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Abstract
Many systems, arising in electrical and electronic en-

gineering are based on controlled phase synchroniza-
tion of several periodic processes (“phase synchroniza-
tion” systems, or PSS). Typically such systems are
featured by the gradient-like behavior, i.e. any so-
lution of the system converges to one of equilibrium
points. If a PSS in not gradient-like it may have peri-
odic regimes which are undesirable for most systems.
In the present paper, we address the problem of lack or
existence of periodic regimes for phase synchroniza-
tion systems described by integro-differential Volterra
equations. New effective frequency–algebraic esti-
mates for the frequency of possible periodic regimes
are obtained by means of Fourier expansions and the
tool of Popov functionals destined specially for peri-
odic nonlinearities.
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1 Introduction
A lot of control systems arising in electrical engi-

neering, electronics, mechanics and telecommunica-
tions may be modeled as interconnection of a linear
plant, described by differential or integro–differential,
equations and a periodic nonlinear feedback. These
mathematical models are often referred to as phase syn-
chronization systems (PSS) [Yang and Huang, 2007],
being the subject matter of phase synchronization

theory [Leonov, 2006], [Lindsey,1972], [Leonov and
Kuznetsov, 2014]. This theory gives the opportu-
nity to examine the asymptotic behavior of phase–
locked loops (PLL) [Best, 2007], [Leonov, Kuznetsov,
Yuldashev, M. V. and Yuldashev, R. V., 2011], [Ku-
drewicz and Wasowicz, 2007], self–synchronization
systems [Blekhman, 1988], electrical and mechanical
machines [Leonov and Kondrat’eva, 2008], [Stoker,
1950].
Phase synchronization systems have as a rule an infi-

nite denumerable set of equilibrium points which cor-
respond to synchronous regimes. So the basic problem
most of the papers considering PSS deal with is con-
vergence of any trajectory to an equilibrium point. This
property is called gradient–like behavior.
The problem of gradient–like behavior has been ex-

plored in many published works, see [Leonov, 2006]
and reference therein for details. For PSS with lumped
parameters Lyapunov direct method turned out to be
rather fruitful. But as soon as the two traditional Lya-
punov functions, i.e. ”quadratic form” and ”quadratic
form plus integral of the nonlinearity” proved to be of
no use here, efficient criteria of gradient–like behav-
ior has been obtained by means of several new types
of Lyapunov functions [Leonov, 2006], [Leonov, Pono-
marenko and Smirnova, 1996].
In particular, periodic Lyapunov functions have been

exploited. In the pioneering paper [Bakaev and Guzh,
1965] a periodic Lyapunov function for a third or-
der PSS was considered. Then in [Gelig, Leonov
and Yakubovich, 1978] the results of [Bakaev and
Guzh, 1965] were extended to a multidimensional PSS,
in [Leonov, Ponomarenko and Smirnova, 1996] a fur-



ther periodic function was introduced and in [Perkin,
Shepeljavyi and Smirnova, 2009] a generalized peri-
odic function was offered.
With the help of Kalman–Yakubovich–Popov (KYP)

lemma the necessary and sufficient conditions for
the existence of a periodic Lyapunov function took
the form of frequency–algebraic inequalities with a
number of varying parameters. The Popov method
of a priori integral indices [Popov, 1973] gave the
opportunity to extend the frequency–algebraic crite-
ria of gradient–like behavior to PSS with distributed
parameters [Leonov, Ponomarenko and Smirnova,
1996], [Perkin, Shepeljavyi and Smirnova, 2012].
If a PSS is not gradient–like it may have periodic

regimes which regimes are undesirable for most sys-
tems. So the problem arises if a PSS has a pe-
riodic regime of a certain frequency. The prob-
lem has been investigated both by approximate calcu-
lus [Shakhil’dyan and Lyakhovkin, 1972] and by ana-
lytical methods [Evtyanov and Snedkova, 1968].
In paper [Leonov and Speranskaya, 1985] with the

help of Fourier series it was shown that the frequency–
algebraic conditions of gradient–like behavior can be
used to guarantee that multidimensional PSS has no
periodic regimes of certain frequencies. The results
of [Leonov and Speranskaya, 1985] were extended then
to infinite dimensional PSS [Leonov, Ponomarenko
and Smirnova, 1996] and to discrete ones [Leonov
and Fyodorov, 2011]. On the other hand in pa-
per [Perkin, Shepeljavyi, Smirnova and Utina, 2014]
the results of [Leonov and Speranskaya, 1985] were
generalized by means of Lyapunov function borrowed
from [Perkin, Shepeljavyi and Smirnova, 2009].
In this paper we extend the frequency conditions ob-

tained in [Perkin, Shepeljavyi, Smirnova and Utina,
2014] to infinite dimensional PSS.

