
CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024, 288–295

NEW ALGORITHMS FOR RESTORING DNA MATRIX
AND THEIR STATISTICAL STUDY

Boris Melnikov∗

Department of Computational Mathematics and Cybernetics,
Shenzhen MSU – BIT University, China

bormel@mail.ru

Article history:
Received 25.10.2024, Accepted 24.12.2024

Abstract
In the proposed paper, we continue to consider various

heuristics for reconstructing distance matrices between
DNA sequences; as before, we prefer to consider mi-
tochondrial DNA. In the paper, we apply new heuris-
tics. First, every time we receive a new matrix value,
we return to the previously restored elements, select the
one that gives the maximum value of badness, and try to
improve it based on the newly obtained elements. Sec-
ondly, when choosing the final value of an element, we
select for the first approximation several values close to
the optimal one (in practice, there are up to 10 of them),
after which we use correlation analysis to select the clos-
est one.

We conducted computational experiments on the mi-
tochondrial DNA of all 32 genera of monkeys. At the
same time, we restored not one matrix, but 40 matrices:
10 times obtained for each of 4 different sparsity vari-
ants. We average the obtained calculation results in sev-
eral different ways, in particular, by discarding the two
smallest and two largest values, as well as using variants
of the risk function.

The results obtained indicate that in order to obtain a
matrix for all types of monkeys in the future, it is desir-
able to have about 10–12% of the data: simplifying the
situation somewhat, we can say that 7–8% gives less ad-
equate recovery results, and, vice versa, 15% and more
do not improve the value of badness (compared to 10%).
At the same time, obtaining exactly such a full matrix by
the algorithm for calculating DNA distance should take
about 20–25 days of computer operation.

Key words
DNA chains, distance matrix, optimization problem,

restoring algorithm, greedy algorithm, heuristics, risk
function, rank correlation.

∗Corresponding author.

1 Introduction and motivation
First, we should note that the full long title of the pro-

posed paper could be as follows: “Some new improved
algorithms for restoring DNA matrix and their statistical
study using the example of mitochondrial DNA of mon-
keys of various genera”.

In the paper, we continue to consider various heuris-
tics for reconstructing distance matrices between DNA
sequences. As before, we prefer to consider mitochon-
drial DNA, aiming in the near future to describe ac-
ceptable algorithms for restoring such a matrix for all
species of monkeys: there are several hundred of these
species, and, according to our calculations, obtaining a
complete similar matrix using the Needleman-Wunsch
method will take about a year of work on a conventional
modern computer.

Therefore, to determine the distance between
genomes, we need heuristic algorithms, and, if possi-
ble, they do not require too much time. In previous
publications, we have repeatedly noted that there are
different algorithms for such actions, but their obvious
disadvantage is to obtain different results when using
different heuristic algorithms, applied to calculating
the distance between the same pair of DNA strings;
however, sometimes the results vary greatly. As an
auxiliary task, there is a problem of evaluating the
quality of the used metrics (distances), and based on
the results obtained in solving this problem, there is
possible to draw conclusions about the applicability
of a specific distance calculation algorithm to various
applied research. A possible approach to determining
the quality assessment of metrics has also been given in
our previous publications and is briefly discussed in the
Section 2.



CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024 289

Due to the very long calculation time of the complete
distance matrix noted above, we are trying to apply dif-
ferent heuristics to restore it, calculating only some of its
elements. In our first works on restoration, we preferred
variants of the branches and boundaries algorithm, how-
ever, for square matrices of about 500 in size (by the
number of species), this method will take a very long
time and therefore is hardly acceptable. For this rea-
son, as well as due to the successful operation of com-
plex heuristics, in subsequent works we switched to such
heuristics that do not use the method of branches and
boundaries.

Thus, the main focus should be on the use of greedy
heuristics. Speaking of them, we are in our latest publi-
cation [Abramyan, Melnikov, and Zhang, 2023] we con-
sidered a heuristic that took into account the order of the
restored values of the matrix; and the earlier values were
taken into account with greater weight. In the current
paper, we abandoned it (because it takes a long time, al-
though it gives good results) and applied two new heuris-
tics. First, every time we receive a new value of the ma-
trix, we return to the previously restored elements, select
the one that gives the maximum value of badness, and try
to improve it based on the newly obtained elements. Sec-
ondly, when choosing the final value of an element for
the first approximation, we select several values close to
the optimal one (in practice, there are up to 10 of them),
after which we use correlation analysis to select the clos-
est ones; we assume that the optimal value should be
among them.

