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Abstract1- Shape control means control of position or 
alignment of a certain number of points of the structure so 
as to track a desired value, which is an important task of 
smart structures. Shape control is mostly extended by 
smart materials such as piezoelectric actuators or shape 
memory alloys. In this paper a new approach for static 
shape control of beams without the draw back of the 
smart materials-based scheme is developed. A system of 
eccentric reversing channels embedded into structures is 
then developed utilizing this fluidic actuator which acts as 
a continuous actuator. Shape control of elastic structures. 
In this system, by adjusting parameters such as fluid’s 
velocity, fluid’s density, and the eccentricity path’s 
equation of the channel, shape and deflection curve of the 
beam can be controlled. Several analytical examples are 
at last demonstrated considering different eccentricity 
paths for the channel with and without external load. 
Distinct characteristics are observed in the deflection 
curve associated with this kind of fluidic actuators, such 
that the tip deflection for a cantilever beam embedded 
with fluidic actuators does not necessarily occurs at the 
tip. This method can be applied in aircraft wings for 
getting higher lift or drag at the time of take off or 
landing.  

I. INTRODUCTION 
 

Shape control means control of position or alignment 
of a certain number of points on the structure so as to 
track a desired value, which is an important task of smart 
structures. 

Shape control is mostly extended by smart materials 
such as piezoelectric actuators or shape memory alloys [1-
3] but other approaches are either developed like using 
compliant mechanisms [4] or the principle of stress-free 
eigenstrain load [5].  
 The main idea of this paper has arisen from the pipes 
conveying fluid [6,7]. The author has later developed the 
dynamic behaviour and stability boundaries of the pipes 
conveying fluid with flexible support [8] and, under axial 
load [9]. 

In this paper a new approach for static shape control of 
beams without the draw backs the smart materials-based 
schemes is developed. In the current paper the focus is on 
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the shape control of the elastic structures and the dynamic 
behaviour is no more interested. 
 

II. PHYSICAL MODEL OF THE 
FLUIDIC ACTUATOR 

 
Schematic of the fluidic actuator is depicted in Fig. 1. 

A channel is generated in the beam for passing the fluid.  
The eccentricity path of the channel (e(x)) can follow 

any curve e.g. parabola, exponential, sinusoidal, etc. 
Shape and also deflection at any point of the beam such as 
tip deflection can then be controlled by changing the 
fluid's density, velocity or eccentricity.  
 

 

 
Fig. 1. Configuration of a fluidic actuator embeded in 

an elastic beam, a) 3d, b) Plane. 
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A. Governing differential equation: 
For deriving the governing differential equation, beam 

is considered to be an Euler-Bernoulli beam and small 
lateral motion is assumed. 

A unit force per unit length is exerted on the beam 
caused from the velocity of the moving fluid and the 
curvature of the channel.  

 
Fig. 2- A smart clamped beam with embedded channel 
(the actuating tube doubles back four times). 
 

The fluid flows through the curved channel and thus 
applies a unit force per unit length on the beam which is a 
function of fluid’s velocity and curvature of the beam.  

For calculating curvature of the beam, both, deflection 
curve of the beam and also the curvature of the 
eccentricity path of the fluid’s channel should be 
considered. The governing equation of the elastic 
structure is then obtained [10] 
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 Vibration analysis of this system is similar to the 
pipe’s conveying fluid, which is extended before by the 
author [9]. In this paper, we are focused on the shape 
control of the structure and the dynamic behaviour of the 
system is not interested any more. Thus a steady-state 
flow is considered and the right term of (1) is neglected. 
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where 2Vm f  is momentum of the fluid and E(x) is a 

known function that denotes equation of the curved 
channel.  

Then the nondimensional equation of the system is 
introduced by defining these nondimensional terms. 
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where, L is the length of the beam. Then the 

nondimensional governing equation of the smart beam 
with embedded channel is rewritten 
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A clamped beam is considered in this paper for 
demonstrating shape control of elastic structures using 
fluidic actuators. The boundary conditions of a cantilever 
beam is 
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B. Solution of the governing equation 

 
In this section, an analytical solution is given for any 

arbitrary eccentricity path equation and the use of fluid on 
shape control of beams is clarified by several examples. 
(4) is rewritten in the form of a second degree differential 
equation 
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where v is the moment along the beam. Taking Laplace 
transform from (6) 
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The boundary condition for V is known and is equal to 
zero at the free end of a cantilever beam, thus the x 
coordinate is here considered to start from the free end to 
the clamped end. Then using convolution integral  
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(8) should be integrated twice for obtaining deflection 
of the beam. The boundary condition of w is now known 
at the clamped end, thus the x coordinate is changed to its 
first state by using this transformation 
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After integrating (9) and imposing the boundary 
conditions for the beam and the eccentricity path, shape 
the beam, which is a function of velocity and x coordinate 
is obtained.  

In the next section several eccentricity paths are 
utilized for demonstrating characteristics of a fluidic 
actuator and controlling shape of the beam using this 
actuator. 

 
III.NUMERICAL EXAMPLES 

 
Different equations for the eccentricity path of the 

fluid are considered to clarify the usage of fluid in the 
shape control. 

