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Abstract 
The paper deals with the magnetoelastic transverse wave 

propagation along a “vortex” layer in a superconducting 
body. It occurred that the propagation is possible. The 
propagation conditions and dispersion of those waves have 
been considered. 
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1. Introduction 
Magnetic flux can penetrate the type-II 

superconductor in the form of Abrikosov vortices (also 
called flux lines, flux tubes or fluxons) each carrying a 
quantum of magnetic flux. Since the vortices are 
formed by the applied magnetic field, around of each 
of them the supercurrent flows. Moreover, there also 
exist some Lorentz force interactions among them. 
Those interactions form an origin of an additional 
thermomechanical (stress) field occurring in the type-
II superconductor. That field near the lower critical 
magnetic intensity limit value Hc1 is of the elastic solid 
character. However, if the density of the supercurrent 
is above its critical value and/or the temperature is 
sufficiently high, there occurs a flow (creep or 
diffusion) of vortex lines in the superconducting body. 
The fluidity of the vortex array has been also observed 
when the applied magnetic field tends to its upper 
critical limit value Hc2 [Blatter, Feigelman, 
Geshkenbein, Larkin and Vinokur; Brandt; Cyrot and 
Pavuna ].  

In a pure crystal the arrangement of the vortex cores 
is such that they form a parallel line structure (Figure 
1a). However, the imperfections in a real crystal cause 
that the vortex lines may be curved and even tangled 
[Brandt] (Figure 1b). 

 
 
 
 

 
 

Figure 1a. Vortices in pure crystal 

 
 

 
 

Figure 1b. Vortices in real crystal 
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Since the interactions among vortices occur with the 

help of the Lorenz force, the vortex field dynamics 
may be observed if that field has been perturbated. So, 
a transmission of energetic signals along that field is 
possible. The paper deals with investigations of 
magnetoelastic wave propagation in an environment 
consisting of a vortex array normal to the middle 
surface of a superconducting layer (see for instance 
[Achenbach; Maruszewski and van de Ven]) (Figure 
2). As we mentioned before, the vortex field can exist 
in two phases: solid and fluid ones. Even, the 
coexistence in the interval 21 cc HHH <<  is possible. 
In the paper we confine only to the wave propagation 
in the solid phase. Because of the above peculiar 
feature of the vortex field, there occurred a need to 
define a new stress tensor reflecting coexistence of 
those phases. The presented research concerns an 
analysis of propagation condition and dispersion of the 
magnetoelastic waves in a vortex array. Please note, 
that if outside the layer the magnetic field distribution 
is commonly continuous, then within the layer we 
observe a discrete arrangement of magnetic vortices. 
Since our description has been done entirely within 
continuous manner, the vortex field in a layer has been 
averaged with respect to the layer thickness. That 
averaging procedure has ensured the description 
within the continuous model. 

 

2 Magnetothermoviscoelastic stress within the 
mixed state 

The general stress tensor σij concerning the 
coexistence of the ordered (lattice) and disordered 
(fluid) states of vortices has the form [Maruszewski 
(1998), Maruszewski (2007)  ]: 
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where the elastic bulk (K) and shear (G) module are  
as follows: 

 
 ,323 λµ +=K     µ=G ,

 
(2) 

 
λ, µ are the Lamè constants of the lattice and λT is the 
thermoelastic constant of the lattice, ijε is the strain 

tensor of the vortex structure, η  is a viscous 

coefficient [Cyrot and Pavuna], θ  is the relative 

temperature in the form 
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Tc is the critical superconducting phase temperature 
and p is the pressure of the vortex field. 

