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Abstract
We model the neuronal activity of the C.elegans net-

work by coupling Hindmarsh-Rose oscillators through
the adjacency matrix obtained from the corresponding
brain connectivity. By means of numerical simulation,
we produce the parameter spaces for quantities related
to synchronization, metastability and chimera-like dy-
namics, identifying, thus, interesting complex patterns
of collective behaviour.
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1 Introduction
The brain is an incredibly complex system where the

different parts (cortical areas) work together but, at
the same time, each part has its own special proper-
ties. Synchronization is important for cognitive func-
tions and takes place at various levels, within and be-
tween cortical areas. The topological properties of a
brain network and the local neuron dynamics affect
synchronization. As a model organism we employ the
C.elegans network and focus on the study of synchro-
nization, chimera-like, and metastable states.

2 Community Detection
The communities of the C.elegans brain network are

identified using the walktrap method [1] with six steps
following Ref. [2]. The walktrap algorithm detects
communities through a series of short random walks,
based on the the idea that vertices encountered on any
given random walk are more likely to lie within a com-
munity. The algorithm initially treats all nodes as com-
munities of their own, then merges them into larger
communities, and these into still larger ones and so on.
Essentially, it tries to find densely connected subgraphs
(i.e. communities) in a graph via random walks. The
idea is that short random walks tend to stay in the same

community. Following this procedure we have been
able to identify six communities in the C.elegans brain
network.
In Ref. [2] the authors computed various statistical

quantities associated with the C.elegans brain network,
such as the global clustering coefficient, the average
of local clustering coefficients, the mean shortest path,
the degree pdf of the network and the small-worldness
measure. In the current study, our focus is on the dy-
namics that take place on the specific community-based
network topology and how this is affected by the inter-
play of the coupling within and between communities.

3 System Dynamics
For the dynamics of each node we employ the

Hindmarsh-Rose (HR) neural model [3; 4]. The result-
ing undirected brain network of N neurons connected
simultaneously by electrical and chemical coupling is
mathematically described by the following equations:

ṗi = qi − αp3
i + bp2

i − ni + Iext

+ gl

N∑
j=1

GijH(pj) − gn(pi − Vsyn)

N∑
j=1

CijS(pj) ,

q̇i = c− dp2
i − qi ,

ṅi = r[a(pi − p0)− ni] ,

φ̇i =
q̇ipi − ṗiqi
p2
i + q2

i

,

where pi is the membrane potential of the i-th neuron,
qi is associated with the fast current Na+ or K+, ni
with the slow current Ca2+, and φi is the phase of the
i-th oscillator. Other parameters are chosen as a = 1,
b = 3, c = 1, d = 5, r = 0.005, p0 = −1.6 and
Iext = 3.2. Parameter r modulates the slow dynamics
of the system and determines the number of spikes per
burst, and we set it to 0.005 such that each neuron is
chaotic.



The electrical coupling is given by a linear function
H(p) = p and the chemical coupling is given by a non-
linear one S(p) = (1 + exp[−λ(p−Θsyn)])−1, where
Θsyn = −0.25 and λ = 10. The parameter Vsyn takes
the value 2 for excitatory and −2 for inhibitory cou-
pling. We consider the excitatory version of the net-
work: If two neurons are connected under an excita-
tory synapse then, when the presynaptic neuron spikes,
it induces the postsynaptic neuron to spike. |pi| < 2,
thus, (pi − Vsyn) is negative for excitatory coupling.
Iext = 3.2, for which the system exhibits a multi-scale
chaotic behaviour characterized as spike bursting.
Gij is a Laplacian matrix and describes electrical cou-

pling within each community. Cij is an adjacency ma-
trix with diagonal elements equal to 0 and describes
chemical coupling between the communities. Param-
eters gn and gl are the coupling strength associated to
the chemical and electrical synapses, respectively.

3.1 Parameter Spaces
In order to quantify the synchronization level of the

neural activity in the whole network we use the global
order parameter ρg which originates from the theory of
coupled phase oscillators of the Kuramoto type [5] and,
can be computed by a complex number defined as:

