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Abstract
To our minds, the real world appears as a composi-

tion of different interacting entitites, which demonstrate
complex behavior. In the current paper, we primarly aim
to study such networked systems by developing corre-
sponding approaches to modeling them, given a class of
tasks. We derive it from the primary concept of informa-
tion and a system, with corresponding dynamics emerg-
ing from interactions between system components. As
we progress through the study, we discover three pos-
sible levels of certain synchronous pattern composition
in complex systems: microscopic (the level of elemen-
tary components), mesoscopic (the level of clusters), and
macroscopic (the level of the whole system). Above all,
we focus on the clusterization phenomenon, which al-
lows to reduce system complexity by regarding only a
small number of stable manifolds, corresponding to clus-
ter synchronization of system component states—as op-
posed to regarding the system as a whole or each elemen-
tary component separately. Eventually, we demonstrate
how an optimization problem for cluster control synthe-
sis can be formulated for a simple discrete linear system
with clusterization.

Key words
control of complex systems, multiagent technologies,

discrete systems

1 Introduction
Since the ancient times, humanity was always deeply

curious about reasons and causes of things. At the most

basic level, some objects appear to our minds as identi-
cal, while other ones can be highlighted from the rest by
some distinctive features. In fact, this ability to gener-
alize the perceived environment—but not in all its mani-
festations, just in certain patterns—originates mathemat-
ics and cybernetics. These two areas of knowledge can
in fact represent two interconnected ways of understand-
ing information and (complex) systems.

Mathematics plays the key role in the objectives, where
a human needs to replicate his ideas in an accessible (for
the others) and compact form, and, moreover, reproduce
these ideas exactly the same as they appear to the per-
son they originate from. For example, ancient Babylo-
nian mathematics was exploited in engineering and ar-
chitectural tasks, where a resulting product should have
been precisely geometrically implemented from human
mind. In this time period, geometry and arithmetic were
proposed to help generalize and manipulate mental rep-
resentations of real objects, for the previously unknown
ones to be created. Indeed, instead of trying to enumer-
ate the continuum of internal and boundary points of a
triangle, it is sufficient to specify the locations of the
three vertices and grasp the concept of a straight line seg-
ment between two points. In other words, mathematics
practically allows to compress signals and data:

1. Signals, perceived from the environment (by finding
common patterns in nature).

2. Data, produced in a mind by combining abstract
generalized concepts (e.g. number, figure) accord-
ing to some meaningful rules (for example, arith-
metic).
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This peculiarity of the mathematical approach brings us
to the first way of understanding information—it is mat-
ter, which appears to our minds identical on local level
(in a certain sense of locality, probably in some trans-
formed perception standard, where we agree to consider
certain things identical), and which looks distinct on the
corresponding global level (according to the same sense
of locality). As an example, consider a table, which we
highlight from other objects in a room. On its local level
(in the volume of space this table occupy), it is com-
posed of roughly the same molecules, so that our mind
notices this property and generalizes the whole bunch of
molecules into a single object, aiming to avoid storing
more than enough to sufficiently describe the table. At
the same time, on the global level of the whole room,
a table can be clearly distinguished from other room
furniture—other systems.

Cybernetics is a much younger study than mathemat-
ics, which not only pursues the goal to develop theo-
retical tools for efficient organization of telecommunica-
tions and control of systems, but also aims to further pro-
vide deeper insight into information and complex sys-
tems as independent entities. Indeed, signal compres-
sion based on digital or analog encoding allows to extract
meaningful components from the whole, so that the load
on a corresponding telecommunication channel for data
transfer would be minimal, and thus more data can be
passed through the channel. At the same time, humans
tend to compress data from perceived signals in the ev-
eryday life by their nature, so that more knowledge can
be obtained and stored. Despite cybernetics and mathe-
matics may seem very similar according to the example
provided above, the main distinction between the stud-
ies is the presence and significance of time in the sig-
nals and systems. Here time arises from our ability to
memorize things and thus distinguish the past from the
present and future; for us, the world is subject to dynam-
ics, to changes and transformations, which we reflect in
our cybernetical models of complex systems. Moreover,
any static mathematical example of finding common pat-
terns can be regarded as a dynamic process, if we al-
ways take into account the human limitation of being
able to be focused on only a few things at a time: we
never gather data instantaneously, observation is always
a time consuming process (i.e. it occurs always during
some non-zero time). For example, comparison of differ-
ent parts of environment while observing the table in the
room consumes time to change our attention and gather
enough data for the final concept of the table to emerge
and become clear. To further motivate the need to high-
light time and dynamical nature of things, consider ir-
reversible chaotic systems, behavior of which is notably
hard to predict in the future, if their initial state is pro-
vided inaccurately in the past or in the present. Such
inaccuracy may arise in presence of unknown (stochas-
tic) disturbances or noise, which we are unable to pre-
dict due to bio- or technological limitations. Thus, in the
world of dynamic processes, information can be thought

