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Abstract

The paper deals with the magnetoelastic transweese
propagation along a “vortex” layer in a supercorithac
body. It occurred that the propagation is possiilbe
propagation conditions and dispersion of those waae
been considered.
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1. Introduction

Magnetic flux can penetrate the
superconductor in the form of Abrikosov vorticelsga
called flux lines, flux tubes or fluxons) each gamg a
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In a pure crystal the arrangement of the vortexsor
is such that they form a parallel line structureg(iFe
1a). However, the imperfections in a real crystalse
that the vortex lines may be curved and even tangle
[Brandt] (Figure 1b).
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Figure la. Vortices in pure crystal
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quantum of magnetic flux. Since the vortices are \1
formed by the applied magnetic field, around ofteac

of them the supercurrent flows. Moreover, ther® als

exist some Lorentz force interactions among them.

Those interactions form an origin of an additional
thermomechanical (stress) field occurring in thaeety

Il superconductor. That field near the lower catic ﬂ

magnetic intensity limit valuél,, is of the elastic solid

character. However, if the density of the supeentrr VA ” / \ AN
is above its critical value and/or the temperatisre magnetic vortices
sufficiently high, there occurs a flow (creep or L)) L)L

diffusion) of vortex lines in the superconductinagdly.
Thefluidity of the vortex array has been also observed

when the applied magnetic field tends to its upper

critical limit value He [Blatter, Feigelman,
Geshkenbein, Larkin and Vinokur; Brandt; Cyrot and
Pavuna ].
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Figure 1b. Vortices in real crystal



Since the interactions among vortices occur with th  Since just the magnetic field intensity decides in
help of the Lorenz force, the vortex field dynamics which state the vortices are, we propose two
may be observed if that field has been perturbsed. parameters: andf which determine their actual state
a transmission of energetic signals along thatifisl ~ (cf. [Maruszewski (2007)]). Hence their dimensi@sle
possible. The paper deals with investigations offorms are the following:
magnetoelastic wave propagation in an environment

consisting of a vortex array normal to the middle H,-H 2 0if H=H,
surface of a superconducting layer (see for ingtanc a=(ﬁ) , :{1”: H=H 3)
[Achenbach; Maruszewski and van de Ven]) (Figure c2 ct o

2). As we mentioned before, the vortex field caistex

in two phases: solid and fluid ones. Even, the ([ H-H, 2 _[0if H=H
coexistence in the intervdfl ; <H <H_, is possible. B= (mj ' ‘{1 if H=H_, 4)

In the paper we confine only to the wave propagatio

in the solid phase. Because of the above peculiar _

feature of the vortex field, there occurred a need +,B:{:1 if H=H, or H=H, 5)
define a new stress tensor reflecting coexisterfce o =f(H) if Hy<H<H,,.

those phases. The presented research concerns an

analysis of propagation condition and dispersiothef

magnetoelastic waves in a vortex array. Please, note3 Formulation of the problem

that if outside the layer the magnetic field disfition Let us now consider a particular problem which
is commonly continuous, then within the layer we deals with the dynamics of the previously defined
observe a discrete arrangement of magnetic vorticesyortex field. Following [Maruszewski (2007)] the
Since our description has been done entirely withinbasing equations governing dynamical interactions i
continuous manner, the vortex field in a layerb@sn  the vortices read:

averaged with respect to the layer thickness. That

averaging procedure has ensured the description . 1 .

within the continuous model. pu g+ 00+ A+ pug T3

_,Uo(hr,i -h, )Hro - pi =0 . (6)
2 Magnetothermoviscoelastic stress within the
mixed state
The general stress tensag;; concerning the
coexistence of the ordered (lattice) and disordered o
(fluid) states of vortices has the form [Maruszeiwsk For the sake of simplicity we have related to the
(1998), Maruszewski (2007) ]: lattice like state of the vortex fielda(=1, =0 in (1))
as well as we have omitted the temperature infleenc
2 . on the vortex field in (1).
Uij{[gaK‘gaG}% T3~ This way we have confined only to interactions
among viscoelastic and magnetic fields. The linear
(1) form of equations (6) results from

/\S M —h +ui,kHl? _uk,kHio =0

Ae-p p]5ij +2aGe; + 2(a + ﬁ)qgij

where the elastic bulkk) and shear®) module are H, =H/ +h, || <<|Hf|
as follows:

3K=2u+31, G=u, (2)  Where H¢ denotes a constant external magnetic field.
Using equations (6) we consider now the problem of

), u are the Lameé constants of thagtice and/” is the ~ Wave propagation in a superconducting layer.

thermoelastic constant of tHattice, &;is the strain o The2 geometry of the problem is presented in
igure 2.

tensor of the vortex structurey is a viscous
coefficient [Cyrot and Pavuna], 6 is the relative

temperature in the form

T-T,

6= , <0,

e

c »
X2

T. is the critical superconducting phase temperature l X1
andp is the pressure of the vortex field. Figure 2. Geometry of the problem.
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The solutions of equations (6) are looked for ia th

following form: In this way we obtained the solutions of set (10) i
the following form:

f(x,%,,t)= i;()(1)e)q:{i(“’t_kxz)]! )
uz = %epﬁ( + Sze_plx + S3epzx + SAG_sz
where f~(x1) stands for each function in (6), i.e.