2 Problem setup
Consider a system of integro–differential equations as

follows

dσ(t)
dt = α(t) +Rf(σ(t− h))−

−
t∫

0

γ(t− τ)f(σ(τ)) dτ (t ≥ 0).
(1)

Here σ(t) = (σ1(t), ..., σl(t))
T and f(σ) is an

input–output decoupled MIMO nonlinearity:
f(σ) = (ϕ1(σ1), ..., ϕl(σl))

T . Each map ϕj is
assumed to be C1–smooth and ∆j–periodic, with
simple and isolated roots. It is also assumed that
∆j∫
0

ϕj(ξ) dξ < 0. The matrix R ∈ Rl×l, delay h ≥ 0,

the function α : [0,+∞)→ Rl, and kernel map
γ : [0,+∞)→ Rl×l in (1) are known, and α(·)
is continuous. The solution of (1) is defined by
specifying initial condition

σ(t)|t∈[−h,0] = σ0(t). (2)

Assume that σ0(·) is continuous and
σ(0 + 0) = σ0(0).
We suppose also that the following restrictions are

valid:

α(t)→ 0 as t→ +∞;
|α(t)|+ |γ(t)| ∈ L1[0,+∞) ∩ L2[0,+∞).

(3)

Note that if a vector–function σ(t) is a so-
lution of system (1) then an arbitrary func-
tion (σ1(t) + I1∆1, ..., σl(t) + Il∆l)

T with
Ij ∈ Z (j = 1, ..., l) is also a solution of system (1).
So (1) can be called a phase system by analogy with
the phase differential equations [Gelig, Leonov and
Yakubovich, 1978].
A phase system (1) has an infinite denumerable set of

equilibriums. If every solution of system (1) converges
to a certain equilibrium the system is called gradient–
like. In case the phase system (1) is not gradient–like it
may have periodic solutions which are divided into two
classes: solutions of the first kind and solutions of the
second kind.
Definition 1. We say that a solution σ(t) of (1) is a

periodic solution if there exist a number T > 0 and in-
tegers Ij (j = 1, ..., l) such that

σj(t+ T ) = σj(t) + Ij∆j , ∀t (j = 1, ..., l). (4)

If all Ij = 0 (j = 1, ..., l) the solution σ(t) is called a
periodic solution of the first kind. If I2

1 + ...+ I2
l 6= 0

it is called a periodic solution of the second kind.
The number T is the period and the number ω = 2Π

T is
the frequency of a periodic solution. Our goal here is to
get some conditions for existence of periodic solutions
of system (1). We are going to develop the approach ex-
ploited in [Leonov and Speranskaya, 1985], [Leonov,
Ponomarenko and Smirnova, 1996]. It combines the
idea of Fourier expansions in [Garber, 1967] and the
tool of Lyapunov periodic functions or of Popov func-
tionals. The conditions obtained have the form of
frequency–algebraic inequalities with varying param-
eters.
We shall need the transfer matrix of the linear part

of (1)

K(p) = −Re−ph +
∞∫
0

γ(t)e−pt dt (p ∈ C). (5)

Its real part is defined as follows

ReK(p) =
1

2
(K(p) +K∗(p)), (6)

where the symbol ∗ is used for Hermitian conjugation.
We shall also need some preliminaries [Leonov and

Speranskaya, 1985], [Leonov, Ponomarenko and



Smirnova, 1996]. Suppose that σ(t) is a T–periodic
solution of system (1). Then f(σ(t)) is a T–periodic
function. Indeed it follows from (4) that

ϕj(σj(t+T )) = ϕj(σj(t)+Ij∆j) = ϕj(σj(t)). (7)

Then

f(σ(t)) =

+∞∑
k=−∞

Bke
iωkt (i2 = −1), (8)

where Bk are l–vectors. By substituting (8) in (1) we
have

σ̇(t) = α(t) + β(t)−
+∞∑

k=−∞

K(iωk)Bke
iωkt, (9)

where

β(t) =

+∞∫
t

γ(τ)f(σ(t− τ)) dτ. (10)

It follows from the restrictions (3) that
α(t) + β(t)→ 0 as t→ +∞. But since σ̇(t) is
T–periodic it follows that α(t) + β(t) = 0 and

σ̇(t) = −
+∞∑

k=−∞

K(iωk)Bke
iωkt. (11)