 
A. Parabola 

As the first example, the eccentricity path equation of 
the channel is considered to be a polynomial of the second 
degree. 
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The channels parameter is designed to gain (See Fig. 2) 
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 where b and a are the width and aspect ratio of the beam 
respectively.   
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This differential equation is solved considering the 

boundary conditions and the deflection curve of the beam 
is obtained 
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Shape of the beam is then plotted in Fig .3 for several 

nondimensional velocities of the fluid. Deflection of the 
beam is a function of the nondimensional velocity of the 
beam as well as x. 
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Fig. 3. Deflection of an elastic clamped beam with 

embedded channel following a parabola eccentricity 
path 

 
This kind of beams can be considered as actuators or 

even grippers since deflection of its tip can be controlled 
by tuning the fluid velocity. Thus, tip deflection of the 
beam is separately studied. 

 

)()cossin.1(2)1( 2 ufCuuu
u
Cw =−++−=            (24) 

 
Tip deflection of the beam with parabola eccentricity 

path equation is plotted in Fig.4, which indicates that 
increasing velocity will not always result in larger 
deflection. For other kinds of equations shape and tip 
deflection of the beam is computed as follows and plotted. 
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Figure 4 Tip deflection of the Clamped beam- 

Parabola 
 

 
B.  Exponential 
 The eccentricity path equation of the channel is 
considered to be an exponential  

)).4/(ln()( xaexe =                  (15) 
The channel parameters are designed to gain (See Fig. 2) 

4
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where b and a are the width and aspect ratio of the 
beam respectively. This differential equation is solved 
considering the boundary conditions, and the deflection 
curve of the beam is obtained 
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Fig.5. Shape of the elastic clamped beam- Exponential 
 

Shape of the beam is then plotted in Fig .5. Noticing 
shape of the beam at u=3.1, it’s observed that the 
maximum deflection has not occurred at the tip. 
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Since these smart beams can be applied as actuators and 
the tip deflection is one of the most important parameters 
of an actuator, we have studied the tip deflection of the 
beam separately. This deflection can be controlled by 
tuning fluid’s velocity. 
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Fig. 6. Tip deflection respect to nondimensional 

velocity- Exponential  
 

Fig. 5 and 6, indicate that increasing velocity will not 
always result in larger deflection. 
 
C. Sinusoidal 
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In the equation of the shape of the clamped beam with 

an embedded channel following sinusoidal eccentricity 
path, sinusoidal and polynomial functions are observed. 

 
D. Calculation of Maximum deflection 
 

The maximum deflection of a clamped beam with 
exponential eccentricity path is calculated by 
differentiating the deflection curve equation (Eq.(15)). It 
observed that by increasing the fluid’ velocity, the shape 

of a beam has an exterimum which is mathematically a 
minimum. Comparing the absolute value of the deflection 
at this point with the tip deflection, it has pointed out that 
the maximum deflection is the tip or is the minimum of 
the deflection curve of the beam.  

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sinousidal 

x

B
ea

m
 d

ef
le

ct
io

n

u=.5
u=1.5
u=2.5
u=3.5
u=4.5

u=4.5

u=0.5

u=3.5

u=1.5

u=2.5

 
Fig.7. Shape of the elastic clamped beam- Sinusoidal 
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Fig. 8. Tip deflection respect to nondimensional 

velocity- Sinusoidal  
 

  

 
Figure 6- Calculation of the maximum deflection 
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E.  External Loading 
 Smart structures under extra loadings are considered 
here to demonstrate another feature of the fluidic 
actuators. By tuning the fluid’s parameters such as 
velocity an elastic structure can maintain its straight shape 
under extra loading. Smart structures may be utilized as 
actuators or grippers and consequently they should 
operate under extra loads. In this section the velocity 
which results in zero deflection is carried out. 

As common external loading which is a concentrated 
load exerted at the tip end of the beam is considered here.  

Deflection curve of the cantilever beam under a 
concentrated load is 
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The equation is nondimentialized using the following 
parameters. 
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Fig.9. depicts shape of a clamped beam with 

exponential eccentricity path for the channel. The beam is 
under an external load at the tip. By tuning the fluid’s 
velocity it is observed that at u=.441, the beam will 
maintain its straight shape. Other desired shapes for the 
beam or a preferred tip deflection can also be obtained by 
adjusting the fluid’s parameters. 
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Fig. 9. Shape of the beam under extra loading is 

controlled 

 
IV.CONCLUSIONS 

In this paper, a new idea is developed to control the shape 
of elastic structures. A channel for passing fluid which 
can follow different curves is embedded into the system 
that doubles back. Adjusting the parameters such as 

fluid’s density, velocity and also shape of the curved 
channel leads to desired shape of the structure.  
Several analytical examples with different eccentricity 
curves are developed in order to demonstrate use of 
fluidic actuators in shape control of elastic structures. 
Distinct characteristic of this fluidic actuators are also 
discussed like the maximum deflection and also the 
velocity that the maximum tip deflection occurs. As we 
have shown, the tip deflection is not surely the maximum 
deflection in these structures. 
This method can be applied in aircraft wings for getting 
higher lift or drag at the time of take off or landing.  
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