We conducted computational experiments on the mi-
tochondrial DNA of all 32 genera of monkeys. At the
same time, we restored not one matrix only, but 40 ma-
trices: 10 times obtained for each of 4 different sparsity
variants. The obtained calculation results are averaged
in several different ways, in particular, by discarding the
two smallest and two largest values, as well as using vari-
ants of the risk function, for more information, see the
Section 4.

The results obtained indicate that in order to obtain a
matrix for all types of monkeys in the future, it is desir-
able to have about 10−12% of the data: simplifying the
situation somewhat, we can say that 7−8% gives less ad-
equate recovery results, and, vice versa, 15% and more
do not improve the value of badness (compared to 10%).
At the same time, obtaining exactly such a full matrix by
the algorithm for calculating DNA distance should take
about 20− 25 days of computer operation.

At the end of the introduction, we note the follow-
ing. Like we said in [Abramyan, Melnikov, and Zhang,
2023], the connection of some algorithms for studying
DNA chains with various tasks of experimental physics
was demonstrated in some of our previous publications;
to them, it is worth adding [Sergeenko, Granichin, and
Yakunina, 2020], which, among other things, examines
the connection with Hamiltonian cycles, and, conse-
quently, with the traveling salesman problem (TSP), also
considered in some publications of the author of this pa-

per, see [Melnikov, Zhang, and Chaikovskii, 2022] and
some others.

2 Preliminaries
Thus, for a chosen algorithm for calculating the dis-

tances between two DNA sequences, we have a distance
matrix computed using this algorithm. We consider the
set of species for which the matrix is being constructed
as predetermined, and thus we assume that a certain set
of genomes is established. The elements of such a ma-
trix, i.e., the distances between genomes, are used by
biologists in both scientific and popular science publica-
tions.

Let us note that the methods and algorithms we pro-
pose are applicable for any initial algorithm used to de-
termine the distances between genomes, for any particu-
lar part of the genomes, and for any set of species.

Now, we provide a brief description of some aspects
of our previous papers ([Melnikov, Pivneva, and Tri-
fonov, 2017; Melnikov, Zhang, and Chaikovskii, 2022;
Abramyan, Melnikov, and Zhang, 2023] etc.) that are
necessary for this study.

In many previous publications, we have presented the
following example. Let us consider three species: hu-
man, chimpanzee, and bonobo. According to biologists:

• the ancestors of both apes and humans diverged ap-
proximately 7 000 000 years ago;

• the ancestors of chimpanzees and bonobos diverged
approximately 2 500 000 years ago.

At the same time, the exact values are not particularly
important; what matters is that the triangles formed by
the corresponding distances between the three species
should ideally be acute-angled isosceles. Moreover, this
condition must hold for any three species.

Figure 1. The distance matrix and one of its triangles

Thus, the distance matrix derived from algorithms
(such as Needleman–Wunsch) forms specific triangles
representing the distances between genomes. The total
number of such triangles is

n · (n− 1) · (n− 2)

6
,



290 CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024

which equals 4960 pieces for a matrix with dimension
n = 32.

For each such triangle, . . .

Figure 2. A triangle and notation for its sides and angles

. . . we determine the numerical value of the so-called
“badness”. In previous calculations, we considered sev-
eral variants of badness, examples of which are shown
in the following Table 1 for specific triangles. Below,
we use the badness value labeled as ”Bad. (0)”, which
we consider the most appropriate.

Table 1. Some triangles and their badness

Sides Angles Bad. (0) Bad. (5)

a, b, c α, β, γ (α − β)/γ (a − b)/c

1 1 1 60 60 60 0 0

5 5 4 66 66 47 0 0

42 41 28 72 68 39 0.10 0.04

19 18 17 66 60 55 0.11 0.06

40 38 27 74 66 40 0.19 0.07

10 9 8 72 59 50 0.26 0.13

6 5 5 74 53 53 0.39 0.20

13 12 5 90 67 23 1.00 0.20

5 4 3 90 53 37 1.00 0.33

12 6 5 − 1.09

20 6 5 − 1.81

Some comments.
1 The angles are rounded to the nearest degree, which may re-
sult in the sum not being exactly 180.
2 a ⩾ b ⩾ c, α ⩾ β ⩾ γ.
3 Other columns (i.e., Bad. (1) . . . Bad. (4)), that sometimes
were used in our previous papers and take into account the bad-
ness on sides and corners, are not shown here.
4 The triangles in the table are ordered in ascending order of
their corresponding Bad. (0) values.
5 To compare with the average values, we often use triangles
whose sides make up an arithmetic progression with a differ-
ence of 1; some of such triangles are given in the table.
6 Some of the triangles shown in the table are shown in the
following Fig. 3; the proportions are observed.