ρg(t)e
iΦ(t) =

1

N

N∑
j=1

eiφj(t),

where N is the number of oscillators. By taking the
modulus of this quantity, one can measure the phase
coherence in a certain population of N neurons. Φ(t)
is the average phase in the respective population of os-
cillators and φi is the phase variable of the i-th neuron
of the HR system.
We have calculated the converging value of ρg in the

parameter space of the two coupling strengths gl and
gn. The result is shown in the left panel of Fig. 1,
where we observe that high syncrhonization levels for
the entire network can be achieved only for low chem-
ical coupling strengths.
One should have in mind that complex systems (like

the brain) do not converge to stable synchronized states
but, instead, exhibit metastability. This means that tem-
porarily they may be found in the vicinity of one stable
state before spontaneously leaving away from it toward
another. A second feature of many complex systems
is competition. In the context of synchronization, this
is demonstrated as chimera states [5; 6; 7; 8; 9; 10;
11], where one community of oscillators synchronizes
while other communities are desynchronized
In order to quantify how metastable and chimera-like

the observed dynamics is, we employ the two measures
first introduced by M. Shanahan in [12]. The level
of metastability can be calculated from the so-called

metastability index [12], given but the expression:

λ = 〈σmet〉C , (2)

where

σmet(c) =
1

T − 1

∑
t≤T

(ρc(t)− 〈ρc〉T )2. (3)

In the above equation, C is the set of all M communi-
ties. The order parameter of each community, ρc(t), is
sampled at discrete times t ∈ 1..T . For a given commu-
nity, the variance σmet(c) of ρc(t) over all time points,
gives us an indication of how much the synchrony in
this community fluctuates in time. Averaging over all
communities inC gives us an index of the metastability
in the entire network.
Similarly, the so-called chimera-like index [12] is

given by:

χ = 〈σchi〉T , (4)

where

σchi(t) =
1

M − 1

∑
c∈C

(ρc(t)− 〈ρ(t)〉C)2. (5)

In the above expression, σchi(t) is an instantaneous
quantity that gives the variance of φc(t) over all com-
munites in C at a given time t. The average of this
quantity in time indicates how chimera-like a certain
state is. The middle and right panel of Fig. 1 show how
the metastability and chimera-like index varies in the
parameter space (gl, gn), respectively.

3.2 Complex patterns and dynamical states
We select 4 points of interest on the (gl, gn) parame-

ter space (marked by letter A-D) in order to highlight
some interesting patterns among the melange of dy-
namical regimes that our system exhibits. These points
are chosen such that the following four cases are cov-
ered: (A) both λ and χ are low-valued, (B) metasta-
bility prevails i. e. λ >> χ (when normalized to 1),
(C) “chimera-likeness” prevails over metastability i. e.
χ >> λ (when normalized to 1), and (D) λ and χ are
equal and middle-valued (around 0.5 when normalized
to 1).
Figure 2 shows the space-time plots of the p-variable

for points A-D. The nodes in the communities are rela-
beled such that each community is placed next to each
other in space (community 1 (far left),. . . community 6
(far right)).
A: This point corresponds to low metastability and

low chimera-like index. This means that the network
as a whole does not switch to different synchroniza-
tion patters frequently in time, and simultaneously, the



Figure 1. Parameter spaces in the (gn, gl) parameter space for the global order parameter (left), the metastability index (middle) and the
chimer-like index (right).
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Figure 2. Space-time plots of the whole network for the 4 points marked in the parameter spaces of Fig. 1. A: λ and χ very low, B: λ high,
χ low, C: χ high, λ low, D: χ and λ of same medium value. Node indices have been reordered.

6 communities are to a large extent in syncrhony with
each other. This is expected for such a combination
of electrical and chemical couplings and is in agree-
ment with the high value of the global order parameter
(Fig. 1(left)).

B: This point shows the effect of metastability when
the chimera-like index is low-valued. This is illustrated
by the rather regular pattern in space (due to low χ)
which in time switches between slow quiescent periods
(yellow-red) to fast spiking intervals (blue-green) that
correspond to synchronous and incoherent regimes, re-
spectively.

C: This point corresponds to a chimera-like state,
where metastability is less prominent. Communities 1,

5 and 6 seem to be the ones that are more incoherent
while communities 2 and 4 show long intervals of co-
herence. If one takes a snapshot in time, one may find
coexsting synchronized and unsynchronized commu-
nities, a state reminiscent of the well-known chimera
states reported in many systems both theoretically and
experimentally.
D: This point refers to the case where both λ and χ

are prominent in the system.

4 Conclusion
We have identified complex patterns of collective

behaviour in a community-organized network based
on the C.elegans connectivity matrix. In particular,



metastable and chimera-like states are observed as a re-
sult of the interaction between topology and local dy-
namics.
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(2013) When nonlocal coupling between oscilla-
tors becomes stronger: patched synchrony or multi-
chimera states. Phys. Rev. Lett. 110:224101.
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