 

 
Since just the magnetic field intensity decides in 

which state the vortices are, we propose two 
parameters α and β which determine their actual state 
(cf. [Maruszewski (2007)]). Hence their dimensionless 
forms are the following: 
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3 Formulation of the problem 
Let us now consider a particular problem which 

deals with the dynamics of the previously defined 
vortex field. Following [Maruszewski (2007)] the 
basing equations governing dynamical interactions in 
the vortices read: 
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For the sake of simplicity we have related to the 

lattice like state of the vortex field ( 0,1 == βα  in (1)) 

as well as we have omitted the temperature influence 
on the vortex field in (1). 

This way we have confined only to interactions 
among viscoelastic and magnetic fields. The linear 
form of equations (6) results from 
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where 0
kH  denotes a constant external magnetic field.  

Using equations (6) we consider now the problem of 
wave propagation in a superconducting layer.  

 The geometry of the problem is presented in 
Figure 2. 

 
 

Figure 2. Geometry of the problem. 
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The solutions of equations (6) are looked for in the 
following form: 
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where ( )1

~
xf  stands for each function in (6), i.e. 
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because 

 
[ ] [ ]33 ,0,0,,0,0 hu == hu . 

 
Now we transfer all the necessary variables and 

relations to their dimensionless forms, as follows 
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where v denotes the phase velocity, c is the speed of 
light then Tv  denotes the transverse elastic mode 

velocity in the layer. 
On using now (7) – (9) in (6) we arrive at the 

following set of ordinary differential equations which 
governs the propagation of waves in the considered 
layer (we omit superimposed tildes in the sequel): 
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4 Solution of the problem 
On using (7,8) in (10) the characteristic equation of 

(10) has the form: 
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In this way we obtained the solutions of set (10) in 

the following form: 
 

( ) ( )
( ) ( ) xpxp

xpxp
z

xpxpxpxp
z

eSVpMeSVpM

eSVpMeSVpMh

eSeSeSeSu

22

11

2211

4232

2111

4321

,,,,

,,,,
−

−

−−

Ω+Ω−

+Ω+Ω−=

+++=

 ,   (12) 

 
where 21, pp ±±  are roots of (11) and 
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From now on, we assume that viscous influence on 

the mechanical interactions among vortices is 
negligible. 

Propagation of the wave is possible only if squares 
of both roots of the characteristic polynomial are 
positive, i.e. 

 
 ( ) 0, >Ω VB .  (14) 

 
As a consequence of that restriction we obtain 
 

 1<V   (15) 

if ( )1

~~
xff =  in (7). 

Finally, we have to determine dispersion of the 
waves in the vortex magnetic structure. That should be 
derived from the boundary and continuity conditions 
for the solutions (12). 

Those conditions at 1−=x  and 0=x  
read: 

0=zh  - continuity of the tangent component of the 

magnetic field intensity 
031 =σ  - the surfaces are free of loadings. 

The specification of the above conditions for the 
surface 1−=x  is as follows 
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Similarly, at 0=x one obtains 
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Hence the looked for dispersion relation reads 
 

 0det =W ,  (20) 

 
where )( ijW=W  stands for the matrix of 

coefficients in set of equations (16-19). The only 
solution of (20) exists solely if V  satisfies relation 

 
 1=V . (21) 
 
That means that the wave propagates with the 
determined velocity and the above fact indicates that 

f
~

 is independent of x1 (see (7),(15)). So the 

propagating wave (7) is non dispersive. 

Conclusions 
After all the considerations that have been done, it 

occurred that in the vortex layer in a superconductor 
transverse magnetoelastic wave propagation is 
possible. The velocity of the wave satisfies inequality 
(15), i.e. it is less than the velocity of the bulk 
transverse mode only if the wave amplitude might be 
dependent on x1 (on the thickness of the layer). 
However, the detailed analysis of (20) indicates that 
the amplitude is independent of x1 and the wave 
propagates only if velocity V satisfies (21). 
Since the main aim of the paper was to check if wave 
propagation is possible in such a defined layer, at all, 
we have linearized fundamental equations (6). The 
original nonlinear nonlinear character of the 
magnetoelastic waves in the vortex array will be 
investigated in the near future. 
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