3 Main results
Let µ1j = infξ∈[0,∆j ] ϕ

′(ξ), µ2j = supξ∈[0,∆j ] ϕ
′(ξ),

(j = 1, ..., l). It is clear that µ1jµ2j < 0. De-
fine the matrices M1 = diag{µ11, µ12, ..., µ1l},
M2 = diag{µ21, µ22, ..., µ2l} and introduce constants

νj =

∆j∫
0

ϕj(ξ) dξ

∆j∫
0

|ϕj(ξ)| dξ
, ν0j =

∆j∫
0

ϕj(ξ) dξ

∆j∫
0

|ϕj(ξ)|Φj(ξ) dξ
,

(12)
where

Φj(ξ) =
√

(1− µ−1
1j ϕ

′
j(σ))(1− µ−1

2j ϕ
′
j(σ)). (13)

Theorem 1. Suppose there exist ω0 > 0, ma-
trix κ = diag{κ1, ...,κl}, positive definite ma-
trices τ = diag{τ1, ..., τl}, ε = diag{ε1, ..., εl},
δ = diag{δ1, ..., δl} and numbers aj ∈ [0; 1]
(j = 1, ..., l), such that the following conditions

are valid:
1) for ω = 0 and all ω ≥ ω0 the inequality

Ω(ω) := Re
{
κK(iω)− (K(iω) +M−1

1 iω)∗τ(K(iω)+

+M−1
2 iω)−K∗(iω)εK(iω)

}
− δ > 0;

(14)
is true;
2) the quadratic forms

Qj(ξ, η, ζ) = εjξ
2 + δjη

2 + τjζ
2 + κjajνjξη+

+κj(1− aj)ν0jηζ (j = 1, ..., l)
(15)

are positive definite.
Then system (1) has no periodic solutions of the fre-

quency ω ≥ ω0.
Proof. Let us introduce the functions

Fj(ζ) = ϕj(ζ)− νj |ϕj(ζ)|, (16)

Ψj(ζ) = ϕj(ζ)− ν0jΦj(ζ)|ϕj(ζ)| (17)

and vector functions F (σ) = (F1(σ1), ..., Fl(σl))
T ,

Ψ(σ) = (Ψ1(σ1), ...,Ψl(σl))
T . It is obvious that

∫ ∆j

0

Fj(ζ) dζ =

∫ ∆j

0

Ψj(ζ) dζ = 0. (18)

Introduce also the matrices A = diag{a1, ..., al},
A0 = diag{1− a1, ..., 1− al}. Define a function

G(t) = σ̇∗(t)εσ̇(t) + σ̇∗(t)κf(σ(t))+
+f∗(σ(t))δf(σ(t))− F ∗(σ(t))Aκσ̇(t)−
−Ψ∗(σ(t))A0κσ̇(t)+

+(σ̇(t)−M−1
1 ḟ(σ(t)))∗τ(σ̇(t)−M−1

2 ḟ(σ(t)))
(19)

and consider a set of functionals

J(Θ) =

∫ Θ

0

G(t) dt (Θ > 0). (20)

Suppose σ(t) is a T–periodic solution of (1). Let us
transform the integral of J(T ) using (17) and (16):

J(T ) =
∫ T

0

∑l
j=1

{
εjσ

2
j (t) + κjϕj(σj(t))σ̇j(t)−

−ajκjFj(σj(t))σ̇j(t) + δjϕ
2
j (σj(t))−

−(1− aj)κjΨj(σj(t))σ̇j(t)+
+τj(σ̇j(t)− µ−1

1j ϕ
′
j(σj(t)))·

·(σ̇j(t)− µ−1
2j ϕ

′
j(σj(t)))

}
dt =

=
∫ T

0

∑l
j=1

{
εj σ̇

2
j (t) + δjϕ

2
j (σj(t))+

+τj σ̇
2
j (t)Φ2

j (σj(t)) + κjajνj |ϕ(σj(t))|σ̇j(t)+
+κj(1− aj)ν0j |ϕ(σj(t))|σ̇j(t)Φj(σj(t))

}
dt =

=
∫ T

0

∑l
j=1Qj(σ̇j(t), |ϕ(σj(t))|, σ̇j(t)Φj(σj(t))).

(21)



In virtue of condition 2) of the theorem

J(T ) > 0. (22)

Suppose now that σ(t) has the frequency ω ≥ ω0. Let
us transform the functional J(T ) using expansions (8)
and (11) under the following obvious equalities:

B−k = B̄k (k ∈ Z), (23)

where the symbol − is used for complex conjugation;

∫ T

0

eiωkteiωmt dt =

{
0, if k 6= −m,
T, if k = −m, (k,m ∈ Z).