Thus, each triangle has a badness value ranging from
0 to 1 (or from 1 to 2 if the three points do not form a
triangle). The total badness value is typically considered
as the sum of the badness values for all triangles.

Figure 3. A triangle and notation for its sides and angles

Based on such matrices, we can calculate the total bad-
ness of all triangles and assert that algorithms with lower
badness values are better than those with higher values.
However, this particular analysis is beyond the scope of
this paper and has been the subject of previous work.

3 On the data organization in the data archive
The archive of the data used for computational exper-

iments can be found in a convenient format on the fol-
lowing cloud server: https://disk.yandex.ru/d/

2zZNVPmlsZi4RQ

As already noted, unlike previous publications, we
consider matrices of a slightly larger size; this is a size of
32×32 instead of 28×28 in previous publications. This
is due to the fact that recently we have managed to find
the mitochondrial DNA of 4 more species of monkeys
that do not belong to any of the previously considered
genera; note that biologists describe 34 genera of mon-
keys in total, so we consider almost all genera. However,
of course, the total number of monkey species (accord-
ing to various classifications, from 525 to more than 800,
[Cibelli et al., 2014; Lennarz and Lane, 2013] etc.) is
still far away, and, in addition, building a complete ta-
ble of the distances between the mitochondrial DNA of
all monkey species is one of the immediate goals of the
work; at the same time, we hope that more successful al-
gorithms for restoring small matrices will also be more
successful in the case of very large dimensions.

Now we shall provide the list of species correspond-
ing to the numbers used in the archive matrices; these
species are given in the following Table 2.



CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024 291

Table 2. Species of monkeys corresponding to the data of the matrix
archive

No. Species

1 Allenopithecus nigroviridis

2 Ateles belzebuth

3 Brachyteles arachnoides

4 Cacajao calvus

5 Callimico goeldii

6 Callithrix jacchus

7 Carlito syrichta

8 Cebuella pygmaea

9 Cephalopachus bancanus

10 Cercocebus atys

11 Cercopithecus albogularis

12 Chlorocebus sabaeus

13 Colobus angolensis

14 Erythrocebus patas

15 Galago moholi

16 Gorilla gorilla

17 Lagothrix lagotricha

18 Leontopithecus rosalia

19 Macaca fascicularis

20 Macaca fuscata

21 Mandrillus leucophaeus

22 Nasalis larvatus

23 Nycticebus coucang

24 Papio anubis

25 Presbytis melalophos

26 Pygathrix nemaeus

27 Rhinopithecus roxellana

28 Saguinus oedipus

29 Saimiri boliviensis

30 Semnopithecus entellus

31 Tarsius dentatus

32 Theropithecus gelada

Thus, the size of the matrices in question is 32 × 32
instead of 28 × 28 in previous publications. However,
the following is much more important. Previously, we
restored only one sparse matrix in all publications (some
values were forcibly removed from the original matrix,

while about 15% of the elements remained in the ma-
trix), and now we consider 10 matrices for each of sev-
eral different sparsity values (exactly, 30%, 20%, 12%,
and 8%).

Let us describe the archive of matrices. The initial ta-
ble is ta00.txt. In all the archive matrices, the deleted
values are replaced by −1. Titles of matrices are the fol-
lowing:

• from ta10.txt to ta19.txt correspond to a
sparsity of 12 (that is, approximately 12% of the
elements remain in the matrix);

• from ta20.txt to ta29.txt correspond to a
sparsity of 20;

• from ta30.txt to ta39.txt correspond to a
sparsity of 30;

• from ta40.txt to ta49.txt correspond to a
sparsity of 8.

