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Abstract
Many practical systems are non-deterministic, in the

sense that available information about the initial states
and control values does not uniquely determine the fu-
ture states. For some such systems, it is important
to take quantum effects into account. For that, we
need to develop non-deterministic versions of quan-
tum physics. In this paper, we show that for non-
deterministic versions of quantum physics, we can-
not require superposition principle – one of the main
fundamental principles of modern quantum mechanics.
Specifically, while we can consider superpositions of
states corresponding to the same version of the future
dynamics, it is not consistently possible to consider su-
perpositions of states corresponding to different ver-
sions of the future.

1 Why Non-Deterministic Versions of Quantum
Physics

Traditional control theory has been developed to con-
trol deterministic systems, in which the initial state and
the control values uniquely determine all future states
of the system. In many practical situations, however,
physical systems are non-deterministic – e.g., as a re-
sult of partial observability of events. Special modifi-
cations of traditional control techniques have been in-
vented for such non-deterministic systems; see, e.g.,
[Ramadge and Wonham, 1987; Overkamp, 1994; Hey-
mann and Lin, 1998] and references therein.
In many practical situations, we need to take quantum

effects into account. For non-deterministic systems,
this means that we need to consider non-deterministic
versions of quantum physics. The usual quantum
physics is deterministic, in the sense that once we know
the initial state ψ(t0), we can uniquely predict the state
ψ(t) at any future moment of time t > t0 and thus, we

can uniquely predict the probabilities of different future
measurement results. It is therefore necessary to con-
sider non-deterministic versions of quantum physics, in
which for the same initial state ψ(t0) we may have sev-
eral different possible states ψ(t) ̸= ψ′(t) at a future
moment of time t.

2 How to Describe Non-Deterministic Versions of
Quantum Physics: Superposition Principle

How can we describe non-deterministic versions of
quantum physics? It is definitely necessary to make
sure that this description satisfies fundamental princi-
ples of quantum physics. One of such fundamental
principles is the superposition principle. There are
many ways to formulate this principle. To be able to
apply it to non-deterministic situations, let us formu-
late this principle in such a way that would not depend
on the deterministic character of dynamics.
The traditional formulations of the superposition prin-

ciple use the fact that the states ψ of a quantum
system are unit vectors in a complex-valued Hilbert
space. In the non-relativistic quantum mechanics,
which studies systems with a fixed number of particles,
states are complex-valued functions ψ(x) for which∫
|ψ(x)|2 dx = 1. In relativistic quantum mechan-

ics, the basis of the corresponding Hilbert space include
states corresponding to different number of particles; in
quantum field theory, states are even more complicated
– since they describe fields. In all these cases, we have
a Hilbert space, i.e., a linear space in which addition
of elements (vectors) and multiplication of its elements
by a complex number are well defined, and there is a
(bilinear) form ⟨x, y⟩ for which:

• ⟨a · x+ a′ · x′, y⟩ = a · ⟨x, y⟩+ a′ · ⟨x′, y⟩,
• ⟨x, a · y + a′ · y′⟩ = a · ⟨x, y⟩+ a′ · ⟨x, y′⟩

(where z means complex conjugate),



38 CYBERNETICS AND PHYSICS, VOL. 2, NO. 1, 2013

• ⟨y, x⟩ = ⟨x, y⟩,
• ⟨x, x⟩ = 0, and
• ⟨x, x⟩ > 0 for x ̸= 0.

The bilinear norm defines a norm ∥x∥ def
=

√
⟨x, x⟩.

Definition 1. Let H be a Hilbert space. By a state,
we mean a unit vector in H .

In these terms, the superposition principle can be for-
mulated as follows. Let ψ(t0) and ψ′(t0) be states for
which the quantum physics predicts future states ψ(t)
and ψ′(t), and let a and a′ be complex numbers for
which

ψ′′(t0)
def
= a · ψ(t0) + a′ · ψ′(t0)

is also a state. Then, if we start with the initial state
ψ′′(t0), at the moment t > t0, we get a state

ψ′′(t) = a · ψ(t) + a′ · ψ′(t).