of as any awareness by the subject that something has
changed, accompanied by awareness that the rest of the
things stay unchanged. This definition is very similar to
the static one, except now locality can also be regarded
in space and time separately, which may become conve-
nient in control of systems with complex unpredictable
dynamics.

2 Clusterization in Complex Systems
First, we need to provide a definition of a complex sys-

tem, for further motivation of complex systems study
to become clear. Next, two ways of system modeling
are described, with corresponding pros and cons of both
mentioned. Finally, we discuss the possible peculiari-
ties of complex systems dynamics (stability and cluster-
ization), which emerge due to internal and external pro-
cesses, relatively to the system.

2.1 Understanding of Complex Systems
As we study patterns and their evolution in time, we

may find that some generalization and corresponding dy-
namic analysis problems may appear exceptionally chal-
lenging. For example, consider the task of forecasting,
which requires us to predict the weather in future. As
we dive into this problem, we may find that near future
weather W 1

F (about a few hours) is quite similar to the
present one WPR, so that future can be thought as of
slightly transformed present:

W 1
F = T (WPR) ≈WPR,

where T is the corresponding transformation. However,
as we progress through time by stacking these trans-
formations (Tn(WPR), where T repeatedly applied to
WPR n times, corresponding to a forecast for multiple
weeks ahead), future

Wn
F = Tn(WPR)

becomes less and less similar to present; moreover, in
case present weather would be slightly different W̃PR

comparing to WPR (i.e. W̃PR ≈ WPR), then stacking
the same transformations for W̃PR would result in some
future weather

W̃n
F = Tn(W̃PR),

which may differ significantly fromWn
F . In other words,

W̃PR ≈ WPR does not necessarily lead to W̃n
F ≈ Wn

F .
This is due to the nature of T , which is governed by
the way various internal components and external distur-
bances (e.g. air molecules, the Sun) of the climate sys-
tem interact between each other, forming a networked
system. The amount of the components and intercon-
nections between them leads to inability of deriving and
computing precise model of T using limited resources
and obvious reasoning. Given the example above, we
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can now define a complex system as a composition of a
large number of simple interacting elements, placed in
some environment, with which they also perpetually in-
teract. This leads to the resulting overall system behavior
to be unpredictable (by classical approaches) on distant
time horizon, given simple behavior of its components—
a special property, which we call emergence.

With the above being said, we can outline two main
branches to dealing with complexity:

1. Quantitative complexity reduction: apply unjusti-
fied amount of resources.

2. Qualitative complexity reduction: apply unconven-
tional study approaches.

Nowadays, quantitative approaches tend to become in-
feasible, due to the resource limitations mentioned
above. Thus, we aim to develop advanced mathemati-
cal approaches to complex system modeling.

2.2 Complex Systems Modeling
As it was noted in Introduction, dynamic way of mod-

eling allows for intuitively clear representation of sys-
tems, that evolve in time. Three approaches, which we
will discuss further, are of the highest interest:

1. Discrete (automata) modeling [Ravazzi et al., 2021;
Li et al., 2020; Silva, 2014].

2. Continuous dynamical systems modeling [Strogatz,
2000; Arnold and Silverman, 1987; Gazi and Fidan,
2007; Proskurnikov and Granichin, 2018; Granichin
and Uzhva, 2020; Granichin et al., 2020; Fradkov,
2007].