4 The brief description of the algorithms used and
the basis results of computational experiments

Once again, we note that the approach proposed in the
paper, the methods and algorithms, are possible for any
options for the development of tasks:

• for any initial algorithm used to determine the dis-
tances between genomes, see [Levenshtein, 1966;
Needleman and Wunsch, 1970; Munekawa, Ino, and
Hagihara, 2008; Polavarapu et al., 2011] etc.;

• for any particular part of the genome; in addition
to mitochondrial DNA, for mammals (including hu-
man) in such a situation, the tail on the Y chromo-
some or the main histocompatibility complex are of-
ten considered; see [Tian and Li, 2024; Miao et al.,
2025] etc.;

• and for any set of species.

In the simple DNA matrix restoring method we devel-
oped earlier [Melnikov, Zhang, and Chaikovskii, 2022;
Abramyan, Melnikov, and Zhang, 2023], unknown ele-
ments of the matrix are considered and determined “from
the left to the right and from the top to the bottom” (in
such sequence only), and the recovery itself occurs as
a result of several computational passes. On each of
the passes, different estimates are obtained for some of
the still unfilled (i.e., unknown) elements of the matrix;
these estimates are specially averaged, and the result of
averaging is taken as the value of the unknown element.

The use of the described method to fill in the matrix of
distances between DNA sequences allows, first of all, to
significantly reduce the time for filling it, and the devia-
tion of the matrix elements obtained in this way from the
values calculated, for example, using the Needleman –
Wunsch algorithm averaged less than 2%, and about
10% in the worst case.

Thus, the following Table 3 shows the results corre-
sponding to the application of the previously presented
algorithms to the new values. We repeat that now we



292 CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024

have restored not the only matrix, but 10 matrices for
each of the 4 sparsity values.

Table 3. Applying old algorithms for new data

Old δ σ

100% 0.2223 0

30% 0.2223 0.2104 0.0682 0.0683

0.1975 0.2179 0.0759 0.0769

20% 0.1998 0.1661 0.0862 0.0782

0.1538 0.1813 0.0651 0.0679

12% 0.1176 0.1335 0.1021 0.1101

0.1247 0.1257 0.0269 0.0913

8% 0.1215 0.1328 0.1073 0.1133

0.1469 0.1459 0.1077 0.1152

Like the previous paper,

• δ is the average badness of the restoring matrices; as
we already said, we used Bad. (0) value;

• σ is the discrepancy, i.e., for n× n matrix,

σ =

√ ∑
1⩽i⩽n−1
i+1⩽j⩽n

(aij − aij)2

(n · (n− 1))/2
,

where aij and aij are the corresponding elements
of the original and reconstructed matrices, respec-
tively.

It is clear that the σ value for large matrices can be cal-
culated very rarely, and for small matrices often; it, like
δ, is used to check the quality of the recovery algorithm.

We can see, each cell in the table contains not one
value, but 4 values, usually approximately equal to each
other; we shall provide detailed information about the
different averaging options in the next section: this may
be of interest for deeper research, which we have not
conducted in this paper.

Let us turn to the consideration of substantially new
calculations. In the current paper, as already mentioned
in the introduction, we apply new heuristics, primarily
the following two.

First, every time we receive a new matrix value, we re-
turn to the previously restored elements, select the one
that gives the maximum value of badness, and try to
improve it based on the newly obtained elements. This
value of badness (for some specific element under con-
sideration, and not set initially, but filled in during our
calculations) is calculated for all pairs of elements al-
ready present in the matrix; and this element in question

with this pair forms a triangle for which badness is cal-
culated.

Secondly, when choosing the final value of an element
for the first approximation, we select several values close
to the optimal one (in practice, there are up to 10 of
them), after which we use correlation analysis to select
the closest ones; this is done as follows. In the examples
of algorithms and programs given in our recent publica-
tions, several “preliminary” possible values for the gen-
erated element were explicitly indicated; Namely, it was
primarily the value found by a very fast and very greedy
algorithm, as well as its product by some predefined co-
efficients, and these coefficients were usually (but not
always) selected from a certain R to 1/R with some se-
lected negative steps, and R was often chosen to be from
4.0 to 5.0 (therefore, for example, this coefficient could
be in the segment from 0.25 to 4.0).

While doing this, we discovered the following fact.
Very often in the real calculations, the values for differ-
ent variants of the coefficients almost coincided (which,
apparently, can be explained by the small dependence of
this particular new element on those already constructed
earlier), as a result of which the choice of the final value
could in principle be ambiguous. Note in this regard that
we have observed a similar fact when using the branch
and bound method, not only in the problem discussed in
this article, but also in many other discrete optimization
problems. As a result, we propose to describe a similar
possible heuristic for a whole class of problems in the
future.