In physical terms, superposition principle means that
if we start with a superposition

ψ′′(t0) = a · ψ(t0) + a′ · ψ′(t0)

of the states ψ(t0) and ψ′(t0), then at every future mo-
ment of time t > t0, we still get a superposition

ψ′′(t) = a · ψ(t) + a′ · ψ′(t)

of the corresponding states ψ(t0) and ψ′(t0).
It is sufficient to restrict ourselves to the case when the

states ψ(t0) and ψ′(t0) are orthogonal to each other:
ψ(t0) ⊥ ψ′(t0), i.e., ⟨ψ(t0), ψ′(t0)⟩ = 0. In this case,
the requirement that a linear combination

a · ψ(t0) + a′ · ψ′(t0)

is also a state – i.e., that it is a unit vector – means that

|a|2 · ∥ψ(t0)∥2 + |a′|2 · ∥ψ′(t0)∥2 = |a|2 + |a′|2 = 1.

The above formulation assumes that the future state is
uniquely determined by the original state. To be able
to apply this principle to possible non-deterministic
versions of quantum physics, we need to reformulate
this principle in such a way that it does not depend on
whether the underlying theory is deterministic or not.
In a non-deterministic theory, a state ψ0 at the moment
t0 does not, in general, uniquely determine the state
ψ1 at the moment t > t0; for each ψ0, we may have
different states ψ1. A theory must then describe which
pairs (ψ0, ψ1) are possible are which are not. The only
restriction is that for each initial state ψ0, we must have
at least one possible future state ψ1. Thus, we arrive at
the following definition:

Definition 2. Let t0 < t1 be two real numbers; these
numbers will be called moments of time.

• By dynamics D(t0 → t1) corresponding to these
two moments of time, we mean a set of pairs of
states (ψ0, ψ1) such that for every state ψ0, there
is a state ψ1 for which (ψ0, ψ1) ∈ D(t0 → t1).

• When (ψ0, ψ1) ∈ D(t0 → t1), we say that it is
possible to have a state ψ0 at moment t0 and a state
ψ1 at moment t1, or, in short, that a transition from
ψ0 to ψ1 is possible. Alternatively, we will denote
the possibility of such a transition as ψ0 → ψ1.

In the traditional (deterministic) quantum physics,
where the next state ψ1 is uniquely determined by the
previous state ψ0 as ψ1 = Uψ0 for an appropriate op-
erator U , the above-defined dynamics takes the form
D(t0 → t1) = {(ψ0, Uψ0)}, i.e., it coincides with the
(graph of) the operator U .

Definition 3. We say that a dynamics D(t0 → t1) is
deterministic if for every state ψ0, there exists exactly
one state ψ1 for which a transition from ψ0 to ψ1 is
possible.

In the general (not necessarily deterministic) case,
it is natural to formulate the superposition principle as
follows:

Definition 4. We say that a dynamics D(t0 → t1)
satisfies the superposition principle if it satisfies the fol-
lowing property: for every four states ψ0 ⊥ ψ′

0, ψ1,
and ψ′

1 for which transitions from ψ0 to ψ1 and from ψ′
0

to ψ′
1 are possible, and for every two complex numbers

a and a′ for which |a|2 + |a′|2 = 1, the combination
ψ′′
1 = a · ψ1 + a′ · ψ′

1 is also a state, and a transition
from ψ′′

0 = a · ψ0 + a′ · ψ′
0 to ψ′′

1 is also possible.

Comment. For the deterministic case, this formula-
tion is equivalent to the above-presented usual formu-
lation of the superposition principle.

3 Main Result
Here is our unexpected result:

Theorem. If a dynamics D(t0 → t1) satisfies the su-
perposition principle, then it is deterministic.

