0. The a-

anisotropic norm ([Vladimirov et al., 1996-1; Diamond

et al., 2001]) of the system F is defined by

|||F |||a
.
= sup

G∈Ga

‖FG‖2

‖G‖2

. (11)

The fraction ‖FG‖2/‖G‖2 on the right-hand side of

(11), which describes a “stochastic gain” of the system

F with respect to W = GV , will also be referred to

as the power norm ratio. As is shown in [Vladimirov

et al., 1995; Diamond et al., 2001], the a-anisotropic

norm (11) of a given system F ∈ Hp×m
∞ is a nonde-

creasing continuous function of the mean anisotropy

level a which satisfies

1√
m
‖F‖2 = |||F |||

0
6 lim

a→+∞
|||F |||a = ‖F‖∞. (12)

These relations show that the H2 and H∞-norms are

the limiting cases of the a-anisotropic norm as a →
0,+∞, respectively.

2.4 Problem Statement

Let F ∈ Hp×m
∞ be a stable linear discrete time-

invariant system with m-dimensional input W re-

lated with the n-dimensional internal state X and p-

dimensional output Z = FW by the equations

F (z) :

[
xk+1

zk

]
=

[
A B
C D

] [
xk

wk

]
, −∞ < k < +∞,

(13)

where A,B,C, and D are some appropriately dimen-

sioned matrices. The only prior information on the

probability distribution of the random input sequence

W = (wk)−∞6k6+∞ is assumed to be that it is a

stationary Gaussian sequence of random vectors wk

with zero mean E(wk) = 0, unknown covariance

matrix cov(wkwT
k ) = ΣW . At that it is supposed

that the mean anisotropy of the sequence W is upper-

bounded by an unknown nonnegative parameter a. This

means that W is produced from m-dimensional Gaus-

sian white noise V = (vk)−∞6k6+∞ with zero mean

E(vk) = 0 and scalar (possibly, identity) covariance

matrix by an unknown shaping filter G belonging to

family (10). Let us formulate the inverse problem of

anisotropy-based performance analysis as follows.

Problem 1. Let a stable linear system F ∈ Hp×m
∞

be defined by equations (13), and let a real number

γ ∈ [m−1/2‖F‖2, ‖F‖∞) be given. We are interested

in finding an input mean anisotropy level a > 0 guar-

anteeing that the equality |||F |||a = γ holds true.

3 Main Result

Let us formulate the main result of this paper. The

following theorem gives sufficient conditions for com-

puting the maximum level of the mean anisotropy of

Gaussian random input sequence conforming to a given

value of the anisotropic norm of the system.

Theorem 1. For given stable linear system F ∈
Hp×m

∞ , any real number γ ∈ [m−1/2‖F‖2, ‖F‖∞),
and some level a of the mean anisotropy of the random

input signal W, the equality

|||F |||a = γ (14)

holds true if there exists a solution (q,R, P ), q ∈
[0, ‖F‖−2

∞ ), R ≻ 0, P ≻ 0, to the system of the cross-

coupled nonlinear matrix algebraic equations

R = ATRA + qCTC + LTΣ−1L, (15)

L , Σ(BTRA + qDTC), (16)

Σ , (Im − BTRB − qDTD)−1, (17)

P = (A + BL)P (A + BL)T + BΣBT, (18)

tr((C + DL)P (C + DL)T + DΣDT) = γ2,(19)

tr(LPLT + Σ) = 1. (20)

At that, the level of the mean anisotropy of the random

input sequence W is defined by formula

a = −1

2
ln det(mΣ). (21)

Proof. Consider the stable linear system F ∈ Hp×m
∞

defined by equations (13). Let the anisotropic norm

of the system F is equal to γ for some unknown

level a of the mean anisotropy of the random input

sequence W. Recall that the anisotropic norm of the

system F is defined at the half-open interval γ ∈
[m−1/2‖F‖2, ‖F‖∞) for any level a ∈ [0,∞) of the

mean anisotropy of the input sequence; see [Semy-

onov et al., 1994; Vladimirov et al., 1996-1]. Let us

show that if the condition (14) holds true then there

exist the stabilizing solution R ≻ 0 to algebraic Ric-

cati equation (15), the solution P ≻ 0 to Lyapunov

equation (18), and the value of the parameter q ∈



[0, ‖F‖−2
∞ ) such that (19), (20) hold true. Then the

maximum level of the mean anisotropy of the input

sequence produced by a worst-case shaping filter G
equals to a and is defined by formula (21). By def-

inition (11), |||F |||a = supG∈Ga
‖FG‖2/‖G‖2 = γ,

where Ga is a set of the shaping filters with bounded

mean anisotropy A(G) 6 a. Then for all G ∈ Ga the

inequality

‖FG‖2/‖G‖2 6 γ (22)

holds true. Since ‖FG‖2, ‖G‖2, and γ are positive

real numbers, inequality (22) holds true for all G ∈ Ga

producing the output sequences with mean anisotropy

levels not exceeding a.
Let us find the maximum value of the mean anisotropy

level a defined by (21) under norm ratio constraint (22).