The calculation of unknown elements of an incom-
pletely filled matrix based on the use of the value of
the badness indicator is based on the calculation that
it should ideally be zero, and determining the elements
“from left to right and from top to bottom”, i.e., in a
strictly defined sequence, can lead to the fact that for
previously defined triangles, the value of the badness in-
dicator is significantly it will increase. One of the forms
of smoothing out such a situation was the use of a risk
function that performs a special averaging, namely, the
use of risk functions [Melnikov, 2001], which we shall
discuss in the next section in a completely different con-
text.

Thus, as a result of the calculations, we got the follow-
ing Table 4 for the new heuristics (and, certainly, for the
same new data).

All relevant values have been improved compared to
the previous table 3. In each of the cells, the first (upper-
left) value is obtained by simply averaging all 10 values,
and the second (upper-right) value is obtained by aver-
aging 6 values: not counting the 2 smallest and 2 largest
(the so-called “median averaging”). An explanation of
the 2 remaining averaging options (also for 10 experi-
ments in each cell of the table) will be given in the next
section.



CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024 293

Table 4. Applying new algorithms for new data

New δ σ

100% 0.2223 0

30% 0.1319 0.1258 0.0318 0.0309

0.1366 0.1379 0.0327 0.0328

20% 0.1167 0.1129 0.0387 0.0375

0.1204 0.1204 0.0400 0.0401

12% 0.0857 0.0868 0.0475 0.0474

0.0890 0.0899 0.0484 0.0488

8% 0.0848 0.0857 0.0573 0.0533

0.0897 0.0902 0.0608 0.0609

5 The auxiliary algorithms
and the interpretation of the results

Let us note right away, that the detailed title of this sec-
tion could be as follows: “The auxiliary algorithms (the
risk functions and the rank correlation) and the interpre-
tation of the computational results”.

Thus, let us move on to a brief description of averaging
using the risk function. Let us repeat that we apply risk
functions in two cases:

• for the final choice of the current calculated value:
for the algorithms briefly described in the previous
section;

• and for the option of averaging various results; such
special averaging may be more adequate than the
usual arithmetic average.

Using risk functions is just averaging with specially se-
lected weighting coefficients; for more information, see
[Melnikov, 2001] etc. So, for values

x1, x2, . . . , xn

and functions f, the risk-averaged value is assumed to be
equal to ∑

1⩽i⩽n

f(xi) · xi∑
1⩽i⩽n

f(xi)
,

as can be seen in both further figures, i.e., Fig. 4 and 5:
the average value in both situations is the arithmetic
mean of the lengths of the vertical segments correspond-
ing to some various values of the considered variable.

Here is a very brief information about the specific vari-
ants of the risk function f used in the previous formula:
first, we talk about the so-called static risk functions.
Frequently used specific examples of such functions are
shown in Fig. 4 and 5. Note that in all the cases neces-
sary for the paper (that is, two use cases and two differ-
ent functions), we consider large values to be “bad” and

small values to be “good” ones; as a result, both func-
tions are increasing, decreasing risk functions are con-
structed in exactly the same way.

Since normalization can be assumed to have been per-
formed, the lower value (the abscissa is indicated by min
in the figures) is 0.5 in both cases, and the higher value
(the abscissa is indicated by max) is 1. We need suf-
ficient detail in which only convexity or concavity is
important, then in both cases we construct parabolas,
and one of the points, min or max, is the vertex of this
parabola; the coefficients for the parabola are easily se-
lected according to these figures.

Specifically, Fig. 4 shows such a risk function in which
large values are considered “bad”, and at the same time,
the worst case is more important for the algorithm using
these functions.

Figure 4. An example of risk function; large values are “bad”; the
worst case is more important.

Vice versa, Fig. 5 shows such a risk function in which
large values are also considered “bad”, but, at the same
time, the average case is more important for the algo-
rithm using these functions.

Figure 5. An example of risk function; large values are “bad”; the
average case is more important.

Thus, it is these two averaging options, with these spe-
cific risk functions, that are applied to all the cells in
both tables of experimental results: the lower left and
right values, respectively.