3. Field theory modeling [Hu et al., 2019; Luo et al.,
2021].

According to the first method, a complex system is
composed of finite number of elementary autonomous
units (further called agents), each of them having their
individual state, which changes iteratively in time. A
corresponding system model can be expressed in a dif-
ference equation; as an example, consider an autoregres-
sive model:

xi[t] = c+

K∑
k=1

θkxi[t− k] + wi[t], (1)

where xi[t] is the state of an agent i at time t, c is a con-
stant, θ1, . . . , θp are parameters, and wi[t] is a stochastic
disturbance. At p = 1, we obtain a so-called Markov
process, which in fact is subject to lack of memory due
to xi[t] being dependent only on its previous iteration
xi[t − 1]. Model (1) can be augmented by adding non-
linearity and inter-connections between multiple neigh-
bor agents. Moreover, probabilistic variations of the au-
tomata models based on the Markov chain formalism
can be considered [Li et al., 2020]. We also include
Poincaré and Lorenz maps [Strogatz, 2000], notwith-
standing such models are conventionally associated with
dynamical systems. Summing up, automata approach is

convenient for describing stochastic discrete processes
(therefore any discrete dynamical system can be viewed
as an automata system), which is relevant in the context
of large-scale systems with a numerous number of digi-
tal agents.

Despite the automata modeling utilizes iterative ap-
proach to describe system evolution and, accordingly,
such models may have straightforward implementation,
cyber-physical systems may often countinuously depend
on time. A corresponding dynamical systems approach
is thus favorable, as it allows to express a complex sys-
tem (composed of N agents) dynamics using ordinary
differential equations:

ẋi(t) = fi(xi(t), ui(t), wi(t)), (2)

where xi(t) ∈ Rni is a so-called state vector of an agent
i ∈ N = {1, . . . , N} (ni is the number of variables
required to describe the agent state), ui(t) is a local con-
trol action, and wi(t) ∈ Rmi is a stochastic disturbance.
Moreover, this method of systems modeling is not prone
to lack of memory phenomenon mentioned above, due to
more freedom available over chosing time intervals xi(t)
defined on. Continuous dynamical systems are also easy
for precise analytical analysis,

Finally, field theory approach may be regarded as the
most generalized one (perhaps derived from Equation (2)
in the limit N → ∞), since it is able to model a contin-
uum of agents:

ẋ(λ, t) = f(λ, x(λ, t), u(λ, t), w(λ, t)), (3)

where agents are now “enumerated” (or rather localized)
by a point λ in R or its equinumerous subset (i.e. also
with the cardinality of the continuum).

Modern cybernetics is mainly focused on discrete and
continuous dynamical system modeling, while field the-
ory modeling appears too early to discuss about. Con-
sequently, we further focus on dynamical systems with
finite number agents, without losing a hope that the de-
veloped theory can be generalized into model (3).

2.3 Clusterization
In Equation (2), control input u regulates the behav-

ior of the system by setting the rules of the agent state
change, depending on the states of neighbor agents and
other environmental factors. Artificial complex systems
are often required to change its global state in a con-
trollable manner, so that the rules u should lead to the
specified global goal. Aiming to study control inputs u,
we first should provide a clear description of possible
goals, with corresponding models describing such goals
rigorously. In [Fradkov, 2007], five types of goals are
defined:

1. Stabilization (bringing the all agent states x to their
corresponding constant state vectors x∗):

lim
x→+∞

x(t) = x∗.
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2. Tracking (bringing agent states to some function
x∗(t), perhaps different for each agent):

lim
x→+∞

|x(t)− x∗(t)| = 0.

3. Excitation of oscillations:

lim
x→+∞

G(x(t)) = G∗

for some scalar function G(x).
4. Synchronization (matching all agent states):

lim
x→+∞

|xi(t)− xj(t)| = 0.

5. Limit set modifications (qualitative changes to the
system, e.g. modifications of bifurcation types).

However, this classification is primarily applicable to
quite simple systems, primarily single-element ones. As
for the multiagent systems, synchronization-type goals
are usually of the most interest, since they relate to pat-
tern emergence and complexity reduction possibilities.
Indeed, in case all agent states converge to a single syn-
chronous stable manifold, the whole system can then
be controlled as one bunch of equally behaving compo-
nents, thus requiring a single control input.

Recently, in the related works [Proskurnikov and
Granichin, 2018; Granichin and Uzhva, 2020; Granichin
et al., 2020] it was noticed that many artificial (and nat-
ural) complex systems exhibit so-called cluster synchro-
nization (also refered to as clusterization), according to
which agents synchronize in groups: system components
from one group synchronize, while the ones belonging
to different groups do not. For example, cluster synchro-
nization occurs in human brain activity, assuming a brain
can be accurately represented by a non-linear coupled
oscillators model [Sadilek and Thurner, 2014]. Accord-
ing to the research provided in these articles, cluster syn-
chronization mainly emerges in systems with incomplete
connectivity between agents and due to external distur-
bances, which may affect connectivity and agent states.

