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Abstract
In this paper we research a three-component math-

ematical model of population number dynamics. It
considers sex and age structure dynamics and density-
dependent effects impact on survival rates of a younger
age class. We investigate some scenarios of the stabi-
lized number transition to nonlinear modes of dynam-
ics dependent on system parameters values and the type
of the survival function. The results of numerical sim-
ulations are discussed.
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1 Introduction
In this paper we consider the nonlinear three-

componential model showing age groups number dy-
namics in a limited population.
By the beginning of a regular reproduction season the

model population is represented by two age classes: the
first one including immature individuals, and the sec-
ond one- mature female and male animals participating
in reproduction.
The population number variation is determined by a

younger class increase in number dependent on the fe-
male and male animals ratio in a population; transition
of a younger class to a mature one; death rate in elder
groups.
Increase in the population number is regulated by

density-dependent limitation of a younger class sur-
vival.

2 Mathematical model
In our mathematical model,n - number of a reproduc-

tion season;z - the number of individuals in a younger
age class;x andy - the number of female and male

animals participating in reproduction;c - immature fe-
males quantity. Birth-rater depends on the ratio be-
tween females and males in a population. According
to the Bazikin model [Bazikin,1985] it is described by
hyperbolic functional dependence

r =
a · y

ρ · x + y
(1)

wherea - produce of the at most possible number of
embryos per one impregnated female and the quantity
of pregnant females of all impregnated ones;ρ - fe-
males and males ratio in the population, when half of
females are impregnated.
It is assumed that both immature females -w and

males -v are most sensitive to population density pa-
rameters, their survival dependent on this factor.
A decrease of the survival rate is also caused by com-

petition within a younger age class, as well as with in-
dividuals of elder age classes.
The considered model, then, can be represented as a

system of three recurrent equations:

zn+1 = a · xn
yn

ρ·xn+yn

xn+1 = c · w(zn, xn, yn) · zn + s · xn

yn+1 = (1 − c) · v(zn, xn, yn) · zn + p · yn







(2)

The younger age class dynamics is governed by the
first equation. Other equations describe dynamics of
elder age classes.
Because of the fact that density-dependent factors re-

strict population development, all functions of the sur-
vival rate monotonously decrease and tend to zero with
infinite increase of the argument.



Figure 1. The phase portrait with the parametersa = 3, 6,

c = 0, 6, p = 0, 7, s = 0, 75, α = 1, ρ = 0, 05

3 The model research
Analytical research of the system has shown that a loss

of stability occurs in two ways.
In the first way the loss of stability occurs at the

moment of the pair of complex- conjugate roots of
the linearized system characteristic equation 2 passing
through the unit circle (|λ| = 1).
As a result there appears a quasi-periodic motion ac-

quiring a chaotic character under the variation of sys-
tem parameters.
In the second way the loss of stability occurs when

the root of the linearized system characteristic equation
passesλ through -1 (λ = −1). Transition to chaos
occurs through the cascade doubling of the period.
It is shown, that different types of density regulation in

the population number increase correspond with com-
pletely different limited structures.
We have made some numerical simulations at the al-

lowable (biologically substantial) parameter values of
the system 2.
We have considered special cases of the basic model 2

under the survival function type provided that the sur-
vival rate of immature females is equal to the survival
rate of immature males.
1. In the first case the survival rate of immature

females and males depend on their own number in-
crease. The survival rate function looks as follows
w = v = 1 − α · z.
Instability of the system stationary point occurs when
|λ| = 1.
Dynamics of the system becomes chaotic at that.

There appears a limited invariant curve, which destroys
creating a strange attractor under a further change of
parameters in the system phase space (Figure 1).
Increase in birth rate (a) leads to the system‘s station-

ary solution instability and to oscillations emergence.
At the same time stabilization of the system behavior
takes place at increase theρ parameter characterizing
the gender ratio in a population.
Figures 2 and 3 illustrate bifurcation diagrams of the

dynamic variablex (behavior of the dynamic variables
y andz is similar) at increase of the coefficientsa andρ

provided that the values of other parameters are fixed.

Figure 2. Bifurcation diagrams fora and fixed parameters

c = 0, 6, p = 0, 7, s = 0, 75, α = 1, ρ = 0, 05

Figure 3. Bifurcation diagrams forρ and fixed parameters

a = 3, 6, c = 0, 6, p = 0, 7, s = 0, 75, α = 1

2. The immature females or males survival depend
on the mature females or males number. The survival
rate function looks as followsw = v = e−α·x or
w = v = e−β·y.
In this case we select the exponential dependence to

demonstrate the dynamic modes connected with non-
linearity of the system.
The loss of stability in the system occurs when

λ = − 1.
We have made numerical simulation when

w = v = e−α·x.
Figure 4 shows the strange attractor of the system as a

result of the period doubling.
If the functions of survival depend on the number of

mature females, their decrease leads to destabilization
of the system.
Figure 5 shows the dynamic modes map on the(s, a)

parameters plane.
The dynamic modes map shows bifurcation lines of

the doubling period, accumulating to the chaos border.
This corresponds to the cycle of length 2 on the phase
plane of the system.
There is a cycle of length 3 at some parameter values



