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Abstract tive integem. A linear feedback example is
We refute an often invoked theorem which claims that
a periodic orbit with an odd number of real Floquet .
b d () = F(A2() + Bla(t—7) — (0] (1)

multipliers greater than unity can never be stabilized

by time-delayed feedback control in the form proposed

by Pyragas Using a generic normal form, we demon- where 2(t) = f(\, z(¢)) describes a d-dimensional
strate that the unstable periodic orbit generated by anonlinear dynamical system with bifurcation parame-
subcritical Hopf bifurcation, which has a single real ter A and an unstable orbit of peridl. B is a suit-
unstable Floquet multiplier, can in fact be stabilized. ably chosen constant feedback control matrix. Typ-
We derive explicit analytical conditions for the control ical choices are multiples of the identity or of rota-
matrix in terms of the amplitude and the phase of the tions, or matrices of low rank. More general nonlin-
feedback control gain, and present a numerical exam-ear feedbacks are conceivable, of course. The main
ple. Our results are of relevance for a wide range of point, however, is that the Pyragas choige = nT
systems in physics, chemistry, technology, and life sci- of the delay time eliminates the feedback term in case

ences, where subcritical Hopf bifurcations occur. of successful stabilization and thus recovers the origi-
This article has been published in Phys. Rev. Lett. 98, nalT-periodic solutiorz(¢). In this sense the method is
114101 (2007). noninvasive. Although time delayed feedback control

has been widely used with great success in real world

problems in physics, chemistry, biology, and medicine,
Key words e.g. (Pyragas and TamaSeviCius, 1993; Bielaveski
control, time-delayed feedback al., 1994; Pierreet al., 1996; Hallet al., 1997; Sukow

et al., 1997; Luthjeet al., 2001; Parmanandet al.,
The stabilization of unstable and chaotic systems is 1999; Krodkiewski and Faragher, 2000; Fukuyaeha
a central issue in applied nonlinear science (Schuster,al., 2002; von Loeweniclat al., 2004; Rosenblum and
1999; Boccalettiet al., 2000; Gauthier, 2003). Start- Pikovsky, 2004; Popovychet al., 2005; Schikoraet
ing with the work of Ott, Grebogi and Yorke (Ot al., 2006), severe limitations are imposed by the com-
al., 1990), a variety of methods have been developedmon belief that certain orbits cannot be stabilized for
in order to stabilize unstable periodic orbits (UPOs) any strength of the control force. In fact, it has been
embedded in a chaotic attractor by employing tiny contended that periodic orbits with an odd number of
control forces. A particularly simple and efficient real Floquet multipliers greater than unity cannot be
scheme is time-delayed feedback as suggested by Pyrastabilized by the Pyragas method (Jestal., 1997;
gas (Pyragas, 1992). It is an attempt to stabilize peri- Nakajima, 1997; Nakajima and Ueda, 1998; Harring-
odic orbits of minimal period” by a feedback control  ton and Socolar, 2001; Pyrageisal., 2004; Pyragas
which involves a time delay = nT', for suitable posi-  and Pyragas, 2006), even if the simple scheme (1) is ex-



tended by multiple delays in form of an infinite series
(Socolaret al., 1994). To circumvent this restriction

other, more complicated, control schemes, like an os-
cillating feedback (Schuster and Stemmler, 1997), or

the introduction of an additional, unstable degree of

freedom (Pyragas, 2001; Pyragas and Pyragas, 2006),
have been proposed. In this letter, we claim, and show

by example, that the general limitation for orbits with
an odd number of real unstable Floquet multipliers
greater than unity does not hold, but that stabilization
may be possible for suitable choices/®fWe illustrate

which results from the linearization at the steady state
z = 0 of the delayed system (2).
Separating Eq. (6) into real and imaginary parts

0= A+ bolcos(8 — wT) — cos ]
w—1= bo[Sin(ﬁ - (UT) — sin 5]

()
(8)

and using trigonometric identities to eliminatg \)
yields an explicit expression for the multivalued Hopf
curvery (A) for given control amplitudé, and phase

this with an example which consists of an unstable pe- 5

riodic orbit generated by a subcritical Hopf bifurcation,
refuting the theorem in (Nakajima, 1997).