294 CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024

So, these were static risk functions. More com-
plex are the dynamic risk functions that generalize
them, which we first applied to programming non-
deterministic games, [Melnikov, 2001] etc. 1 We shall
not write in detail about dynamic risk functions (their ap-
plication to the material of this article is expected in the
future), we shall only say the following. First, they try to
automatically adjust to the situation, that is, depending
on the values of the variable, choose the direction of the
convexity of functions. Secondly, after the intellectual
games, we applied these functions in discrete optimiza-
tion problems, and this is the option that is supposed to
be applied in the future for the problems considered here.

In conclusion of the section, let us talk about the use
of rank correlation algorithms in the tasks under con-
sideration. It was said above that we pre-select several
adequate values close to the one that we previously con-
sidered optimal (as we noted, there are up to 10 of them).
We apply these values to the sequences of badness of all
new triangles formed (the estimate of the total number of
triangles in the matrix was given above); we believe (this
is exactly the heuristic of using correlation algorithms
in this problem) that the value that will be definitively
declared optimal has the maximum sum of the correla-
tion coefficients with other values. Note that we used the
version described in [Melnikov and Lysak, 2024] as an
algorithm for calculating rank correlation. The results
obtained do indeed indicate a slight improvement in the
final values, compared with the variants when auxiliary
algorithms for applying rank correlation were not used.

As a small analysis of the obtained calculation results,
let us say the following.

• Firstly, any of the 4 averaging options gives approx-
imately the same improvement, that is, simplifying
the situation, the distribution of values is “very sim-
ple”, and therefore we can use the simplest averag-
ing.

• Secondly, the final improvement is very big: it is
significantly higher than the results obtained in our
previous paper [Abramyan, Melnikov, and Zhang,
2023] in comparison with the results preceding that
paper.

• Thirdly, it seems that it is really necessary to impro-
ve greedy heuristics in this problem, rather than im-
plement variants of the branch and bound method;
however, such a statement should also be defini-
tively confirmed by further computational experi-
ments.

1The computer program for playing backgammon, implemented
under the guidance of the author of this paper, successfully partici-
pated in the ICGA World Intellectual Computer Games Championship.
However, several strong programs were not presented at the champi-
onship (the authors from Europe did not come to Southeast Asia), so
the author did not consider himself entitled to be called the winner of
this championship.

6 Conclusion
In general, our research on DNA analysis can be di-

vided into the following interconnected areas.

• Evaluating the relative quality of algorithms for
determining the distance between two DNA se-
quences.

• The task of restoring incomplete distance matrices;
as noted earlier, some of our previous work focuses
on this problem, and we continue this line of inquiry
in this paper.

• Improving the initial algorithms for determining
distances between sequences based on the results
obtained in the previous steps.

• Addressing related problems in the statistical analy-
sis of the results obtained.

We also note the similarity between the incomplete
distance matrix problem discussed here and the travel-
ing salesman problem, particularly its pseudo-geometric
version. This connection is reflected in many recent
articles by the author, among which we note the ones
already quoted above [Melnikov, Pivneva, and Tri-
fonov, 2017; Melnikov, Zhang, and Chaikovskii, 2022;
Abramyan, Melnikov, and Zhang, 2023]. In both types
of problems:

• either one can use the branch-and-bound method, in
which the main task of algorithm optimization is the
development of auxiliary heuristics for this method;

• or alternatively, the focus can be on developing
greedy heuristics, which can be considered as the
main subject of this paper.

Let us repeat with a few additions what was said above.
The results obtained indicate that in order to obtain a ma-
trix for all types of monkeys in the future, it is desirable
to have about 10 − 12% of the data: simplifying the
situation somewhat, we can say that 7 − 8% gives less
adequate recovery results. I.e., δ value it turns out to be
too small, which in the limit, i.e. with a very small per-
centage of known matrix cells, can give a zero value; this
may correspond to equal values of the matrix elements,
which, of course, is not interesting for the problems un-
der consideration. Vice versa, 15% and more do not im-
prove the value of badness (compared to 10%). At the
same time, obtaining exactly such a full matrix by the al-
gorithm for calculating DNA distance should take about
20− 25 days of computer operation. What is said above
in this paragraph can be considered the formulation of
the most important direction for further research.

At the end of the paper, we shall provide a few more
links related to various studies of distance matrices be-
tween genomes. The use of a rather original approach
to the study of the genomes of various species of mon-
keys is described in the most recent studies, [Young
and Gilles, 2025]. Among the earlier works, we note
[Ballester and Richards, 2007; Bodenhofer et al., 2015].