(24)
Notice that in virtue of Definition 1 the following
equalities are valid:

∫ T

0

Fj(σj(t))σ̇j(t) dt =

∫ σj(T )

σj(0)

Fj(ζ) dζ = 0, (25)

∫ T

0

Ψj(σj(t))σ̇j(t) dt = 0. (26)

We have

J(T ) =

4∑
k=1

Jk(T ), (27)

where

J1(T ) =
∫ T

0
σ̇∗(t)κf(σ(t)) dt,

J2(T ) =
∫ T

0
f∗(σ(t))δf(σ(t)) dt,

J3(T ) =
∫ T

0
σ̇∗(t)εσ̇(t) dt,

J4(T ) =
∫ T

0
(σ̇(t)−M−1

1 ḟ(σ(t)))∗τ ·

·(σ̇(t)−M−1
2 ḟ(σ(t))) dt.

(28)

Now we may transform each of the integrals Jj(T ) us-
ing the formulas (8) and (11). We obtain

J1(T ) = −
∫ T

0

{
(
∑+∞
k=−∞B∗kK

∗(iωk)e−iωkt)κ·

·(
∑+∞
r=−∞Bre

iωrt)
}
dt = −T

{
B∗0K

∗(0)κB0+

+
∑+∞
k=1

(
B∗kK

∗(iωk)κBk +B∗−kK
∗(−iωk)κB−k

)}
.

(29)

Since K(−iωk) = K̄(iωk) we have from (23) that

J1(T ) = −T
{
B∗0K

∗(0)κB0+

+2
∑+∞
k=1

(
B∗kRe(κK(iωk))Bk

)}
.

(30)

Further

J2(T ) =
∫ T

0

{
(
∑+∞
k=−∞B∗ke

−iωkt)δ·

·(
∑+∞
r=−∞Bre

iωrt)
}
dt =

= T{B∗0δB0 + 2
∑+∞
k=1B

∗
kδBk}.

(31)

J3(T ) =
∫ T

0

{
(
∑+∞
k=−∞B∗kK

∗(iωk)e−iωkt)ε·

·(
∑+∞
r=−∞K∗(iωr)Bre

iωrt)
}
dt =

= T{B∗0K∗(0)εK(0)B0+

+2
∑+∞
k=1B

∗
kK
∗(iωk)εK(iωkBk}.

(32)

For integral J4(T ) the following representation is true

J4(T ) =
∫ T

0
σ̇∗(t)τ σ̇(t) dt−

−
∫ T

0
ḟ∗(σ(t))M−1

1 τ σ̇(t) dt−

−
∫ T

0
σ̇∗(t)τM−1

2 ḟ(σ(t)) dt+

+
∫ T

0
ḟ∗(σ(t))M−1

1 τM−1
2 ḟ(σ(t)) dt.

(33)

We get from (8) that

ḟ(σ(t)) =
∑+∞
k=−∞ iωkBke

iωkt. (34)

Then the following equalities are true:

∫ T
0
ḟ∗(σ(t))M−1

1 τ σ̇(t) dt =

=
∫ T

0

{
(
∑+∞
k=−∞(−iωk)B∗ke

−iωkt)M−1
1 τ ·

·(−
∑+∞
r=−∞K(iωr)Bre

iωrt)
}
dt =

= 2T
∑+∞
k=1B

∗
kRe(M

−1
1 τ(iωkK(iωk)))Bk;

(35)

∫ T
0
σ̇∗(t)τM−1

2 ḟ(σ(t)) dt =

= −2T
∑+∞
k=1B

∗
kRe(iωkK

∗(iωk)τM−1
2 )Bk;

(36)



∫ T
0
ḟ∗(σ(t))M−1

1 τM−1
2 ḟ(σ(t)) dt =

= 2T
∑+∞
k=1 k

2ω2B∗kM
−1
1 τM−1

2 Bk.

(37)

From (32)–(37) it follows that

J4(T ) = TB∗0K
∗(0)τK(0)B0+

+2T
∑+∞
k=1B

∗
kRe{(K(iωk) +M−1

1 iωk)∗·

·τ(K(iωk) +M−1
2 iωk)}Bk;

(38)

From (27)–(31) and (38) we get that

J(T ) = −TB∗0{κK(0)−K∗(0)(ε+ τ)K(0)−

−δ}B0 − 2T
∑+∞
k=1B

∗
k{Re(κK(iωk)−

−(K(iωk) + iωkM−1
1 )∗τ(K(iωk) + iωkM−1

2 ))−

−δ −K∗(iωk)εK(iωk)}Bk.
(39)