In the phenomenon of clusterization, multiple syn-
chronous stable manifolds form (or exist in our models),
corresponding to separate clusters. We denote the num-
ber of such cluster manifolds m, and the following re-
lation between the number of agents N and number of
clusters m is often true:

N � m� 1. (4)

Equation (4) motivates the need to study clusterization
phenomenon in complex systems for simple cluster con-
trol strategies development. In the current paper, we
study the ways of cluster synchronization application to
efficient system control strategy synthesis.

3 Classification of Control Strategies
In the previous Section, different types of goals for ar-

tificial complex system control were described. It was

stated that both the specific type of a goal and the desired
terminal system state values are regulated by the nature
of the control input u. Current Section reveals possible
approaches to the control input synthesis, regardless of
the goal.

3.1 Open-loop vs Feedback Control
Amid the most simple yet straightforward ways to

model and implement control action u would be to con-
struct a corresponding funcion ui(t) for each agent i,
which only depends on time. For example, consider an
ordinary linear system [Kalman, 1960]

ẋi(t) = Aixi(t) +Biui(t), (5)

where Ai and Bi are some matrices of an appropriate
dimensionality, and ui 6≡ 0. By introducing such con-
trol function u, we obtain a nonhomogeneous system,
the state xi of which changes independently on any func-
tions of its current state, except the linear one. We further
call such control approach a program control or open-
loop strategy, to emphasize its independence on the sys-
tem state.

Frequently, in synchronization-type goals it is not
enough for the control input u to only depend on
time, like in Equation (5). As an example, local vot-
ing [Amelina, 2013] and Kuramoto oscillator mod-
els [Acebron et al., 2005; Sadilek and Thurner, 2014;
Benedetto et al., 2014; Chopra and Spong, 2006; Jad-
babaie et al., 2005] demonstrate interesting complex be-
havior, provided corresponding control actions appear in
relatively simple form due to the permission to use sys-
tem state for control synthesis. Therefore, in contrast
to the class of control inputs described above, we define
a feedback (thus emphasizing its dependence on state)
control strategy as a class of control functions ui(x, t),
which now also depend on a set of agent states x. This
set may contain the state vector xi and, for instance, state
vectors of its neighbors (agents, which affect the agent i).

Real world systems are often subject to various distur-
bances, which may render agent states inaccurate for fur-
ther feedback control. In [Proskurnikov and Granichin,
2018; Granichin and Uzhva, 2020], a concept of an ob-
servation was thoroughly discussed: basically, we as-
sume that the precise agent state values may be unavail-
able, while we can only rely on a measurement proce-
dure

yj(x(t), vi(t)), (6)

called an observation, with x(t) being a set of agent
states (over which the observation is performed), and vi
being the measurement error due to noise. Using this
procedure, one can synthesize a control input ui(y, t),
where y is a set of all necessary observations of the cor-
responding agents.

Accordingly, we distinguish three classes of control
strategies:
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1. Open-loop control.
2. State feedback control.
3. Observation feedback control.

3.2 Optimal Control
Another classification scheme of control strategies can

be described in terms of the control action feasibil-
ity. Indeed, one is unable to apply infinite force to
instantly achieve the desired system state; such force
would always be limited by the abilities of the force
actor: |u(x, t)| < ∞. The same reasoning is true
for the system states |x(t)| < ∞ and observed out-
puts |y(x, t)| < ∞. Often, even stronger conditions on
such functions may be regarded: for example, in [Gal-
braith and Vinter, 2003; Hernandez and Garcia, 2014]
Lipschitz continuous control inputs are studied, where a
function x(t) is called Lipschitz continuous in case there
exists a constant K > 0 (so-called Lipschitz constant)
such that

|x(t1)− x(t2)| ≤ K|t1 − t2|

is true for all real t1 and t2 (or for all t1 and t2 on the
time interval under consideration). In other cases (e.g.
in optimal control as optimization in Hilbert space), it
might be required that x, y or u are bounded in Lp(0, T )
sense: ∫ T

0

|u(t)|pdt <∞

for u(t) as an example, where T > 0 is terminal time
(finite or infinite), up to which the system operates.

