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Abstract: Attitude estimation of an aircraft utilizing navigation satellite carrier phase 
measurements is studied. An Extended Kalman Filter (EKF) for the Euler angles is 
augmented by an artificial neural network (ANN) to improve its estimation performance. 
MLP and RBFN networks are trained for various levels of manoeuvre and measurement 
noise under complex manoeuvre scenarios. It is shown that the ANN provides significant 
improvement in the EKF performance. RBFN scores distinctly over MLP in terms of 
training time and estimation accuracy. The RBFN is optimized and the improvement 
through multipoint training is estimated. Copyright © 2007 IFAC

Keywords: Neural networks, Extended Kalman filter, Attitude algorithms, Nonlinear 
systems, Satellite applications

1. INTRODUCTION

Navigation satellite systems such as GPS and 
GLONASS emit carrier signals with extremely stable 
and accurate frequency and phase. Measurements of 
differential phase of satellite signals between two or 
more spatially separated antennas mounted on a 
platform can be used to determine the attitude of the 
platform (Cohen et al., 1992; Lu et al., 1993). 
Determination of satellite attitude in space has been 
suggested using this method. However, attitude 
determination of aircraft is more challenging because 
of their higher dynamics, i.e., higher rates of 
manoeuvre.

Instantaneous measurements of satellite signal phase, 
and hence the vehicle attitudes derived from them, 
tend to be noisy. Because of the presence of 
nonlinearities, the extended Kalman filter (EKF) is 
employed at present to obtain optimal attitude 
estimates (Gelb, 1974; Zarchan, 2000). However, the 
EKF has certain limitations in terms of stability, 
adaptability and observability. It also requires perfect 
system and measurement models, and all noise 
processes to be white, Gaussian and known. Any 
violation of these assumptions results in degradation 
of the estimation accuracy, convergence rate and
possibly failure of the filter. 

Artificial neural networks (ANN) can ‘learn’ to map 
input-output relationships in a generic way, without 
specific a priori knowledge about them. Therefore a 
properly chosen neural network is capable of aiding 
the EKF to improve the accuracy of the attitude angle 
estimates after adequate training (Guanrong, 1994; 
Vaidehi et al., 2001; Vepa, 1993). This paper focuses 

on the effectiveness of neural networks of different 
types and complexities to improve the performance 
of the EKF for aircraft attitude estimation based on 
satellite signal phase measurement.

2. ATTITUDE DETERMINATION

The principle of attitude determination using satellite 
carrier phase measurements is shown in Fig. 1 (Ellis
and Greswell, 1979). A master (M) and a slave (S) 
antenna separated by a baseline vector aB (expressed in 
wavelengths) are mounted on a vehicle. The direction of 
the satellite with respect to the vehicle is denoted by the 
unit line-of-sight (LOS) vector sR. The satellite signal 
arrives at the closer antenna slightly before reaching the 
other. The differential propagation distance r between 
the antennas is the projection of aB onto sR, which 
translates into a phase difference  at the carrier signal 
frequency. By measuring  a receiver can determine 
r. The measured phase difference m is written in 
terms of the unknown body attitude as

Fig.1 Geometry of single carrier phase difference
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Fig. 2 Antenna 
configuration

where

B
RA  is a matrix representing the attitude of the body B 

with respect to the external reference frame R,
sR  is the sightline vector in the reference frame R,
aB is the baseline vector in the body frame B,
m is the measured phase difference, 
e is the unknown measurement error, and
 is the satellite signal carrier wavelength.

The objective is to find the matrix B
RA , or its 

equivalent parameters in terms of the Euler angles or 
quaternions, from a set of phase difference 
measurements in Eq. (1).

3. FLIGHT SCENARIO AND MEASUREMENT 
SIMULATION

A case is considered in which four antennas mounted 
on an aircraft. Carrier phase measurements across 
three symmetric baselines (a1, a2, a3 in the plan view 
shown in Fig. 2) are utilized for attitude 
determination. The aircraft is simulated to ‘fly’ along 
pre-determined flight paths and its attitude is 

computed as a 
function of time. The 
expected phase 
differences of the 
carrier signal across 
the antenna baselines 
corresponding to these 
known attitude angles 
are computed with 
respect to two visible 
GPS satellites (Wu, 
1998). To this, white 
Gaussian noise of 
known variance is 
added to simulate the 
measurements. 

Using the above 
‘measurements’, an 
EKF estimation of the 
attitude is performed, 
and compared with the 
known attitude angles 
in order to obtain the 

estimation error. The EKF is then augmented with an 
artificial neural network (ANN) which is first 
subjected to supervised learning by using the 
estimation error (of the stand-alone EKF) and filter 
gain as input parameters. Following the training 
phase, the ANN-EKF combination is switched over 
to the operating or ‘test’ mode wherein the ANN 
correction output is combined with the basic EKF 
output to yield the augmented output. The 
performance of the ANN-augmented EKF is 
evaluated by comparing the augmented output with 
the known attitude parameters. 