Condition 1) of the Theorem guarantees that all the
terms B∗kΩ(ωk)Bk (k = 0, 1, 2, ...) in (39) are non-
negative and consequently

J(T ) ≤ 0. (40)

This inequality contradicts with (22). The contra-
diction means that our assumption is wrong and the
system (1) has no periodic solution of the frequency
ω ≥ ω0. Theorem 1 is proved.
Theorem 2. Suppose there exist ω0 > 0, ma-

trix κ = diag{κ1, ...,κl}, positive definite ma-
trices τ = diag{τ1, ..., τl}, ε = diag{ε1, ..., εl},
δ = diag{δ1, ..., δl}, such that condition 1) of Theo-
rem 1 is true and the inequalities

4δjεj > κ2
j ν

2
1j (j = 1, ..., l) (41)

with

ν1j =

∆j∫
0

ϕj(ξ) dξ

∆j∫
0

|ϕj(ξ)|
√

1 +
τj
εj

Φ2
j (ξ) dξ

(42)

are valid. Then the system (1) has no periodic solution
of the frequency ω ≥ ω0.
Proof. Introduce the functions

Pj(ξ) =
√

1 +
τj
εj

Φ2
j (ξ),

Yj(ξ) = ϕj(ξ)− ν1j |ϕj(ξ)|Pj(ξ) (j = 1, ..., l).
(43)

Let

Y (ξ) = (Y1(ξ), ..., Yl(ξ))
T . (44)

It is obvious that

∫ ∆j

0

Yj(ξ) dξ = 0. (45)

Determine the function

G0(t) = σ̇∗(t)εσ̇(t) + f∗(σ(t))κσ̇(t)+
+f∗(σ(t))δf(σ(t))+

+(σ̇(t)−M−1
1 ḟ(σ(t)))∗τ(σ̇(t)−M−1

2 ḟ(σ(t)))−
−Y ∗(σ(t))κσ̇(t)

(46)
and consider the integral

J0(Θ) =

∫ Θ

0

G0(t) dt (Θ > 0). (47)

Suppose that σ(t) is a T–periodic solution of (1).
Then

J0(T ) =
∫ T

0

{∑l
j=1

(
εj σ̇

2
j (t) + δjϕ

2
j (σj(t))+

+τj σ̇
2
j (t)Φ2

j (σj(t))+

+κjν1j |ϕj(σj(t))|Pj(σj(t))σ̇j(t)
)}

dt =

=
∫ T

0

{∑l
j=1

(
εj(σ̇jPj(σj(t)))

2 + δjϕ
2
j (σj(t))+

+κjν1j |ϕj(σj(t))|Pj(σj(t))σ̇j(t)
)}

dt.

(48)
In virtue of (41) we have

J0(T ) > 0. (49)

Let the T–periodic solution of (1) has the frequency
ω ≥ ω0. Since

∫ T
0
Yj(σj(t))σ̇j(t) dt =

∫ σj(T )

σj(0)
Yj(ξ) dξ = 0, (50)

we make a conclusion that J0(T ) = J(T ) with J(Θ)
defined by formula (20). It has already been proved at
the proof of the Theorem 1 that if inequality (14) is true
for all ω ≥ ω0 then

J0(T ) = J(T ) ≤ 0, (51)

which contradicts with (49). So the assumption that
there exists a T–periodic solution of (1) with frequency
2Π
T ≥ ω0 is wrong. Theorem 2 is proved.



Figure 1. The region of the absence of the beat mode for PLL.

4 Example
Theorem 1 was applied to a second order phase-

locked loop (PLL) with a proportional-integrating filter
and time delay in the loop: l = 1, f(σ) = ϕ1(σ1) =
= sin(σ1)− γ, γ ∈ (0, 1),

K(p) = 100
1 + 0.2p

1 + p
e−0.1p. (52)

The results are presented in the figure 1. The region of
the absence of the beat mode obtained by using Theo-
rem 1 is on the left of the line.

5 Conclusion
The paper is devoted to the problem of lack or ex-

istence of periodic regimes in phase synchronization
systems with distributed parameters. The PSSs de-
scribed by integro-differential Volterra equations are
addressed. The case of differentiable periodic nonlin-
earities is considered. The problem is investigated with
the help of Fourier expansions and Popov functionals
destined to periodic nonlinearities. New frequency-
algebraic conditions for the lack or existence of peri-
odic regimes of certain frequencies are obtained.
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