Since A(G) and the power norm ratio ‖FG‖2/‖G‖2

are invariant with respect to scalar multiplication of

G [Diamond et al., 2001], we can assume ‖G‖2 = 1
without loss of generality. Consider the problem

A(G) → sup
G∈Ga

, (23)

‖FG‖2
2 − γ2‖G‖2

2 6 0, (24)

‖G‖2 = 1. (25)

By virtue of Karush-Kuhn-Tucker Theorem, the prob-

lem of searching conditional extremum (23), (24) is

equivalent to the problem of finding unconditional ex-

tremum of corresponding Lagrangian. Let us write the

Lagrangian for this problem as

L(F, S, λ) =
1

4π

∫ π

−π

ln det(mĜ(ω)Ĝ∗(ω)(ω))dω

+ λ(‖FG‖2
2 − γ2‖G‖2

2)
+ µ(‖G‖2

2 − 1)

=
1

4π

∫ π

−π

ln det (mS(ω))dω

+
λ

2π

∫ π

−π

tr (Λ(ω)S(ω)) dω

− λγ2

2π

∫ π

−π

trS(ω)dω

+
µ

2π

∫ π

−π

trS(ω)dω,

(26)

where Λ(ω) = F̂ ∗(ω)F̂ (ω), S(ω) = Ĝ(ω)Ĝ∗(ω)
is the spectral density of the random input sequence,

λ, µ > 0 are the Langrange multipliers. The first

Frechet variation of the functional L(F, S, λ) is given

by

δL(F, S, λ) =
1

4π

∫ π

−π

tr
(
S−1(ω)δS(ω)

)
dω

+
λ

2π

∫ π

−π

tr(Λ(ω)δS(ω))dω

− λγ2 − µ

2π

∫ π

−π

tr δS(ω)dω,

(27)

where δS(ω) is the spectral density variation repre-

sented by a Hermitian (m×m)-matrix. The necessary

condition of functional (26) extremum is given by

1

2
S−1(ω) + λΛ(ω) − (λγ2 − µ)Im = 0. (28)

The second Frechet variation of functional (26) is

− 1

4π

∫ π

−π

tr(δS(ω)S−2(ω)δS(ω))dω < 0,

i.e. only local maximum can be attained in stationary

points.

From (28) we obtain

S−1(ω) = 2(λγ2 − µ)Im − 2λΛ(ω)

=
2λ

q
(Im − qΛ(ω)),

where q ,
(
γ2 − µ

λ

)−1

= λ(λγ2 − µ)−1. Denoting

σ ,
q

2λ
, we can define the worst-case spectral density

of the random input sequence W :

S⋆(ω) = σ (Im − qΛ(ω))
−1

, −π 6 ω < π. (29)

Note that for any q ∈ [0, ‖F‖−2
∞ ) the function S⋆(ω)

exists and is positive definite.

From the sufficient complementary slackness condi-

tions for optimization problem (23)–(25) it follows that

for λ, µ > 0

‖FG⋆‖2
2 = γ2, (30)

‖G⋆‖2
2 = 1. (31)

Now obtain a representation of the worst-case input

random sequence in the state space. Let us factorize

expression (28). It is not hard to see that (28) can be

written as

Θ∗(ω)Θ(ω) = Im, (32)

where

Θ =

[ √
qF̂ (ω)√

σĜ−1
⋆ (ω)

]
∈ H2m×m

2

and Ĝ⋆(ω)Ĝ∗
⋆(ω) = Ĝ∗

⋆(ω)Ĝ⋆(ω) = S⋆(ω) is the

factorization of the worst-case spectral density S⋆(ω).
Condition (32) means that the transfer function Θ(z) is

an inner one, see e.g. [Zhou et al., 1996].



Let the worst-case input random sequence W⋆ with

spectral density S⋆(ω) defined by formula (29) have the

state-space representation w⋆
k = Lxk + σ−1/2Σ̃1/2vk,

where the matrices L and Σ̃ ≻ 0 are to be determined.

Then the realization of the worst-case shaping filter

G⋆(z) ∈ Hm×m
2 is given by

G⋆(z) ∼
[

A + BL σ−1/2BΣ̃1/2

L σ−1/2Σ̃1/2

]
.

It is not hard to determine by straightforward calcula-

tion that the realization of the system Θ(z) is given by

Θ ∼
[

A B
Γ ∆

]
, (33)

where Γ =

[ √
qC

−√
σΣ̃−1/2L

]
,∆ =

[ √
qD√

σΣ̃−1/2

]
.

Since the system Θ(z) is inner, its realization (33)

obeys the equation system

ATRA − R + ΓTΓ = 0, (34)

BTRA + ∆TΓ = 0, (35)

BTRB + ∆T∆ = Im, (36)

see [Gu et al., 1989]. Substituting expressions

∆T∆ = qDTD + σΣ̃−1,

ΓTΓ = qCTC + σLTΣ̃−1L,

∆TΓ = qDTC − σΣ̃−1L

to equations (34)–(36), we obtain

R = ATRA + qCTC + σLTΣ̃−1L,

L = σ−1Σ̃
(
BTRA + qDTC

)
,

σ−1Σ̃ =
(
Im − BTRB − qDTD

)−1
.

