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Abstract
Hybrid quantum systems usually composed by elec-

tromagnetic systems have providing an efficient route
for build scalable integrated photonic circuit tech-
niques. Here, we have proposed, to control and trans-
fer the entangled quantum states between two atoms,
a hybrid system comprising of micro-toroidal cavities
and atoms connected via electromagnetic fields. Each
cavity supports two counter-propagating whispering-
gallery modes coupled simultaneously to an atom
through their evanescent fields. The superposition state
of atom 1 coupled the micro-toroidal cavity 1 can be
transferred to the atom 2 coupled to micro-toroidal cav-
ity 2 with high fidelity. Another interesting fact is
that, presence of structural deformation in cavity can
induces interaction between the gallery modes and gen-
erating entanglement between them and allowing the
transferring these entangled states between the cavities.
The results have shown that the quantum state transfer
under dissipation is still trustworthy and providing an
effective path to communication and quantum informa-
tion.
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1 Introduction
Transferring quantum information between two or

more sites without disturbing the stored information
is one of the great challenges for development of the
quantum technologies. Basically, the quantum infor-
mation processing can be understood as a quantum
network, these which in turn consist of distant nodes
connected by quantum communication channels. Each

nodes can process, store and distribute the information
under the network via reversible and irreversible pro-
cesses channels [Boozer et al., 2007]. Numerous pro-
posals have been realized - both experimental and theo-
retical - for implementation of the atoms coupled to op-
tical cavities to become the nodes that make up a quan-
tum network [Raimond, Brune, and Haroche, 2001]. In
this case, coupled optical cavities can be implemented
as quantum channels [Cirac et al., 2009]. Different
architectures of cavities have been developed (micro-
fabricated) due to need for ultrahigh factors (Q) and
scalability to large number of devices [Kimble, 2008].
For this propose, micro-toroidal or micro-spherical res-
onators have present a technical feature to achieve ef-
ficient optical communications, such as, small-mode-
volume, ultrahigh quality factors and coherent strong
interactions between matter and light [Spillane et al.,
2003]. Therefore it would be interesting to extend their
research to consider the dynamics of quantum state
transfer in a system formed by two-level atoms coupled
to a distinct micro-toroidal cavities.

In this paper, we investigate the dynamics of two cou-
pled micro-toroidal cavities via the evanescent field of
two intracavity modes and where each one of them is
coupled to a single two-level atom. Our main result
consist in high-fidelity transfer a superposition state of
one atom which is coupled to a cavity for the other atom
which is coupled to another cavity, taking into account
mechanism of the system losses. The possibility of the
coupled between the intracavity modes (generated for
cavity imperfection) for the dynamical entanglement
between the atoms is also studied.
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2 The Model
Our system consist of two coupled micro-toroids in-

teracting with two-level atoms as shown in Fig. 1. The
micro-toroids and atoms are depicted by label i = 1, 2.
The two degenerate counter-propagating whispering-
gallery modes (WGM’s) of frequency ωCi , with anni-
hilation (creation) operators âi (â

†
i ) and b̂i (b̂

†
i ) of each

one of the cavities, are coupled simultaneously to a sin-
gle two-level atom with coupling constant gi and tran-
sition frequency ωi

eg . We assume that the interaction
of the atoms and toroid with the surrounding environ-
ment is described by spontaneous emission rate of the
atoms (γA) and cavity decay rate (κ). We also consider
the intermode backscattering between the two WGM’s
(strength constant Ji) induced by small deformation in
the toroid [Spillane et al., 2003].

Figure 1. Scheme experimental of the two atoms- two micro-
toroidal cavity system. Each cavity consists of two modes coupled to
a two-level atom.

According to the above scheme, the Hamiltonian of
the atom-microtoroid system is given by

H = HA1C1 +HA1C2 +HC1C2 (1)

where

HA1C1 = ~ωeg
1 σ

+
1 σ

−
1 + ~ωC1(â

†
1â1 + b̂†1b̂1) +

~J1(â†1b̂1 + b̂†1â1) + ~(g∗1 â
†
1σ

−
1 + g1â1σ

†
1) +

~(g1b̂†1σ
−
1 + g∗1 b̂1σ

†
1), (2a)

HA2C2 = ~ωeg
2 σ

+
2 σ

−
2 + ~ωC2(â

†
2â2 + b̂†2b̂2) +

~J2(â†2b̂2 + b̂†2â2) + ~(g∗2 â
†
2σ

−
2 + g2â2σ

†
2) +

~(g2b̂†2σ
−
2 + g∗2 b̂2σ

†
2), (2b)