Recently, stability analysis and optimization tech-
niques for control synthesis are of the most interest.
The former seeks for such classes of control u, which
lead to stable system states (or for ways to check if a
given input u leads to stable system states) [Lyapunov,
1892; Jadbabaie et al., 2005]. At the same time, the
objective of the latter study is to find such u, which
would lead the system to a stable manifold at the fastest
rate [Kalman, 1960; Doyle, 1996; Le and Mendes,
2008]. Despite these two branches of complex system
control study were initially clearly separated, nowadays
they are closely related to each other. More than that,
they became significantly more popular recently due to
enough computational power available for numerical op-
timization methods, which are the only feasible solution
to optimization for systems of significant complexity, in-
tractable by analytical approaches.

In the situation of limited resourses, we can generally
minimize one of the following values J(u) for optimal
control strategy synthesis.

1. Time consumption for convergence to the stable
manifold, provided the control input is bounded:

J1(u) = arg min
u

T (x, u), (7)

where T is total time consumption as a fution of sys-
tems state x and bounded control input u.

2. Conversely, control input, expressing “expended ef-
forts”, given the time is fixed and limited:

J2(u) = arg min
u

∫ T

0

φ(x(t), u(x, t), t)dt, (8)

where φ is some function of systems state x, control
input u and time t.

We thus obtain two classes of control strategies, clas-
sified by optimality, further refered to as Equations (7)
and (8). As an example, recall the system (5).
In [Kalman, 1960] (for the number of agents N = 1),
control action u(x, t) = −Kx(t) called static-state feed-
back was shown to be optimal according to Equation (8).

In presence of noise, modifications to the optimization
functionals become needed. In [Granichin and Fomin,
1986; Jerray et al., 2021], “minimax” control strategies
are discussed, which first maximize the functional value
with respect to the unknown or noise parameters, prior
to minimization over the control inputs. In other words,
only worst-case scenarios are considered.

It is worth noting that in many complex system control
problems it is not possible to obtain an optimal control
strategy analytically. In these cases, iterative gradient
methods [Kelley, 1960; Polyak, 1964; Liang et al., 2020]
allow to find an optimal solution in the following form:

uk+1 = uk − γk∇kJ(uk),

where γk regulates the gradient descent speed.

3.3 Control on Different Scales
We further consider only synchronization-inducing

and tracking control actions, as we deal with large-
scale multiagent complex systems. Due to the numerous
amount of possible computation steps required to syn-
thesize the desired optimal control strategies, we again
return to the basic concept of information and signal
compression. In [Proskurnikov and Granichin, 2018;
Granichin and Uzhva, 2020; Granichin et al., 2020], first
attempts to generalize the theory of complex multiagent
system control, which utilizes clusterization, were pro-
posed. It was shown how clusterization could reduce
the number of required control inputs by the relation be-
tween the number of agents N and clusters m � N .
According to the results proposed in these papers, we
distinguish three scale classes:

1. Local (microscopic) control, different for each
agent.

2. Cluster (mesoscopic) control, different for all sepa-
rate clusters.

3. Global (macroscopic) control, equal for all agents.
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macro

meso

micro

Feedback control

Observations

Figure 1. Observation feedback control for a multiagent complex
system with clusterization. A system is represented as a composi-
tion of interacting agents, defined by their states xi and connected
according to an adjacency matrix A with elements ai,j equal to 1 in
case a connection between agents i and j exists, otherwise equal to 0.
The system is affected by external disturbancesW , which may change
connectivity or agent states directly. Observations are exposed to noise
V and are divided into three levels: micro- (individual agents), macro-
(clusters) and mesoscopic (whole system). Provided the observations,
control is separated into three types of inputs: ui ls local control input
of an agent i, uα is a cluster control of a cluster α, and U is global
control action equal for all agents.

We summarize possible scale classes by a scheme of the
corresponding observation feedback control model with
agent clusterization, see Figure 1.

Cluster control is possible for some integral (aggre-
gated) cluster characteristics as separate cluster states,
where clusters are assumed as separate subsystems.
These characteristics can be obtained using, for exam-
ple,

1. Local voting [Amelina, 2013].
2. “External” (i.e. non-multiagent) cluster identifica-

tion methods, such as hierarchical clustering [Gior-
dani et al., 2020; Karna and Gibert, 2021] or
centroid-based clustering [Mughnyanti et al., 2020;
Singh, 2021].