Consider the normal form of a subcritical Hopf bifur-
cation, extended by a time delayed feedback term

2t) = [N+ i+ (L+iy)|2(8)*] 2(t)

+b[z(t — 1) — 2(t)] (2)

with z € C and real parameters and~. Here the
Hopf frequency is normalized to unity. The feed-
back matrix B is represented by multiplication with
a complex numbeb = bg + ib; = boe’® with real
br,br, 3, and positiveby. Note that the nonlinearity
FOz(t) = [A i+ (1+1i7)|2(t)]?] 2(t) commutes
with complex rotations. Hence the Hopf bifurcations
from the trivial solutionz 0 at simple imaginary
eigenvaluey = iw # 0 produce rotating wave solu-
tionsz(t) = z(0) exp (i2£t) with periodT even in the
nonlinear case and with delay terms. This follows from
uniqueness of the emanating Hopf branches.

Transforming Eg. (2) to amplitude and phase variables (.,

7,0 usingz(t) = r(t)e?™®, we obtain ab = 0

7(t) = (/\ + r2) r
0(t) = 14 yr2.

®)
(4)

An unstable periodic orbit (UPO) with> = —\ and
periodT = 27 /(1 — ) exists for\ < 0. At A=0a
subcritical Hopf bifurcation occurs. The Pyragas con-
trol method chooses delays as = n7. This de-
fines the locaPyragascurvein the(\, 7)-plane for any
neN

2mn
1—9A

=2mn(l+~yA+...) (5)

Tp()\) -

which emanates from the Hopf bifurcation pomt=

0. Under further nondegeneracy conditions, the Hopf
pointA = 0,7 = nT (n € Ny) continues to a Hopf
bifurcation curvery () for A < 0. We determine this
Hopf curve next. It is characterized by purely imagi-
nary eigenvalues = iw of the transcendental charac-
teristic equation

n=A+i+b(e” " —1) (6)

+ arccos (%) + B+ 2mn

(9)
1~ by sin £ /A(2b cos f — \) + B sin® 3

TH =

Note thatry is not defined in case ¢f = 0 and\ < 0.
Thus complex is a necessary condition for the exis-
tence of the Hopf curve in the subcritical regimes 0.

Fig. 1 displays the family of Hopf curves, € N,

Eq. (9), and the Pyragas curve = 1, Eg. (5), in

the (\, 7) plane. In Fig. 1(b) the domains of instabil-
ity of the trivial steady state = 0, bounded by the
Hopf curves, are marked by light grey shading (yel-
low online). The dimensions of the unstable manifold
of z = 0 are given in parentheses along thaxis

in Fig. 1(b). By construction, the period of the bi-
furcating periodic orbits becomes equaltp = nT
along the Pyragas curve, since the time-delayed feed-
back term vanishes. Standard exchange of stability re-
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Figure 1. (Color online) Pyragas (red dashed) and Hopf kblac
solid) curves in the()\, T)-plane: (a) Hopf bifurcation curves =

0, ..., 10, (b) Hopf bifurcation curvesy 0,1 in an enlarged
scale. Yellow shading marks the domains of unstable= 0 and
numbers in parentheses denote the dimension of the unstednie
foldof 2 = 0 (y = —10,b9 = 0.3 andf3 = 7 /4).

sults (Diekmanret al., 1995), which hold verbatim for
delay equations, then assert that the bifurcating branch
of periodic solutions locally inherits linear asymptotic
(in)stability from the trivial steady state, i.e., it cosisi

of stable periodic orbits on the Pyragas curyg\)
inside the yellow domains for smdl\|. Note that an
unstable trivial steady state is not a sufficient condi-
tion for stabilization of the subcritical orbit, but other
(e.g., global) bifurcations ak < 0 must be consid-
ered as well. More precisely, for smal| the unsta-
ble periodic orbits possess a single Floquet multiplier



u = exp(A7) € (1,00), near unity, which is simple.  The possible existence of such delay-induced periodic
All other nontrivial Floquet multipliers lie strictly in-  orbits with T ## 7, which results in a Floquet multi-
side the complex unit circle. In particular, the (strong) plier x = 1 of multiplicity two at TC, was overlooked
unstable dimension of these periodic orbits is odd, herein (Nakajima, 1997).
1, and their unstable manifold is two-dimensional. This Next we analyse the conditions under which stabiliza-
is shown in Fig. 2, which depicts solutiors of the tion of the subcritical periodic orbit is possible. From
characteristic equation of the periodic solution on the Fig. 1(b) it is evident that the Pyragas curve must lie
Pyragas curve. Panel (a) (top) shows the dependence oinside the yellow region, i.e., the Pyragas and Hopf
curves emanating from the poifx, 7) = (0, 27) must
locally satisfy the inequality (\) < 7p(A) for A < 0.