HC1C2 = ~λ(e−iϕâ†1b̂2 + eiϕb̂†2â1 + e−iϕb̂†1â2 +

eiϕâ†2b̂1) (2c)

with ~ωeg
i denotes the energy required of separation be-

tween of the atom i (i = 1, 2) for excited and ground
states by |e⟩i and |g⟩i, σ+

i = |e⟩i⟨g| and σ−
i = |g⟩i⟨e|

are the raising and lowering operators of the atom i, λ
is the coupling constant between the two micro-toroid
and determine the speed of the energy transfer between
them [Zhou et al., 2014]. The phase ϕ take into account
the propagation distance between the micro-toroids.
For neglect effects of the retardation at time of flight
of the light, a short distance limit between the toroids
should be imposed.

In the Eqs.(2) HA1C1 and HA2C2 describe the first
and second atom-toroid interacting systems, respec-
tively, and HC1C2 describes the coupling between the
toroids. In the resonate regime (ωC1 = ωC2 = ω) and
ϕ = 0, it is possible to diagonalize the Hamiltonian
that represents the interaction between the cavities us-
ing the basis of new bosonic operators giving by the
unitary transformation:

B̂1 =
1√
2
(−â1 + b̂2); B̂2 =

1√
2
(−b̂1 + â2);

B̂3 =
1√
2
(â1 + b̂2); B̂4 =

1√
2
(b̂1 + â2);

(3)

Now, the Hamiltonian of the system, in function of
these new operators, can be rewritten in the form:

H =
4∑

i=1

~ΩiB̂
†
i B̂i +

2∑
i=1

~ωeg
i σ

+
i σ

−
i +

~(g∗1 â
†
1σ

−
1 + g1â1σ

†
1) + ~(g1b̂†1σ

−
1 + g∗1 b̂1σ

†
1) +

~(g∗2 â
†
2σ

−
2 + g2â2σ

†
2) + ~(g2b̂†2σ

−
2 + g∗2 b̂2σ

†
2)(4)

where Ω1 = ω − λ − J , Ω2 = ω − λ + J , Ω3 =
ω + λ− J and Ω4 = ω + λ+ J are the frequencies of
the normal modes B̂1, B̂2, B̂3 and B̂4, respectively. In
order to obtain a Hamiltonian in interaction picture, we
imposed two conditions on the system: Ω3 = ωeg

i and
λ≫ g, J . Under these two conditions, we obtained the
following Hamiltonian

H̃I =
~
2
(g∗1B̂

†
3σ

−
1 + g1B̂3σ

†
1) +

~
2
(g1B̂

†
3σ

−
1 + g∗1B̂3σ

†
1) +

~
2
(g∗2B̂

†
3σ

−
2 + g2B̂3σ

†
2) +

~
2
(g2B̂

†
3σ

−
2 + g∗2B̂3σ

†
2). (5)

The temporal evolution of the system is obtained using
the Schrödinger equation in the interaction picture, i.
e.:

d

dt
|ψ̃(t)⟩ = − i

~
H̃I |ψ̃(t)⟩ (6)

where |ψ̃(t)⟩ is the state vector of the system at time t
(in the interaction picture). The pure state of the sys-
tem at time t, in the base {|k1⟩B1|k2⟩B2|k3⟩B3|k4⟩B4},
of states associated to operators B̂1, B̂2, B̂3 and B̂4, is
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given by

|ψ̃(t)⟩ =
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
k4=0

[Cgg
k1,k2,k3,k4(t)|g⟩1|g⟩2 +

Cge
k1,k2,k3,k4(t)|g⟩1|e⟩2 +

Ceg
k1,k2,k3,k4(t)|e⟩1|g⟩2 +

Cee
k1,k2,k3,k4(t)|e⟩1|e⟩2]|k1⟩|k2⟩|k3⟩|k4⟩, (7)

where the coefficients obey the following set of differ-
ential equations,

d

dt
Cgg

k1,k2,k3,k4
(t) = −ig[

√
k3C

eg
k1,k2,k3−1,k4

(t)+√
k3C

ge
k1,k2,k3−1,k4

]

d

dt
Cge

k1,k2,k3,k4
(t) = −ig[

√
k3C

ee
k1,k2,k3−1,k4

(t)+√
k3 + 1Cgg

k1,k2,k3+1,k4
]

d

dt
Ceg

k1,k2,k3,k4
(t) = −ig[

√
k3 + 1Cgg

k1,k2,k3+1,k4
(t)+√

k3C
ee
k1,k2,k3−1,k4

]

d

dt
Cee

k1,k2,k3,k4
(t) = −ig[

√
k3 + 1Cge

k1,k2,k3+1,k4
(t)+√

k3 + 1Ceg
k1,k2,k3+1,k4

]