The GPS satellite orbits and positions have been 
simulated using a software simulator. Aircraft 
simulations are based on a commercial/transport 

class, performing flight maneuvers under both 
training and test conditions. The flight paths have
been simulated under the following conditions and 
assumptions:

(i) The aircraft flies at a constant speed of 200 m/s
and a fixed altitude of 12,000 m

(ii) The flight path is achieved through roll and 
yaw maneuvers only

(iii) At constant flight speed and altitude, the pitch 
angle would remain constant; this is assumed
zero without loss of generality

The matrix dynamical equation is derived from 
linearized attitude kinematics involving the three 
Euler angles (,,):
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where P, Q and R are the angular velocities of the 
aircraft about the body axis system.

The state vector X is the attitude vector [      ]T. 
The transformation matrix is:

A=

cos cos sin sin cos
 cos sin

cos sin  cos
 sin sin

cos sin sin sin sin
+ cos cos

cos sin sin
+  sin cos

sin sin cos cos cos

4. FLIGHT PROFILES

Three flight profiles are considered in this study: (1) 
circular maneuver (Fig. 3) of varying radii, simulating 
various bank angles both clockwise and anticlockwise 
motion, (2) double-loop or ‘figure-of-eight’ path 
(Fig. 4), also called ‘roll-doublet’, and (3) laterally 
undulating path composed of semicircular segments of 
decreasing radius, i.e. increasing maneuver (Fig. 5). 

Fig. 3 Circular flight path
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Fig. 4 Double-loop (figure-of-eight) flight path

Fig. 5 Laterally undulating flight path

5. ANN AIDING OF EKF

Both Radial Basis Function (RBF) and Multilayer 
Perceptron (MLP) types of ANN with varying 
complexities (number of neurons) have been studied 
in the context of attitude determination.

5.1 MLP Network 

The MLP is a popular neural network employed for 
varied problem solving using supervised learning 
through the error back-propagation algorithm
(Haykin, 2005). The standard delta rule is used to 
update the weights of the network:
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where η is the learning coefficient; s
jiW  is the 

change of weight between the ith neuron in layer 
(s1) and the jth neuron in layer (s) at time t.  es

j is the 
error (difference between desired and actual values) 
of the jth neuron in layer (s) at time t. β is the 

momentum coefficient and 1s
iu  is the output of the 

ith neuron in the (s1)th layer at time t. The MLP 
network employed was optimized 2 hidden layers, 
each with 50 nodes.

5.2 RBF Networks 

These networks are designed as a curve fitting 
(approximation) problem [15]. It involves three 
layers, which include the input, the output, and the 

hidden layer. The hidden layer applies a nonlinear
transformation from the input space to the output 
space.  The following Green’s function has been used 
as the activation function of the hidden ith neuron:

 ( xt, ci, i)  = exp( xt  ci
2 / (2i

2  h))

where xt is the input, ci is center, I is the radius (or
width), and h is the overlap parameter. The RBF 
network (RBFN) was optimized for 200 neurons and 
an overlap parameter of 25.

5.3 Network Architecture

ANN aiding of EKF is carried out in two phases: 
training and operation (Simon, 2001; Fisher and
Rauch, 1994). The architecture for the training phase 
is shown in Fig. 6 wherein the ANN may be either an 
MLP or an RBF network. The training is carried out 
using nine input signals:

1. Three differences between the true values 
X=(t,t,t) of Euler angles and the values 
Xkp=(p,p,p) estimated by EKF 

2. Three differences between the predicted Euler angles 
Xkm=(m,m,m) and Xkp estimated by the EKF

3. Three Kalman gains (K1, K2, K3) of the respective 
Euler angles.

The true attitude angles as well as the error quantities 
used for supervised training are known during the 
simulation process.
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Fig. 6 Configuration of ANN aided EKF in the 
training mode

Fig. 7 Configuration of ANN aided EKF in the 
test/operating mode

In the operating or ‘test’ phase, the true values of the 
state vector X are not known. Hence the ANN-EKF 
utilizes only 6 inputs as shown in Fig. 7. 