L, (12
h, =-M(p, Q.V)Se™ +M(p, QV)s,e™™ +
f(x,)={us, hy}, (8) ~M(p,, Q,V)S,e™ +M(p,,Q,V)S,e ™
because where xp,,+p, are roots of (11) and
u=[00,u,], h=[00h,].
AQ)=1+iQn,
Now we transfer all the necessary variables and )
relations to their dimensionless forms, as follows B(Q,V) :_2(\/2 —1—iQ,7),
x, =hx,x, =hy,x, =hzt =T7,T =—, F(Q,V):/L)WH, (13)
Vy
QZ
D W(Vz -1)
HY=H,H’ h, =H_h,, u, =hu,,Q = aT, M(p, QV)=—K-+ — k=12
HoH HoH P,
vV @ _Q_Q 5= ph® _ ©) From now on, we assume that viscous influence on
v, v VT Vh' T?u the mechanical interactions among vortices is
negligible.
) Propagation of the wave is possible only if squares
I/ :i 0=17 = He of both roots of the characteristic polynomial are
7 , TH=LHy = Ho , O
Tu Y7 U positive, i.e.
B(Q,V)>0. 14
D R @Vv) (14)
/]0 = C =V =, hs - Hcle
h Vr P As a consequence of that restriction we obtain
wherev denotes the phase velocityjs the speed of V<1 (15)

light then v; denotes the transverse elastic mode ;¢ §— ?(x) in (7)
o g .

velocity in the layer. _ _ Finally, we have to determine dispersion of the

On using now (7) — (9) in (6) we arrive at the \a\eq in the vortex magnetic structure. That shbeld

following set of ordinary differential equations h  yorjyeq from the boundary and continuity conditions
governs the propagation of waves in the considereq,, (e solutions (12).

layer (we omit superimposed tildes in the sequel): Those conditions ax = -1 and x =0

read:
. d’u, Q2 . -0 . -
(u+ian) S +—26/ZP‘#"Q’7)UZ h,=0 contmun.y qf th(-e tang-ent component of the
d v magnetic field intensity
+ poH° dh, _ 0 0,, =0 - the surfaces are free of loadings.
dx (10) The specification of the above conditions for the
surfacex = -1 is as follows
d®h Q? du
Ao—E-| A== +1lh,+H°—%=0 _
° dx? ["vz J dx “M(p,QV) SR EM(PLQV)SEm - ) o
M(p,, Q.V)S,e™™ +M(p,, Q,V)e> =0,
4 Solution of the problem —p_ n _—
On using (7,8) in (10) the characteristic equatibn Sipe oS, pettSp,e ) (17)
(10) has the form: +S,p,e”=0
2AQ)p* + [/ISB(Q,V)— FQV)AQ) 1) Similarly, at x = 0one obtains

- 1o %]p? - F(@,v)B(Q.v) =0



_M(p:L'Q!V)Sl +M(p1,Q,V)52 - (18)
M(p,,Q,V)S;+M(p,, Q.V) =0

SPp-Sp+Sp,~-Sp,=0. (19)

Hence the looked for dispersion relation reads

detw =0, (20)

where W =(W,) stands for the matrix of

coefficients in set of equations (16-19). The only
solution of (20) exists solely ¥ satisfies relation
V=1 (21)

That means that the wave propagates with the
determined velocity and the above fact indicated th

f is independent ofx; (see (7),(15)). So the
propagating wave (7) is non dispersive.

Conclusions

After all the considerations that have been done, i
occurred that in the vortex layer in a supercormuct
transverse magnetoelastic wave propagation is
possible. The velocity of the wave satisfies inditpa
(15), i.e. it is less than the velocity of the bulk
transverse mode only if the wave amplitude might be
dependent onx; (on the thickness of the layer).
However, the detailed analysis of (20) indicatest th
the amplitude is independent of and the wave
propagates only if velocity satisfies (21).

Since the main aim of the paper was to check ifevav
propagation is possible in such a defined layegllat
we have linearized fundamental equations (6). The
original nonlinear nonlinear character of the
magnetoelastic waves in the vortex array will be
investigated in the near future.
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