(8)

and |g⟩i and |e⟩i correspond, respectively, to the funda-
mental and excited states of atoms i and |k⟩l is the Fock
state of the mode related to the operator l̂ (â1,â2, b̂1,b̂2,
B̂3). For sake of simplify, we assume that g1 = g2 = g.
Having in mind the quantum state processing our main
objective here is the quantum state transfering between
the two atoms, following the quantum transmission be-
tween two qubit as defined by [Cirac et al., 2009], i.e.,

(ca|1⟩1 + cb|0⟩1)⊗ |0⟩2 ⇒ |0⟩1 ⊗ (ca|1⟩2 + cb|0⟩2)

where ca and cb are complex numbers. We can un-
derstanding the quantum state transmission process
matching tomographically the evolved state of the sys-
tem or subsystem on the initial state, such as, a sub-
system having the first qubit in a superposition state
(in Fock bases) and the second in vacuum state, and
at certain elapsed time t the first qubit of subsystem is
projected on the vacuum state and second in a superpo-
sition state, performing a perfect and complete trans-
mission. In our case, the transmission of the quantum
state is obtained if the system makes the transition be-
tween the following states:

(cos θ|g⟩1 + eiα sin θ|e⟩1)|g⟩2|00⟩c1|00⟩c2 ⇒
|g⟩1(cos θ|g⟩2 + eiα sin θ|e⟩2)|00⟩c1|00⟩c2

where |00⟩c1 = |0⟩a1 ⊗ |0⟩b1 and |00⟩c2 = |0⟩a2 ⊗
|0⟩b2. Note that, according to the quantum state trans-
fer above, preparing the initial state of our system as
|ψ⟩i = (cos θ|g⟩1 + eiα sin θ|e⟩1)|g⟩2|00⟩c1|00⟩c2 the
goal is to obtain the final state |ψ⟩f = |g⟩1(cos θ|g⟩2+
eiα sin θ|e⟩2)|00⟩c1|00⟩c2. Following the time evolu-
tion of the quantum state it is possible find the exact
time when the state of the atom 1 is completely trans-
ferred to the atom 2. We have exploited this dynamics
using the Fidelity as defined by [Nielsen, Chuang, and
Grover, 2000]

F = ⟨ψf |ρ̂A1A2(t)|ψf ⟩ (9)

where ρ̂A1A2(t) is the reduced density ma-
trix of the two atoms defined by ρ̂A1A2(t) =
TrC1{TrC2{|ψ̃(t)⟩⟨ψ̃(t)|}}. In order to observe the
dynamics of state transfering and degree of entan-
glement between the atoms, we also have used the
Negativity, as proposed by [Vidal and Werner ,2002]

N =
∑
i

|µ−
i | (10)

where µ− are the negative eigenvalues of ρ̂A1A2(t).
When N = 0 indicates that the atomic states of the
system are separables and for N = 1 the two atoms
are in a maximally entanglement state. These two mea-
sures cited (eq.(9) and eq. (10)) are important to certify
that, when the atomic system is initially prepared in a
product state, at instant of time that occur the complete
quantum state transfer the Fidelity will be equal to one
and in the same instant the Negativity must be zero.

3 Quantum State Transfer
In this section we present results about the dynamics

of the quantum state transfer in a system of two cou-
pled resonators. Firstly, we examine the implementa-
tion of a swap gate between the two atoms (analogous
the swap gate two-qubit) observing time evolution of
the Fidelity. Then, we extend our investigation for the
case of a transference of superposition state from atom
1 to atom 2, when the modes of the resonators are in
vacuum state. The influence of the dissipation effects
and the dynamics entanglement between the two atoms
are also considered. Besides, we also consider in our
scheme the transference of entangled state.