CYBERNETICS AND PHYSICS, VOL. 13, NO. 4, 2024 295

Acknowledgement
This work was supported by the grant of the Scientific

program of Chinese universities “Higher Education Sta-
bility Support Program” (chapter “Shenzhen 2022 – Sci-
ence, Technology and Innovation Commission of Shen-
zhen Municipality”).

The author also expresses gratitude to post-graduate
students Li Jiamian and Mu Jingyuan (Shenzhen MSU –
BIT University) who received values of the initial table
ta00.txt of the archive.

References
Abramyan M., Melnikov B., and Zhang Y. (2023)
Some more on restoring distance matrices between
DNA chains: reliability coefficients. Cybernetics and
Physics, 12(4), pp. 237–251.
Ballester P.J. and Richards W.G. (2007) Ultrafast shape
recognition to search compound databases for similar
molecular shapes. Journal Comput. Chem., 28. DOI:
10.1002/jcc.20681.
Bodenhofer U., Bonatesta E., Horejs-Kainrath C., and
Hochreiter S. (2015) Msa: an R package for multiple
sequence alignment. Bioinformatics, 31(24), pp. 3997–
3999. DOI: 10.1093/bioinformatics/btv494.
Cibelli J., Wilmut I., Jaenisch R. et al. (Eds) (2014).
Principles of Cloning. Academic Press, New York.
Lennarz J. and Lane M. (Eds) (2013). Encyclopedia of
Biological Chemistry. Elsevier Publ., Amsterdam.
Levenshtein V. (1966) Binary codes capable of correct-
ing. Deletions, insertions, and reversals. Soviet Physics
Doklady, 10, pp. 707–710.
Melnikov B. (2001) Heuristics in programming of non-
deterministic games. Programming and Computer Soft-
ware, 27(5), pp. 277–288
Melnikov B., Pivneva S., and Trifonov M. (2017).
Various algorithms, calculating distances of DNA se-
quences, and some computational recommendations
for use such algorithms. CEUR Workshop Proceedings,
1902, pp. 43–50.
Melnikov B., Zhang Y., and Chaikovskii D. (2022). An
inverse problem for matrix processing: an improved

algorithm for restoring the distance matrix for DNA
chains. Cybernetics and Physics, 11(4), pp. 217–226.
Melnikov B. and Lysak T. (2024). On some algorithms
for comparing models of femtosecond laser radiation
propagation in a medium with gold nanorods. Cyber-
netics and Physics, 13(3), pp. 261–267.
Miao L., Liu Sh., Pan K.-P., Jiao R.-L., Zhang Q., Xu
T.-Y., Tong Sh.-Y., Kang K.-L., Zhao J., Zhang Ch.,
Wang Kai-Di, and Ji A.-Q. (2025). Improved under-
standing of sequence polymorphisms at 42 Y chromo-
some short tandem repeats for the Chinese Han popu-
lation. Cybernetics and Physics, 75, no. 103181, DOI:
10.1016/j.fsigen.2024.103181.
Munekawa Y., Ino F., and Hagihara K. (2008).
An inverse problem for matrix processing: an im-
proved algorithm for restoring the distance matrix for
DNA chains. 8th IEEE International Conference on
BioInformatics and BioEngineering, BIBE-2008, DOI:
10.1109/BIBE.2008.4696721.
Needleman S. and Wunsch Ch. (1970). A general
method is applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of
Molecular Biology, 48(3), pp. 443–453.
Polavarapu N., Arora G., Mittal V., and McDonald J.
(2011). Characterization and potential functional sig-
nificance of human-chimpanzee large INDEL varia-
tion. Mob DNA, Oct 25:2:13.
Sergeenko A., Granichin O., and Yakunina M. (2020).
Hamiltonian path problem: the time consumption com-
parison of DNA computing and branch and boundary
method. Cybernetics and Physics, 9(1), pp. 121–127.
Tian W. and Li L. (2024). Full genomic sequence shows
HLA-B*40:186:02 differs from HLA-B*40:186:01
by a cytosine substitution in exon 2. HLA (Tis-
sue Antigens), Published by John Wiley & Sons
Ltd, https://www.scopus.com/sourceid/
21100775663.
Young S. and Gilles J. (2025) Use of 3D chaos
game representation to quantify DNA sequence sim-
ilarity with applications for hierarchical clustering.
Journal of Theoretical Biology, 5967(111972). DOI:
10.1016/j.jtbi.2024.111972.