These equations can be rewritten in form (15)–(17) us-

ing notation Σ(q) , σ(q)−1Σ̃(q). Note that in condi-

tions of the theorem for any q ∈ [0, ‖F‖−2
∞ ) there exists

a unique stabilizing solution R ≻ 0 to algebraic Ric-

cati equation (15)–(17) such that the matrix A + BL
is stable (ρ(A + BL) < 1) and the matrix Σ ≻ 0;

see [Vladimirov et al., 1996-1; Diamond et al., 2001]

for details.

Then, let us express equalities (30), (31) in terms

of realization matrices of the weighted system

F (z)G⋆(z) = (A + BL,BΣ1/2, C + DL,DΣ1/2)
and the worst-case shaping filter G⋆(z) = (A +
BL,BΣ1/2, L,Σ1/2). As is well known, see e.g. [Zhou

et al., 1996],

‖FG⋆‖2
2 = tr((C + DL)P (C + DL)T (37)

+DΣDT),

‖G⋆‖2
2 = tr

(
LPLT + Σ

)
, (38)

where P ≻ 0 is the controllability Gramian satisfying

the Lyapunov equation (18). Since the matrix A + BL
is stable and Σ ≻ 0, then there exists a unique solution

P ≻ 0 to Lyapunov equation (18), see e.g. [Zhou et al.,

1996]. From the fact that ‖G‖2 > 0 it follows that sub-

stituting expressions (37), (38) to equalities (30), (31)

yields equations (19), (20).

As is known from [Vladimirov et al., 1996-1; Dia-

mond et al., 2001], the level a of the mean anisotropy

of the worst-case input sequence W⋆ generated by

the worst-case shaping filter G⋆(z) is defined by for-

mula (21) that completes the proof.

Remark 1. The levels as and at of the spatial and

temporal parts [Diamond et al., 2001] of the mean

anisotropy a of the worst-case input sequence W⋆ gen-

erated by the worst-case shaping filter G⋆(z) are de-

fined by formulas

as = −1

2
ln det((LPLT + Σ)(LRLT + Σ)−1(39)

at =
1

2
ln det(m(LPLT + Σ)), (40)

respectively.

4 Numerical Example

To illustrate application of Theorem 1, let us briefly

consider a simple numerical example. Let the state-

space realization of the stable second-order system be

given by

F (z) ∼
[

A B
C D

]
=




0 1 1 0

0.3 0.6 0 1

1 0 1 0

0 1 0 1


 . (41)

According to (12), the anisotropic norm of system (41)

varies from |||F |||
0

= 1√
m
‖F‖2 = 2.4525 for a = 0 to

‖F‖∞ = 15.891 with a → +∞. Therefore it makes

sense to search the numerical solution to equation sys-

tem (15)–(20) only for γ ∈
[
m−1/2‖F‖2, ‖F‖∞ − ǫ

]
,

where ǫ is rather small. In practical computations we

choose ǫ = 10−3. To solve the resulting equation sys-

tem, the quite standard numerical methods of the Mat-

lab Control System Toolbox is applied for consecu-

tively increasing γ starting from γ = m−1/2‖F‖2. The

mean anisotropy level to be defined is computed by for-

mula (21), the spatial and temporal parts of the mean

anisotropy are calculated by formulas (39) and (40).

The results of numerical solution are represented in

Fig. 1 and 2. The mean anisotropy a(γ), as well as its

temporal and spatial parts at(γ), as(γ) are plotted in

the top of Fig. 1, where the black coloured line corre-

sponds to a(γ), blue and red lines correspond to at(γ)
and as(γ), respectively. In the bottom of Fig. 1, the

parameter q(γ) is shown. Fig. 2 illustrates changing of
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Figure 1. Mean anisotropy a(γ), its temporal and spatial parts

at(γ), as(γ), and parameter q(γ)
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Figure 3. Anisotropic norm values γ(a), γr(a), and absolute er-

ror |γ − γr|

the eigenvalues of the matrices R (top diagram) and P
(lower diagram) depending on γ.
The obtained values ai of the mean anisotropy

level were used for computing the anisotropic norm

|||F |||ai
= γr(ai) according to [Vladimirov et al., 1996-

1; Diamond et al., 2001]. The graphs of γr(a) and γ(a)
are plotted in the top of Fig. 3. The graph of absolute

error |γ(a) − γr(a)| is given in the bottom of Fig. 3.

5 Conclusion

A solution to the inverse problem of the anisotropy-

based performance analysis has been obtained. The in-

verse problem consists in finding the level of the mean

anisotropy of the random input sequence that corre-

sponds to some given value of the system anisotropic

norm. It is shown that the system anisotropic norm

equals to a given value belonging to some admissible

range if there exists a solution to a system of four cross-

coupled matrix nonlinear algebraic equations. The so-

lution to the inverse problem is uniquely defined by the

solution to this equation system.
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