3.1 Swap Gate Two-atoms
Quantum computation require the successful imple-

mentation of the quantum gates. In this way, we de-
scribe as a swap gate can be applied in our scheme,
making use of the fidelity. For this purpose, we will
use in the eq.(9) the initial state of the system (|ψi⟩), e.
g., the fidelity of the system related to its initial state,
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not the final state like there. The new equation is now
represented by

Fi = ⟨ψi|ρ̂A1A2(t)|ψi⟩ = cos2 θ×[
cos2 θ +

1

2
sin2(

√
2τ) sin2 θ+

sin2 θ cos4(
τ√
2
)
]
+

1

2
sin2 θ sin2(

√
2τ)+

sin2 θ cosϕ cos2 θ sin2(
√
2τ) (11)

We can observe in Fig. 2 that the function Fi at instant
of time τn = 2n π√

2
(n = 0, 1, 2, ...) reaches the value

unitary for any value of θ. This is interesting because
the system periodically returns to the initial state (re-
versible processes), behaving as a swap gate between
the two atoms, with repetition period of 2π/

√
2. In this

case, we assume that there is no coupling of the system
with the environment.

Figure 2. Time evolution of the Fidelity related to state |ψi⟩ as a
function of normalize time (τ = gt) and θ = π/4. The results
were obtained for ω/g = 20 and α = 0.

3.2 Transmission of the Quantum State
Now, we study the possibility of the transferring of

quantum state for two coupled micro-toroidal cavities
via evanescent field, where each of them is coupled
to a single two-level atom. For sake of simplify, we
that the frequency of the two WGM’s is equal the fre-
quency of the atomic transition (ωCi = ωi

eg = ω). For
this case, considering the initial state ψi and we ob-
tain the following solution for state of the system in the
Schödinger picture

|ψ(t)⟩ = [cos θe
iω
g τ |g⟩1|g⟩2 −

eiα sin2(
τ√
2
) sin θ|g⟩1|g⟩2 + eiα[

cos2(
τ√
2
) sin θ|e⟩1|g⟩2]|00⟩c1|00⟩c2] +

i√
2
[

eiα sin(
√
2τ) sin θ|g⟩1|g⟩2|00⟩c1|01⟩c2] (12)

In the instant of time τn = (2n+1)π√
2

(n = 0, 1, 2...) the
state of the system is given by:

|ψf ⟩ = |g⟩1[cos θ|g⟩2 + e−iα
′

sin θ|e⟩2]|00⟩c1|00⟩c2
(13)

where α
′
= α− (2n+1)π√

2
ω
g .

Under the condition ω/g = 2l (l integer), the state
of the atom 2 at the instant of time τn is exactly same
atom 1 superposition state, i.e., the atomic state was
completely transferred from the atom 1 to the atom 2.
To observe the temporal evolution of system in the pro-
cess of transferring this state, we observed the fidelity
of the system related to its final state (|ψf ⟩) as a func-
tion of the parameters θ and τ defined by eq.(9):

F = ⟨ψf |ρ̂A1A2(t)|ψf ⟩ = cos2 θ×[
cos2 θ + sin2 θ cos4(

τ√
2
)
]
+

1

2
sin2 θ sin2(

√
2τ)+

sin2 θ cosϕ cos2 θ sin2(
√
2τ)
(14)

In Fig. 3, we can see that the state is completely trans-
ferred at τ = π/

√
2 (F = 1), for any value of angle θ,

as expected. We also observe that, the Fidelity present
some oscillations before reaching the value unit, which
depend of the ratio ω/g.

Figure 3. Time evolution of the Fidelity related to state |ψf ⟩ as
a function of normalize time (τ = gt) and θ. The results were
obtained for ω/g = 20 and α = 0.

3.3 Transmission Under Dissipation
From an experimental point of view to transfer quan-

tum state efficiently under realistic conditions, one
must take into account the interaction of system with
the surrounding environment, e.g., spontaneous emis-
sion of the atoms (γA) and decays of the two resonators
(κ1 and κ2). In this form, we described the system in
terms of the master equation (considering that the reser-
voir is in the temperature T = 0 and weak coupling)
which can be written as [Carmichael, 1993]

d

dt
ρ(t) = − i

~
[H̃I , ρ(t)] +

2∑
i=1

κi
2
(2âiρ(t)â

†
i − â†i âiρ(t)− ρ(t)â†i âi) +

2∑
i=1

κi
2
(2b̂iρ(t)b̂

†
i − b̂†i b̂iρ(t)− ρ(t)b̂†i b̂i) +

2∑
i=1

γA
2
(2σ

(i)
− ρ(t)σ

(i)
+ − σ

(i)
+ σ

(i)
− ρ(t)−

ρ(t)σ
(i)
+ σ

(i)
− ) (15)
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where ρ(t) is the density operator of the atom-
microtoroid systems and H̃I is given by Eq. (5).
In this case, we using the eq. (15) for estimate the per-

formance of our scheme in quantum state transfer. In
the Fig. 4 is plotted the Fidelity as function of normal-
ize time τ for fixed values of the angle θ = π/4 and
different process and values of losses.