3. Data compression techniques, e.g. compressed
sensing [Candès et al., 2006; Granichin et al., 2020].

4 Optimal Cluster Control
Consider a system of N particles in an K-dimensional

space, each of them having state xi[t], which is a vector
in RK . Let the interactions between them led to clus-
terization M by the time t = 0: for example, due to
the local voting. As it often happens in the real sys-
tems, the process of cluster formation is significantly
faster than the cluster control processes. In other words,
while the former usually occurs on a micro-level of fast
simple inter-agent interactions, the latter requires cer-
tain substantial time for the observations of clusters to
form and the corresponding control actions to be pre-
pared. Thus, we further propose a discrete dynamical

system model, which adequately resembles a computa-
tional control process with discrete time steps between
the “observation” and “control” stages:

xi[t] = xi[t− 1] + ci[t− 1] +
1

µ
fi[t− 1], (9)

where ci is the vector of “speed”; fi is the vector of
“force” and µ is the “particle mass”, equal for all par-
ticles.

Given the initial conditions for (9) are such that
|xi[0]| > 0 and |ci[0]| > 0 (further in this Section, | · |
norm is an arbitrary one, e.g. `1 or `2), our task is to
bring all particles to a single point (let it be 0, up to a
change of variables) in one step, i.e. to minimize the
following quality functional:

J(f1, . . . , fN ) =

N∑
i=1

|xi[1]|, (10)

with as little effort as possible. Below, we propose two
control strategies: based on global- and cluster-state ob-
servations, then compare them. We define clusteriza-
tion as in [Proskurnikov and Granichin, 2018; Granichin
et al., 2020], for some ε ≥ |zi − zj | distance be-
tween agent cluster-observations in one cluster, and for
δ ≤ |zi−zj | distance between agent cluster-observations
in different clusters. Further, we assume zi = xi + ci.

4.1 Global Control Strategy
In global control, a common force is applied: fi =

F ∀i. This force is applied to all particles, so that it
effectively acts on the center of mass

X[t] =
1

N

N∑
i=1

xi[t]. (11)

Accordingly, we define average particle speed as

C[t] =
1

N

N∑
i=1

ci[t]. (12)

Thus Z[t] = X[t] + C[t] plays the role of the observed
global state and is used in deriving the optimal control
strategy.

We denote U := F/µ a two-component control input
with the control value Ur = |U | and the direction of
control matching the direction of the force. After substi-
tuting (9) into (10) with the global controlling force, the
quality functional

Jglob(U) =

N∑
i=1

|xi[0] + ci[0] + U [0]| =

=

N∑
i=1

|zi[0] + U [0]|

(13)
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can be obtained. According to [Granichin and Fomin,
1986], an optimal solution to (13) is

Uopt[0] = −Z[0] = −(X[0] + C[0]),

thus the minimum of (13) is

min Jglob(U) =

N∑
i=1

|zi[0]− Z[0]| (14)

4.2 Cluster Control Strategy
Now, a common (for one cluster) force is applied to

each agent: fi = fα i ∈ Mα, where Mα is the col-
lection of agent indices in cluster α. In this case, such
force acts on centers of mass of each cluster and average
cluster particle speed correspondingly:

xα[t] =
1

Mα

∑
i∈Mα

xi[t], cα[t] =
1

Mα

∑
i∈Mα

ci[t],

whereMα = |Mα|. Thus zα[t] = xα[t]+cα[t] plays the
role of the observed cluster state and is used in deriving
the optimal cluster control strategy.

We denote uα := fα/µ a two-component control input
with the control value uα.r = |uα| and the direction of
control matching the direction of the force for the cluster.
The same reasoning as in the previous Subsection allows
to obtain an optimal cluster control strategy

min Jclust(u1, . . . , um) =

=

m∑
α=1

∑
i∈Mα

|zi[0]− zα[0]|, (15)

where m is the number of clusters and

uα.opt[0] = −zα[0].

4.3 Comparison of Cluster and Global Strategies
Finally, we compare the two strategies in terms of their

corresponding quality functionals (14) and (15) at opti-
mal sets of parameters. It may be obvious that that the
cluster control strategy is specifically “tuned” to change
states of separated agent groups, while the global strat-
egy roughly adjusts to the global state, which may vary
significantly in different parts of the system—thus the
latter is unable to reach that level of precision, achiev-
able by the former. In fact, Equations (14) and (15) dif-
fer only in their corresponding control functions: −Z[0]
can be considered as a perturbed variant of−zα[0]. Such
perturbation takes the cluster control functional (15) out
of its optimal value.