Figure 4. The phase portrait with the parametersa = 30,

c = 0, 5, p = 0, 7, s = 0, 2, α = 1, ρ = 0, 005

Figure 5. The dynamic modes map on the(s, a) parameters plane

at c = 0, 5, p = 0, 7, α = 1, ρ = 0, 005. The periods of

oscillations are numerated

s anda.
Figure 5 shows stabilization of the population num-

ber dynamics when the survival rate of mature females
increases.
Figure 6 shows a bifurcation diagram of the dynamic

variable at the birth rate variation, under the condition
thats = 0, 2.
The dynamic modes diversity takes place generally in

that area of the parameters values where birth rate ac-
cepts the values not characteristic for natural popula-
tions. Therefore their dynamic modes are of more the-
oretical interest.
It is shown that the trajectories behavior is similar to

the casew = v = e−α·x when the survival rate of im-
mature individuals is dependent on only the male num-
ber (w = v = e−β·y).
3. In the third case survival rates of immature individ-

uals depend on the younger and mature female number.
The survival rate function looks as follows

w = v = 1 − α · z − β · x.
Loss of stability in the system occurs in the two ways

described above.

Figure 6. Bifurcation diagram fora and fixed parameters

c = 0, 5, p = 0, 7, s = 0, 2, α = 1, ρ = 0, 005

Figure 7. Areas of the system‘s various dynamic behavior on the

(β, α) parameters plane ata = 4, 1, c = 0, 5, p = 0, 8,

s = 0, 8, ρ = 0, 005

In this case it is assumed that the male number in-
crease does not considerably influence the survival rate
of a younger class.
Actually, if the population is polygamous it includes a

small number of mature males participating in the pro-
cess of reproduction.
Therefore, their contribution to competition is mini-

mal.
The population dynamics type (cycles, invariant

curves, etc.) depends on a ratio of the parametersα,
β describing elder age groups intensity of competitive
pressure upon the survival of younger individuals (fig-
ure 7).
Figure 7 shows that transition to chaos through the

cascade of the doubling period is possible only in the
case when loss of young individuals is mainly caused
by competition with adult females.
The area of stability decreases at the parametera in-

crease.



Figure 8. Bifurcation diagram fora and fixed parameters

ρ = 0, 045, c = 0, 5, p = 0, 8, s = 0, 8, α = 1,

β = 1

Figure 9. Dependence graph of the maximal Liapunov exponent

at increase of the parameter valuea, ρ = 0, 045, c = 0, 5,

p = 0, 8, s = 0, 8, α = 1, β = 1

If α < β, the model population number dynamics sta-
bilizes at the mature females survival rate increase.
Subject toα ≥ β, the model population number dy-

namics stabilizes against a background of the females
survival rate decreases.
It is shown, that the numbers of different age groups

may display either regular or chaotic behavior. It takes
place when the birth rate valuea and valueρ charac-
terizing the male and female ratio, pass through their
critical values.
Figures 8 and 9 illustrate the bifurcation diagram of

the dynamic variable and the Liapunov’s exponent di-
agram dependence on the birth ratea under the specific
values of other parameters.
We have calculated the Liapunov exponents with the

Benettin algorithm [Nejmark and Landa,1987].
The maximal Liapunov exponent is negative if there

is a stable equilibrium in the system.
At the moment of the stationary decision loss of equi-

librium, and appearance and realization of a limit cycle,
the maximal Liapunov exponent is equal to zero.
Figure 9 shows there is a great number of the param-

etera values at which the maximal Liapunov exponent
is positive.
The strange attractor exists in the model at these val-

ues of the parametera (figure 10).
The diagram of the maximal Liapunov exponent con-

Figure 10. The phase portrait with the parametersa = 4, 9,

ρ = 0, 045, c = 0, 5, p = 0, 8, s = 0, 8, α = 1,

β = 1

Figure 11. The phase portrait with the parametersa = 4, 9,

ρ = 0, 005, c = 0, 5, p = 0, 8, s = 0, 8, α = 0, 1,

β = 5

tains fallings into the area of negative values, corre-
sponding to the so-called periodicity windows (figure
9).
In the case whenα < β the number dynamics can be

presented by a cycle with the period of 2, 4, etc. years.
The number of cycles accumulates to the chaos bor-

der, gradually forming a uniform figure - the strange
attractor (figure 11).

4 Conclusion
Research of the three-component model, when the

density-dependent factors regulate the growth of the
younger class number, is carried out. The equilibrium
points of the system are found. The conditions of exis-
tence and stability for every one are determined.
It is shown, that the population number dynamics

character is determined by birth ratea, and the valueρ
characterizing sex ratio in the population. Namely, the
parametera value increase and the parameterρ value
decrease may cause loss of stationary decision stabil-
ity.
It is shown that loss of stability of the equilibrium pop-

ulation age distribution may occur in two ways.
Consequently, the number oscillations and the chaotic

dynamic behavior of a population are possible in the



system. Therefore the model may have limit stationary
or complex chaotic fluctuations.
The occurrence of 2-cycles is possible when competi-

tion pressure on the side of adult individuals is stronger
than self- limitation of the immature age class.
Thus, the type of population dynamics depends on a

ratio of the parameters characterizing competitive pres-
sure of all age classes upon immature individuals sur-
vival rates.
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