g @1 1[m) 0ol © - More generally, let us investigate the eigenvalue cross-
= 0 hd “ < ol A A . .
201 — 3z, N ings of the Hopf eigenvalues= iw along ther-axis of
Y = L S N Fig. 1. In particular we derive conditions for the unsta-
o N subH B -1 ™\, subH . . .o

LY S SRy S ble dimensions of the trivial steady state near the Hopf

bo Re(y:) by bifurcation pointA\ = 0 in our model equation (2). On
the r-axis (A = 0), the characteristic equation (6) for

Figure 2. (Color online) (a) top: Real part of Floquet expuse .
9 ( ) (2) top P a s 1 = iw is reduced to

A of the periodic orbit vs. feedback amplitudg. bottom: Real
part of eigenvalue) of steady state vs. feedback amplitugg (b):
Floguet multipliersu = exp (A7) (red) in the complex plane with n=1i+b (e*”" — 1) , (10)
the feedback amplitudey € [0, 0.3] as a parameter. (c): radii of

periodic orbits. Solid (dashed) lines correspond to stélstable)

orbits. (\ = —0.005,y = —10,7 — 13:»5 — /4. and we obtain two series of Hopf points given by
0< T,‘? = 27mn (11)
" 2 2
the real part of the critical Floquet exponehibn the 0<7B = 2B +2mm (n=0,1,2,...).(12)

amplitude of the feedback gabp. The largest real part 1= 2bosin 3

is positive forby = 0. Thus the periodic orbit is unsta-

ble. As the amplitude of the feedback gain increases, The corresponding Hopf frequencies aré = 1 and
the largest real part of the eigenvalue becomes smallerw? = 1 — 2bysin 3, respectively. Note that series A
and eventually changes sign. Hence the periodic orbit consists of all Pyragas points, singgé = nT = 25—;‘

is stabilized. Note that an infinite number of Floquet In the series B the integers have to be chosen such
exponents are created by the control scheme; their reathat the delay-” > 0. The casé, sin 3 = 1/2, only,
parts tend to—oo in the limit by — 0, and some of  corresponds tav® = 0 and does not occur for finite
them may cross over to positive real parts for lafger  delaysr.

(blue curve), terminating the stability of the periodic We evaluate the crossing directions of the critical
orbit. Panel (b) of Fig. 2 shows the behavior of the Flo- Hopf eigenvalues next, along the positiveaxis and
quet multipliersy = exp(Ar) in the complex plane  for both series. Abbreviating%n by 7, the crossing
with the increasing amplitude of the feedback gajn  direction is given by sigfRe 7, ). Implicit differentia-

as a parameter (marked by arrows). There is an iso-tion of (10) with respect ta- atn = iw implies

lated real multiplier crossing the unit circleat= 1, in

contrast to the result stated in (Nakajima, 1997). This . . L

is caused by a transcritical bifurcation (TC) in which sign(Re 1)) = —signw) sign(sin(wr — 3)). (13)
the subcritical Pyragas orbit (whose radius is given

by » = (—\)'/? independently of the control ampli- We are interested specifically in the Pyragas-Hopf
tudeb) collides with a delay-induced periodic orbit, as points of series A (marked by red dots in Fig.1) where

shown in Fig. 2(c). This delay-induced orbitis gener- 7 = 74 = 2m andw = w? = 1. Indeed

ated at a finite value of the control amplitugiSN) by signRe 7,) = sign(sin3) > 0 holds, provided we
a saddle-node bifurcation (collision with another unsta- assumeé) < ¢ < , i.e, by > 0 for the feedback gain.
ble delay-induced periodic orbit). At TC, the subcriti- This condition alone, however, is not sufficient to guar-
cal orbit and the delay-induced orbit exchange stability. antee stability of the steady state for< 2nw. We
The latter vanishes at a subcritical Hopf (subH) bifur- also have to consider the crossing direction &Ry, )
cation at which the trivial steady state becomes unsta-along series By” = 1—2bgsin 3, w278 = 23+27n,
ble. Except at TC, the delay-induced orbit has a period for 0 < § < 7. EQ. (13) now implies sigiRe 7,) =

T # 7. Note that for smalb, the subcritical orbitis  sign((2bg sin 5 — 1) sin 3).