Summarizing the above, we propose a theorem, which
anchors the mentioned conditions for the dynamical sys-
tem (9) and the difference between the quality function-
als (14) and (15).

Theorem 1. Consider the model (9) with N agents,
xi[0] > 0 and ci[0] > 0 for all i. Let the clusteriza-
tion emerge by the time t = 0, the number of clusters
be equal to m and each cluster have Mα agents, so that∑m
α=1Mα = N . Provided the optimized quality func-

tionals (14) and (15) at their corresponding minima, it
is true that if∣∣∣∣∣

m∑
α=1

Mα(zα[0]− Z[0])

∣∣∣∣∣ > 0, (16)

then

min Jclust < min Jglob. (17)

Proof. Theorem states that

m∑
α=1

∑
i∈Mα

|zi[0]− zα[0]| <
N∑
i=1

|zi[0]− Z[0]| (18)

under the condition (16). Consider a perturbed version
of (15) with a non-zero perturbation γα:

m∑
α=1

∑
i∈Mα

|zi[0]− zα[0] + γα|,

and let γα = zα[0]− Z[0]. It follows that

m∑
α=1

∑
i∈Mα

|zi[0]− zα[0] + γα|−

−
m∑
α=1

∑
i∈Mα

|zi[0]− zα[0]| ≥

≥

∣∣∣∣∣NZ[0]−
m∑
α=1

Mαzα[0] +

m∑
α=1

Mαγα−

−NZ[0] +

m∑
α=1

Mαzα[0]

∣∣∣∣∣ =

∣∣∣∣∣
m∑
α=1

Mαγα

∣∣∣∣∣ > 0

Therefore

m∑
α=1

∑
i∈Mα

(
|zi[0]− zα[0] + γα| − |zi[0]− zα[0]|

)
> 0,

and thus (18) is true for the chosen perturbation, which
concludes the proof.

4.4 Local Control Problem
It was shown that the cluster control strategy allows

for more precise agent state adjustment, than the global
one. However, the most precise method is the local con-
trol, which targets each agent separately. If we consider
the system (9), for which an optimal local control strat-
egy ui.opt[0] = −zi[0] is applied, then the quality func-
tional (10) (which we denote min Jloc(u1, . . . , uN ) for
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the chosen set of control inputs) becomes equal to 0,
which is the best possible solution.

Despite the local control strategy provides the most
optimal set of control inputs, it is not feasible in many
applications to complex systems with large number of
elementary units. Indeed, finding ui.opt[0] requires mea-
suring all the micro-states xi[0] and ci[0], which is of-
ten impossible. For example, when measuring neural
oscillations of a brain, aggregated oscillatory states are
usually observed in different brain areas on the meso-
scale—in other words, on the level of multiple synchro-
nized neurons. At the same time, it is significantly harder
to measure activity of a single neuron due to both sophis-
ticated measurement equipment and the big data arising
in the necessity to record and process each separate neu-
ron among multiple billions.

5 Simultaneous Robust Local and Cluster Control
Aiming to further develop the cluster control theory,

we attempt to propose an approach to optimal local (mi-
croscopic) control synthesis in the presence of unknown
but bounded disturbances and the model parameters,
which allows to form clusters in a linear discrete multia-
gent system. We also introduce an approach to add clus-
ter (mesoscopic) control to such model, which is based
on the aggregated cluster characteristics. In our example
case, these characteristics are obtained (by one of the ap-
proaches described in Section 3) as average agent state
values in a specified cluster, assuming we know which
agent belongs to which cluster in advance.

The linear model is as follows, assuming we use state
feedback control (i.e. observation yi ≡ xi), and i ∈
{1, . . . , N} = N , where N is the number of agents:

xi[t] = θxi[t− 1] +ui[t− 1] +uα[t− 1] +wi[t], (19)

where xi[t] is the agent i state at time t ∈ {1, . . . , T}; θ
is the model parameter (which defines agent inertia rel-
atively to the control actions), the values of which are
unknown, but belong to a bounded interval Θ; ui is the
local control from a bounded interval Bu; uα is the clus-
ter control of the cluster α from a bounded interval Bu;
and wi is the disturbance, the values of which are un-
known, but belong to a bounded interval Bw.