6. RESULTS

Two cases were considered for the study, one 
focusing on maneuver and the other on measurement 
noise levels.
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6.1 Case I

The ANN here was trained for roll angle variations in 
a circular pattern (Fig. 3) and then the ANN-EKF 
performance was tested for the two test maneuvers 
shown in Figs. 4 and 5. The phase measurement 
noise was held constant at 4 for this study. The 
RBFN was found to train much faster (average 
23.433 s) than the MLP (53.548 s). The percentage 
reduction in estimation error due to ANN aiding of 
EKF over the stand-alone EKF is shown in Table 1
for the training phase and in Table 2 for the 
operational phase. It is evident that the RBFN offers
distinctly better estimation accuracy than the MLP. 
Therefore only figures comparing the RBFN aided 
EKF with the stand-alone EKF are presented below.

Table 1 Improvement in EKF attitude estimate with 
ANN aiding during training

Improvement with 
MLP aiding EKF

(%)

Improvement with 
RBFN aiding EKF

(%)

Roll 
angle in 
training 
(Deg)      

11.0 15.0 5.3 9.15 57.0 46.11 43.9
16.7 2.16 0.68 6.56 66.8 31.86 45.48
26.7 2.7 1.92 8.98 61.56 38.97 44.2

 30.74 0.92 4.12 0.8 62.81 41.13 46.41
38.3 1.79 0.64 0.93 66.7 47.82 54.68

-26.7 6.1 6.8 13.5 69.12 40.44 40.17
-30.74 6.3 8.64 11.7 56.89 33.07 32.71
-38.3 2.6 20.7 14.2 59.36 45.52 43.26

Table 2 Improvement in EKF attitude estimate with 
ANN aiding during operation

Improvement with 
MLP aiding EKF, %

Improvement with 
RBFN aiding EKF, %Test

Maneuver
     

Double-loop 4.06 6.87 10.7 81.05 50.56 72.31
Undulating 1.48 2.14 6.42 40.21 47.79 43.09

The double-loop maneuver of Fig. 4 involves a bank 
angle of 26.59, thereby testing the network 
capability within its training bounds (38.3). To test 
the ANN beyond the training bounds, the undulating 
flight path of Fig. 5 is used, with bank angles over 
segments varying up to 45. Table 2 shows that 
operation within the training bounds leads to better 
performance of the ANN-EKF compared to 
operation outside the bounds.

Fig. 8 shows the plots of error in attitude angles for 
the lateral undulating flight path maneuver for the 
stand-alone EKF. The RMS errors in Euler angles 
over the flight time were:  = 0.5036,  = 0.5907
and  = 0.8137. The corresponding errors for ANN-
EKF are plotted in Fig. 9, with RMS values:  = 
0.301,  = 0.292 and  =0.463.
  

6.2 Case II

Here the ANN was trained for varying levels of 
measurement noise, using a double-loop maneuver 

with bank angle of 26.59. The percentage 
reduction in estimation error due to RBFN aiding of 
EKF over the stand-alone EKF during training is 
seen from the measurement errors in Table 3.

The performance of the stand-alone EKF shows 
strong degradation with increase in measurement 
noise. During the operational phase the network was 
subjected to measurement noise of 15. The errors 
for the stand-alone EKF and the RBFN-aided EKF 
are shown in Figs. 10 and 11 respectively. The RMS 
errors for the two cases and the percentage improve-
ment achieved by RBFN aiding are listed in Table 4.

Table 4 Improvement in EKF attitude estimate with ANN 

aiding during operation with 15 phase noise 

Estimator  (Deg)  (Deg)  (Deg)
EKF alone 1.28 2.79 0.7553
RBFN-EKF 0.64 1.81 0.48
% Improvement 50.18 35.34 35.42

7. CONCLUSIONS

A comparative study has been made between a 
conventional EKF and an ANN-aided EKF in 
performing aircraft attitude estimation using differential 
measurements of the carrier phase of GPS signals. 
Optimum MLP and RBF networks have been studied 
for their ability to augment EKF for various maneuver 
and measurement noise levels.

The overall performance of the ANN aided EKF is 
markedly superior to that of the stand-alone EKF for a 
wide range of operating conditions and error inputs. 
Between the two classes of ANNs, RBFN is found to 
score over the MLP network in terms of system 
complexity, training speed and estimation accuracy. 
Once the training is imparted to the ANN, the operation 
is quite straightforward, permitting real-time 
implementation even for aerospace applications. This 
can also be used for improving the performance of 
medium- and low-accuracy GPS attitude sensing 
applications.

The ANN is able to improve the EKF performance 
by compensating for unmodeled states and biases, 
and probably benefits from the constraints imposed 
on EKF by its assumptions.

Table 3 Improvement in EKF attitude estimate 
with ANN aiding for varying noise levels during 

training

Improvement with 
RBFN aiding EKF, %

Phase 
Measurement 
Noise (Deg)   

5 78.6 39.19 65.20
10 62.68 45.42 40.79
20 48.94 39.28 38.84

 30 42.28 40.48 39.02
35 51.81 40.08 30.75
40 47.06 40.65 38.19
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