unstable, whilez = 0 is stable, but the respective ex- To compensate for the destabilizationzof= 0 upon
changes of stability occur at slightly different values of each crossing of any poinf' = 27n, we must require
by, corresponding to TC and subH. This is also corrob- stabilization (sigiRe 71, ) < 0) at each point” of se-
orated by Fig. 2(a) (bottom), which displays the largest ries B. This require§ < /3 < arcsin (1/(2bg)) or m —
real part of the eigenvaluesof the steady state = 0. arcsin (1/(2bg)) < f < m. The distance between two



successive points? andr,?,, is 27 /w? > 2. There- the largest real part, wherever0, of the Floquet expo-
fore, there is at most one” between any two succes- nent, calculated from linearization of the amplitude and
sive Hopf points of series A. Stabilization requires ex- phase equations around the periodic orbit. Outside the
actly one suchZ, specifically:r! | < 72 | < 7 for color shaded areas the periodic orbit is not stabilized.
all £ = 1,2,...,n. This condition is satisfied if, and  With increasing\| the domain of stabilization shrinks,
only if, as the deviations from the linear approximation (16) be-
come larger. For sufficiently large| stabilization is no
longer possible, in agreement with Fig.1(b). Note that
for real values ob, i.e., 3 = 0, no stabilization occurs
at all. Hence, stabilization fails if the feedback matrix
where0 < g} < = is the unique solution of the tran- B is a multiple of the identity matrix.

scendental equation

0< <y, (14)

04 F

1

—[} + 2nbg sin B, = 1. (15) 0.2} / N — —0.015

T 0.0 0

04 F
This holds because the conditioft | < 72, <72 @) 02| — 0010 0.1
first fails whenr? | = 74, Eq.(14) represents a neces- 0.0 0.2
sary but not sufficient condition that the Pyragas choice 04 / '
7p = nT for the delay time will stabilize the periodic 0.2 F ﬂ 5\ = —0.005
i 0.0 L

orbit. -1 0 1 2 3 4 Re(b)

To evaluate the second conditiony; < 7p near

(A7) = _(0_7 2m), we expand the exponentia_l in the  Figure 3. (Color online) Domain of control in the plane of tien-
characteristic eq. (6) fopr ~ 2mn, and obtain the  plex feedback gaih = bge®” for three different values of the bi-

approximate Hopf curve for smalk|: furcation parameteA. The black solid curves indicate the boundary
of stability in the limit A " 0, see (18), (19). The color-shading

1 shows the magnitude of the largest (negative) real partsoFtbquet
T (N\) &~ 2mn — b—I(Qﬂ'an + 1A (16) exponents of the periodic orbit(= —10, 7 = 13:)\).
Recalling (5), the Pyragas stabilization condition . _
2 (\) < 7p()) is therefore satisfied fox < 0 if, and In conclusion, we have refuted a theorem which
only if, claims that a periodic orbit with an odd number of

real Floquet multipliers greater than unity can never be
stabilized by time-delayed feedback control. For this
1 (bR + L) < —7. (17) purpose we have analysed the generic example of the
br 2mn normal form of a subcritical Hopf bifurcation, which
is paradigmatic for a large class of nonlinear systems.
Eq.(17) defines a domain in the plane of the complex We have worked out explicit analytical conditions for
feedback gairb = br + ib; = boe’” bounded from  stabilization of the periodic orbit generated by a sub-
below (fory < 0 < b;) by the straight line critical Hopf bifurcation in terms of the amplitude and
the phase of the feedback control gainOur results
1 1 underline the crucial role of a non-vanishing phase of
by = — (bR + —) . (18) the control signal for stabilization of periodic orbits
2mn violating the odd number limitation. The feedback
phase is readily accessible and can be adjusted, for

Eqg. (15) represents a curvg(s3), i.e., instance, in laser systems, where subcritical Hopf bi-
furcation scenarios are abundant and Pyragas control
1 3 can be realized via coupling to an external Fabry-Perot
0= 5 S0 ( — —) , (29) resonator (Schikorat al., 2006). The importance of

the feedback phase for the stabilization of steady states
in lasers (Schikorat al., 2006) and neural systems
which forms the upper boundary of a domain given by (Rosenblum and Pikovsky, 2004 as well as for stabi-
the inequality (14). Thus (18) and (19) describe the lization of periodic orbits by a time-delayed feedback
boundaries of the domain of control in the complex control scheme using spatio-temporal filtering (Baba

plane of the feedback gainin the limit of small \. et al., 2002), has been noted recently. Here, we have
Fig.3 depicts this domain of control for = 1, i.e, shown that the odd number limitation does not hold in
a time-delayr = 12:» The lower and upper solid

curves correspondito Eq. (18) and Eq. (19), respec-—

tively. The color code displays the numerical result of 1For the complex conjugate values tgfstabilization of the peri-
odic orbit can be shown by analogous arguments.
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