We further describe two most possible control strate-
gies, based on corresponding cost functions:

1. Local synchronization—local control action, which
lead each agent in a cluster toward each other.

2. Local tracking—local control, which aims to adjust
agent state toward an aggregated state as a leading
function.

In both cases, aggregated cluster states are calculated as

xα[t] =
1

Mα

∑
j∈Mα

xj [t], (20)

where Mα is the set of agent indices in the cluster α;
and Mα = |Mα| is the number of agents in this cluster.

These states are adjusted by the mentioned additional set
of cluster control inputs. We consider the tracking clus-
ter control strategy, for some leading function pα[t].

5.1 Local Synchronization and Cluster Tracking
In this case, we aim to minimize the distances be-

tween agent states in one cluster (local synchronization),
as well as distances between an aggregated cluster state
and its corresponding leading function—for each cluster
(cluster tracking). We can formulate the local synchro-
nization distance as follows:

Di.S[t] =

m∑
α=1

χi∈Mα

∑
j∈Mα

|xi[t]− xj [t]|, (21)

wherem is the number of clusters; χi∈Mα is an indicator
function, which is equal to 1 in case agent i belongs to
the cluster α, and is 0 otherwise.

At the same time, cluster tracking distance is

Dα[t] = |xα[t]− pα[t]|, (22)

where xα is as in Equation (20); and pα is the leading
function.

Thus, we propose a corresponding minimax quality
functional for the system (19), local synchronization (see
Equation (21)) and cluster tracking (see Equation (22))
distances, minimization of which allows to find optimal
control inputs on each time step:

JST(U,U) =

= sup
θ∈Θ

sup
wj∈B,j∈N

T∑
t=1

[
N∑
i=1

Di.S[t] +

m∑
α=1

Dα[t]

]
,

(23)

where

U = {u[1], . . . ,u[T ]},
U = {u[1], . . . ,u[T ]},

u[t] = {u1[t], . . . , uN [t]},
u[t] = {u1[t], . . . , um[t]}.

Minimization of (23) with respect to the local and cluster
control inputs allows to find optimal values of U:

{U,U}opt.ST = arg min
U∈Bu,U∈Bu

JST(U).

5.2 Local and Cluster Tracking
Now we propose an alternative approach, where the

distances between agent states and the corresponding ag-
gregated state in one cluster (local tracking) are mini-
mized. Local tracking distance is thus as follows:

Di.T[t] =

m∑
α=1

χi∈Mα
|xi[t]− xα[t]|. (24)



CYBERNETICS AND PHYSICS, VOL. 10, NO. 3, 2021 199

A corresponding minimax quality functional for the sys-
tem (19), local tracking (see Equation (24)) and cluster
tracking (see Equation (22)) distances, minimization of
which allows to find optimal control inputs on each time
step:

JTT(U,U) =

= sup
θ∈Θ

sup
wj∈B,j∈N

T∑
t=1

[
N∑
i=1

Di.T[t] +

m∑
α=1

Dα[t]

]
.

(25)
Accordingly, optimal values of U can be found by mini-
mizing (25)

{U,U}opt.TT = arg min
U∈Bu,U∈Bu

JTT(U).

6 Conclusion
We proposed an approach to optimal cluster control

synthesis for complex systems. First, we defined such
systems as multiagent ones, through the definition of in-
formation and a system in general. Then, we described
the ways to model them as dynamical systems, which
support cluster control strategies. As for the cluster con-
trol, we further discussed how and why clusterization
emerges in complex systems: the two main reasons are
agent connectivity and external disturbances, as they pre-
vent agents from communication and thus state synchro-
nization or tracking. Next, we classified different control
strategies: open-loop ones were compared with feedback
control actions; various conditions for optimal control
synthesis were discussed, as well as control on differ-
ent scales (local, cluster and global). Aiming to demon-
strate how cluster control outperforms global one, a sim-
ple linear noiseless model (9) was proposed, for which
optimal control strategies minimizing quality function-
als (14) and (15) were derived and compared: it was
shown that the cluster strategy provides lower value of
the functional in comaprison to the global approach. Fi-
nally, optimization problems for simultaneous robust lo-
cal and cluster control synthesis were formulated for a
linear multiagent model (19) by two approaches (syn-
chronization and tracking) to treat local control: qual-
ity functionals (23) and (25) were derived. Furthermore,
we plan to analyze the obtained functionals for possible
solutions to the corresponding optimization problems.
Moreover, we aim to consider possible modifications to
the models (9) and (19), e.g. study noisy observations
and time delays.
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