Proof. Let us assume that the dynamics D(t0 → t1)
satisfies the superposition principle. We will prove that
for any state ψ0, if there is a transition from ψ0 to ψ1

and a transition from ψ0 to φ1, then ψ1 = φ1.
To prove this, let us select any unit vector orthogonal

to ψ0 and denote it by ψ′
0. By definition of the dynam-

ics, there exists at least one state for which a transition
from ψ′

0 to this state is possible; let us select one of
these states and denote it by ψ′

1.
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By superposition principle, since the vectors ψ0 and
ψ′
0 are orthogonal, and since it is possible to have tran-

sitions ψ0 → ψ1 and ψ′
0 → ψ′

1, the transition

φ+
def
=

1√
2
·ψ0+

1√
2
·ψ′

0 → 1√
2
·ψ1+

1√
2
·ψ′

1 (1)

is also possible. Similarly, since it is possible to have
transitions ψ0 → φ1 and ψ′

0 → ψ′
1, the transition

φ−
def
=

1√
2
·ψ0−

1√
2
·ψ′

0 → 1√
2
·φ1−

1√
2
·ψ′

1 (2)

is also possible.
One can easily check that the vectors

φ+ =
1√
2
·ψ0+

1√
2
·ψ′

0 and φ− =
1√
2
·ψ0−

1√
2
·ψ′

0

are orthogonal, and that

1√
2
·φ++

1√
2
·φ− =

1√
2
·
(

1√
2
· ψ0 +

1√
2
· ψ′

0

)
+

1√
2
·
(

1√
2
· ψ0 −

1√
2
· ψ′

0

)
=

(
1

2
+

1

2

)
· ψ0 +

(
1

2
− 1

2

)
· ψ′

0 = ψ0.

Thus, from the possibility of the transitions (1) and (2),
by using the superposition principle, we can conclude
that

ψ0 → 1√
2
·
(

1√
2
· ψ1 +

1√
2
· ψ′

1

)
+

1√
2
·
(

1√
2
· φ1 −

1√
2
· ψ′

1

)
=

1

2
· ψ1 +

1

2
· φ1 +

1

2
· ψ′

1 −
1

2
· ψ′

1 =
1

2
· ψ1 +

1

2
· φ1.

Thus, the combination

s
def
=

1

2
· ψ1 +

1

2
· φ1

should be a state, i.e., a unit vector in the Hilbert space.
It is known that in a Hilbert space (just like in a Eu-
clidean space), for every two vectors x and y, we have
∥x+ y∥ ≤ ∥x∥+ ∥y∥, and the only possibility to have
∥x+y∥ = ∥x∥+∥y∥ is when the vectors are collinear,

i.e., when y = λ · x for some λ > 0. For x =
1

2
· ψ1

and y =
1

2
· φ1, we have

∥x∥ =
1

2
· ∥ψ1∥ =

1

2
, ∥y∥ =

1

2
· ∥φ1∥ =

1

2
,

and thus, 1 = ∥s∥ = ∥x + y∥ = ∥x∥ + ∥y∥. So, we
conclude that y = λ ·x for some λ > 0. For the norms,

we thus have ∥y∥ = λ·∥x∥ and, since ∥x∥ = ∥y∥ =
1

2
,

we conclude that λ = 1 and y = x. From y =
1

2
·φ1 =

1

2
· ψ1 = x, we conclude that ψ1 = φ1. The statement

is proven.

4 Discussion
In the traditional (deterministic) quantum physics, all

the future states correspond to a single version of the
future. Superposition principle enables us to consider
superpositions of such states. The fact that numer-
ous experiments confirm the predictions of quantum
physics support such superpositions.
When we go from the traditional (deterministic) quan-

tum physics to a non-deterministic version, we also add
states corresponding to alternative versions of the fu-
ture. At first glance, it seems reasonable to extend the
usual superposition principle to such states, and to al-
low not only superpositions of states from the same
version of the future, but also superpositions of states
from different alternative futures. Our result shows that
such an extension is not possible: it is not possible to
consider superpositions of states corresponding to dif-
ferent alternative futures. In other words, to consider
non-deterministic version of quantum physics, we have
to impose restrictions on the superposition principle.

5 Philosophical Comment
Our motivation was based on potential control appli-

cations; however, this result may also be of founda-
tional interest, since some researchers consider non-
determinism to be a natural consequence of the intu-
itive idea of freedom of will.
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