Figure 4. Time evolution of Fidelity related to state |ψf ⟩ as a func-
tion of normalize time (τ = gt) for θ = π/4 and with following
rates (a) κ = γ = 2 × 10−3g, (b) κ = 2 × 10−1g,γ =
1×10−2g and (c)κ = γ = g. The results present were obtained
with ω/g = 20 and α = 0.

In Fig. 4 (a) represents the case when the system is
coupled weakly with the surround environment, κ =
γ = 2 × 10−3g, indicating that the transmission is
reliable, in this regime. The Fig. 4 (b) represent the
case of intermediate coupling with environment, when
κ = 2 × 10−1g and γ = 1 × 10−2g, reaching a max-
imum transmission of F = 0.957 (first maximum) in-
dicating still, an efficient transmission. The Fig. 4
(c) illustrate the case of dissipation more intense when
the system is coupled strongly with environment, as
we can seen with κ = γ = g, the Fidelity reach at
F = 0.652 (first maximum), indicating that the quan-
tum state transfer is inefficient.
In order to confirm the complete transference of the

superposition state, we observe the dynamics of entan-
glement between the atoms using, as witness of perfect
transference, the Negativity (eq. 10) for initial state
|ψ⟩i. As shown in the Fig. 5 (a), when N = 0 at
time τ = π/

√
2 correspond to the situation where the

atoms are in a separate state and occurring (in same
moment) the maximum quantum state transfer (see the
arrow connecting Fig. 5(a) with Fig. 5(b)), meaning
that we have complete transference of the atomic state
of the atom 1 to the atom 2. At this instant of time
the state |ψf ⟩ is a separate state in accordance with a
N = 0, as expected. This allows us use projective
measurement over one atomic state without disturb the
state of the other atom, indicating that this system could
be used for processing quantum information.
Besides the possibility of transfer an atomic super-

position state, we also note that our system support
the transference of a entangled state. In such a case,
the atom 1 is initially prepared in a superposition
state and the modes of resonator 1 is in maximality
entangled state and other parts of the system are in
their fundamental states, e.g., |ψ(2)

i ⟩ = (cos θ|g⟩1 +

eiα
′

sin θ|e⟩1)|g⟩2 1√
2
(|10⟩c1+ |01⟩c1)|00⟩c2. The goal

Figure 5. Time evolution of (a) Negativity and (b) Fidelity related
to state |ψf ⟩ as a function of normalize time (τ = gt) when the
pair of atoms is initially prepared in state |ψi⟩ and θ = π/4 .
The results presented were obtained without taking into account the
system losses and with ω/g = 20 and α = 0.

here is transferring the superposition state from atom
1 to atom 2 and the entangled state from resonator 1
to resonator 2. Then, again, we observed the evolu-
tion of the Fidelity as function of normalize time (τ )
for θ = π/4. This result is shown in the Fig. 6.
In this figure we can see that, at time τn = (2n+1)π√

6

(n = 0, 1, 2...) the entangled state is completely trans-
ferred, showing more efficiency (decrease in transfer
time in compared with separated state |ψi⟩) for quan-
tum information processing. This result is equivalent
to the transfer of the entangled state of two qubits
[Nohama and Roversi, 2008], only that in the present
case instead of the vibrational-electronic state we are
performing the transmission of the entangled state be-
tween the modes of the resonator 1 to the resonator 2.

Figure 6. Time evolution of Fidelity as a function of normalize
time (τ = gt) for θ = π/4, related to state |ψf ⟩ =

|g⟩1(cos θ|g⟩2 + eiα
′

sin θ|e⟩2)|00⟩c1 1√
2
(|10⟩c2 +

|01⟩c2). The results present were obtained with ω/g = 20 and
α = 0.

4 Conclusion
We explored a system composed of two micro-

toroidal cavities coupled by evanescent field, where
each cavity interacts with a single two-level atom. It
was observed that the set of quantum state (separate
and entangled) is completely transferred from atom 1
coupled with the resonator 1 to atom 2 coupled with
resonator 2. Even under the influence of interaction
between the system and environment (reservoir at tem-
perature T = 0) the transference could be done with
high efficiency (F = 0.957). The system of two cou-
pled micro-toroidal cavities shown that the period of
separable state (N = 0) during the transference is rel-
atively large allowing quantum information processing
without disturb the states of others subsystems involved
in the process. It is also important to emphasize that the
transference of the quantum state had shown more effi-
cient when the initial state is an entangled state.
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